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Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon 
atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, 
anticancer, and other biological activities. Most studies on the biological functions 
of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) 
models. UA is used in animal husbandry as an anti-inflammatory and antiviral 
agent, as well as for enhancing the integrity of the intestinal barrier. Although UA 
has been shown to have significant in vitro bacteriostatic effects, it is rarely used 
in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel 
feed additive in animal husbandry should be considered. This review summarizes 
the available data on the biological functions of UA and its applications in animal 
husbandry.
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1. Introduction

Natural products derived from plants, including polyphenols, flavonoids, terpenoids, 
essential oils, and alkaloids, have many biological and pharmacological properties, including 
antibacterial, antiviral, anticancer, anti-inflammatory, anti-diabetic, and hepato-protective 
activities (1). Ursolic acid (UA) is a natural plant product with the chemical formula of C30H48O3 
(Figure 1). It is found in the stem bark, leaves, and peel of Chinese herbs and fruits and has been 
shown to have a wide range of pharmaceutical properties (Table 1). UA contents vary in different 
plants, parts of plants, and the sources of plants (15), ranging from 0.091 to 1.58% in five 
different species of the Lamiaceae family (Rosmarinus officinalis L., Salvia officinalis L., Satureja 
montana L., Salvia sclarea L., and Salvia glutinosa L.) (16), reaching 49.7% in apple pomace and 
22.7% in rosemary leaves (17). UA contents tend to be highest in flowers and leaves, and lower 
in stems and rhizomes (18). Details on UA contents and extraction methods from different 
plants are summarized in Table 2.

In terms of biopharmaceutical classification, UA is a Class IV compound (“low” solubility 
and “low” permeability) (26). The clinical application of UA is limited because of its poor 
bioavailability, together with low intestinal permeability and solubility. UA can be used as a 
component in the vesicle-like nanocarrier system because of its small size. Moreover, UA can 
act not only as an anticancer additive in the nanocarrier system, but it also shows synergy with 
other drugs, indicating further advantages in medical treatments (27). Previous research has 
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suggested several strategies, including complexation with hydrophilic 
cyclodextrins (28), structure modification (29), nanotechnology (30), 
and creating a supramolecular coamorphous system of UA with 
piperine (31), to overcome these limitations.

UA has been proposed as a candidate drug for treating various 
cancers (32–35), inflammatory diseases (36), diabetes (37), Parkinson’s 
disease (38), Alzheimer’s disease (39), and liver-related diseases in 
humans. However, studies have only been performed in mouse 
models, and there are few studies on the potential applications of UA 
in farm animals. This review aims to discuss the biological activities 
of UA and investigate the feasibility of using UA in animal husbandry.

2. Beneficial effects of UA

2.1. Anti-inflammatory effects

The close association between inflammation and many diseases, 
such as Parkinson’s disease, osteoarthritis, cardiovascular events, 
diabetic nephropathy, cancer, and influenza infection, is well known 
(40). Previous in vivo and in vitro studies have shown that UA acts 
against both endogenous and exogenous inflammatory stimuli, with 
favorable anti-inflammatory effects. UA (25 mg/kg body weight, oral) 
can prevent the degeneration of dopaminergic neurons in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonian mice (41). 
UA has been shown to significantly suppress xylene-induced ear 
edema in vivo as well as protect against lipopolysaccharide (LPS)-
induced acute kidney injury by blocking the Toll-like receptor/
myeloid differentiation primary response 88 pathway in vitro (42). In 
addition, UA can alleviate osteoarthritis by inhibiting the nuclear 
factor kappa B/NOD-like receptor protein-3 (NF-κB/NLRP3) 
inflammasome pathway (43). Furthermore, UA, at concentrations of 
160 and 320 μg/mL, could inhibit inflammatory responses via the 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and 
NF-κB signaling pathways, reducing the viability of breast cancer cells 
(44). Treatment with 50 mg/kg UA in combination with caprylic acid 
(60 mg/kg) was found to decrease the levels of inflammatory cytokines 

such as tumor necrosis factor-alpha (TNF-α), interleukin-1-beta 
(IL-1β), to reverse pentylenetetrazole-induced seizure-like symptoms 
in a zebrafish model (45).

When used at a concentration of 20 μg/mL, UA, in an influenza A 
virus (IAV)-treated A549 cell model, resolved both cell injury and the 
inflammatory response (46). Zhou and Wink (47) also revealed that 
UA can play an anti-inflammatory role by inhibiting NF-κB nuclear 
translocation, thereby reducing the expression of inflammation-
related factors, such as TNF-α, cyclooxygenase-2, and inducible nitric 
oxide synthase (iNOS). UA derivatives have also been found to 
be  effective in treating inflammation. In a two-stage skin 
carcinogenesis mouse model, two weeks of treatment with UA 
(2 μmol) or its synthetic derivatives significantly inhibited the 
expression of pro-inflammatory genes, such as interleukin-1-alpha 
(IL-1α), IL-1β, IL-6, and IL-23. Moreover, a few UA derivatives, such 
as corosolic acid and 3-epi-corosolic acid, were found to have stronger 
anti-inflammatory activities than UA (48). Similarly, another UA 
derivative, β-D-glucopyranosyl ester, was also found to have anti-
inflammatory activity (49). Overall, previous studies have established 
that UA and its derivatives regulate the development of inflammation, 
and hence may be useful for treating inflammation-related diseases.

2.2. Antioxidant activity

Oxidative stress results from excessive production of reactive 
oxygen species (ROS) in cells and tissues, which further leads to 
various inflammation-associated diseases (50). The in vitro antioxidant 
activity of UA was evaluated by inhibiting 2,2-diphenyl-1-picryl-
hydroxyl at an inhibitory concentration (IC50) of 59.7 ± 1.0 μg/mL (51). 
Administration of UA (25 and 50 mg/kg of body weight/day, 
intragastrically) for 6 weeks was found to reduce CCl4-induced 
nephrotoxicity, demonstrating the antioxidant activity of UA and its 
ability to inhibit the phosphorylation of transcription 3 (STAT3)-
NF-κB pathway (52). In human lymphocytes and the hamster V79 
lung fibroblast cell line, UA was demonstrated to be  a natural 
antioxidant that prevents DNA damage caused by hydrogen peroxide, 
causing a 50% decrease in cell viability at 224.85 mM (53). 
Furthermore, UA has been suggested as a potential candidate for the 
treatment and prevention of oxidative stress-mediated diseases (54), 
including neurodegenerative diseases in mouse models (55), obesity/
diabetes and cardiovascular diseases in mice, skin carcinogenesis in 
mouse epidermal cells (56), liver disease in mice with carbon 
tetrachloride (CCl4)-induced liver fibrosis (57), and osteoporosis in 
MG-63 cells (58).

UA plays a vital role in the injury caused by cerebral ischemia in 
mice by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) 
pathway (59). Nrf2, encoded by the gene NFE2L2, is a regulatory factor 
of phase II antioxidant enzymes, protecting the body from oxidative 
stress and inflammation. Nrf2(−/−) mice showed obvious symptoms of 
neurodegeneration and oxidative stress, which were significantly 
reduced by intraperitoneal injection of UA (100 mg/kg), demonstrating 
the neuroprotective effects of UA (55). UA (50 mg/kg/day, 6 weeks, oral 
gavage) was also shown to attenuate CCl4-induced hepatic oxidative 
damage and inflammation by increasing the expression levels of 
NAD(P)H:quinone-oxidoreductase-1, glutathione S-transferases, heme 
oxygenase-1, B-cell lymphoma-2 (Bcl-2), and nuclear Nrf2 (57). In a 
Caenorhabditis elegans model used for the evaluation of neurological 

FIGURE 1

The chemical structure of ursolic acid.

https://doi.org/10.3389/fvets.2023.1251248
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu
 et al. 

10
.3

3
8

9
/fvets.2

0
2

3.12
5124

8

Fro
n

tie
rs in

 V
e

te
rin

ary Scie
n

ce
0

3
fro

n
tie

rsin
.o

rg

TABLE 1 The sources and pharmaceutical properties of ursolic acid.

Ursolic acid 
sources

Plant parts 
used

Experimental treatment
in vivo or in 
vitro

Bioactivities Bibliography

Diospyros dendo Dried leaves Pseudomonas aeruginosa PA01 in vitro Antibacterial activity (2)

Rosmarinus officinalis Dried leaves Oral, 100 mg/kg/day of R. officinalis extract, for 15 days, BALB/c male mice in vivo Pro-neurogenic effects (3)

Ligustrum lucidum Fruit Ovariectomized rats fed with diet containing the fruit of Ligustrum lucidum Ait (18.8 g/kg) for 

6 weeks

in vivo Osteoprotective effects (4)

Ligustrum lucidum Leaves The methanol extract from Ligustrum plant leaves (0.1, 0.25, 1 g/kg) were orally administered 

to mice

in vivo Anti-inflammatory and analgesic effects (5)

Melissa officinalis L. Aerial parts The two breast cancer cell lines, MCF-7 and MDA-MB-231 in vitro Anti-cancer (6)

Malus pumila Peels Tumorigenic highly metastatic ras/myc serum-free mouse embryo cells, UA (2.5–10 μM) in vitro Anti-tumor (7)

Bursera cuneata Aerial parts Mouse ear edema in vivo Anti-inflammatory and antihistaminic activity (8)

loquat Leaves Oral, 50 mg/kg/day for 15 days, diabetic db/db mice in vivo Antioxidant and anti-inflammatory effects (9)

Ocimum gratissimum L. 

(Lamiaceae)

Leaves Red blood cells in vitro Anti-sickling activity (10)

Hawthorn (Crataegus spp.) Bark, leaves, berries Oral,100 mg/kg/day for 28 days, rat in vivo Hypolipidemic and hepatoprotective effects (11)

Vitex negundo Linn. Fresh leaves 200 μg/mL of petroleum ether extract and chloroform extract, Mycobacterium tuberculosis 

H37RV

in vitro Antitubercular activity (12)

Ixora coccinea Linn Flowers Lung cancer (A549 and H460) and leukemia cell lines (K562, Lucena, HL60, and Jurkat) in vitro Inhibits the proliferation of cancer cells (13)

Eucalyptus tereticornis Sm. Leaves The prediabetic mice were performed by intraperitoneal injection of the extract of E. 

tereticornis leaves (300 mg/kg b. w.)

in vivo Anti-obesity and anti-diabetes effects (14)
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drugs, UA (100 μM) showed antioxidant activity by upregulating the 
expression of peroxiredoxin-2 and skn-1 transcription factor (which 
corresponds to human Nrf2); this also led to an anti-depressant effect 
(60). Dietary administration of 0.1% UA (for 8 weeks) attenuated the 
tumor growth of transplanted VCaP (human prostatic cancer cell) 
xenografts in immunodeficient mice, together with epigenetic CpG 
methylation reprogramming, suggesting potential applications for the 
treatment/prevention of human prostate cancer (61). Treatment of JB6 
P+ mouse epidermal cells with 2.5 μM UA increased Nrf2 expression 
by altering the methylation status of the Nrf2 promoter, thus inhibiting 
the development of skin cancer (56). In cisplatin-resistant HepG2/DDP 
cells, UA, as a natural adjuvant, increased the sensitivity of 
hepatocellular carcinoma cells to cisplatin through the Nrf2/antioxidant 
reaction element (ARE) signaling pathway, thus exhibiting anticancer 
effects (62). In conclusion, the results of various studies indicate that 
Nrf2 may be the target of the biological activity of UA.

2.3. Anticancer activity

In terms of its anticancer activity, UA is mainly associated with 
apoptosis and death of cancer cells. Mitochondria are essential for cell 
respiration and oxidative phosphorylation, and mitochondrial damage 
leads to apoptosis (63). UA exerts its anticancer effect by activating 
mitochondrial-dependent signaling pathways (Figure 2).

For example, UA upregulates and activates the expression of the 
cell tumor antigen p53 and the AMP-activated protein kinase (AMPK) 
signaling pathway, respectively, and downregulates the expression of 
the apoptosis regulator Bcl-2 (64). In a previous study, UA was shown 
to induce apoptosis of human breast adenocarcinoma (MCF7), 
osteosarcoma (U2OS), cervical adenocarcinoma (HeLa), and 

colorectal cancer (HCT116) cells after 24 h of treatment, with lethal 
dose 50 (LD50) values of 12.8 μM, 7.7 μM, 16.8 μM, and 19 μM, 
respectively (69). Furthermore, UA (20 μM) could inhibit the 
expression of AKT mRNA, thereby activating the AMPK signaling 
pathway to promote autophagy and apoptosis (65). Furthermore, in 
the presence of 30 μM UA for 48 h, the proliferative activity of human 
lung cancer cells (A549 and H460) decreased significantly, whereas 
the expression of caspases 3 and 9 increased, further increasing the 
levels of the apoptosis-related protein Bax and decreasing those of the 
anti-apoptotic protein Bcl-2 (66). These results suggest that UA can 
induce apoptosis through caspase-related signaling pathways. 
Through the action of UA, AMPK is activated and the mammalian 
target of the rapamycin (mTOR) signaling pathway is suppressed, thus 
controlling protein synthesis and cell growth (66). In addition, 
structurally modified UA may also activate non-apoptotic cell death 
pathways associated with autophagosome and lysosome accumulation 
(67). UA also showed therapeutic effects on drug-resistant cancer cell 
lines. In vitro experiments confirmed that 48 h of UA treatment 
(16 μM) could reduce the adhesion and infiltration of the human 
breast cancer adriamycin-resistant cell line MCF-7/ADR to human 
umbilical vein endothelial cells (HUVECs) and could also reduce 
migration in MCF-7/ADR cells (68). UA induced cellular DNA 
damage and initiated G0/G1 phase arrest in embryonic cancer cells, 
and could be a candidate for inhibiting the recurrence of cancer (70).

2.4. Hepato-protective activity

When C57BL/6 mice were fed a high-fat diet for 15 weeks, 
accompanied by oral administration of UA, 80 mg/kg of UA could 
significantly reduce the total cholesterol (TC) and triglyceride (TG) 

TABLE 2 Ursolic acid contents and extraction methods from different plants.

Ursolic acid sources Regions Extraction method
Amount of 
ursolic acid

Bibliography

Aralia chinensis China Accelerated solvent extraction (95% ethanol) 0.29% (19)

Eriobotrya japonica Thunb China Accelerated solvent extraction (95% ethanol) 0.69 mg/g (19)

Lavandula stoechas L. Türkiye Maceration (methanol-dichloromethane 1: 1) 22.2 mg/g (20)

Lavandula stoechas L. Türkiye Maceration (methanol) 12 mg/g (20)

Lavandula stoechas L. Türkiye Maceration (Ethanol) 13.2 mg/g (20)

Lavandula stoechas L. Türkiye Maceration (Acetone) 17.5 mg/g (20)

Lavandula stoechas L. Türkiye Maceration (Ethyl acetate) 19.7 mg/g (20)

Lavandula stoechas L. Türkiye Maceration (Diethyl ether) 10.6 mg/g (20)

Lavandula stoechas L. Türkiye Maceration (Chloroform) 18.5 mg/g (20)

Leaves of Melissa officinalis L. The western area of Romania Accelerated solvent extraction (70% ethanol) 3.58 mg/g (6)

Leaves of Melissa officinalis L. The western area of Romania Accelerated solvent extraction (96% ethanol) 6.10 mg/g (6)

Leaves of Melissa officinalis L. The western area of Romania Accelerated solvent extraction (80% methanol) 11.23 mg/g (6)

Leaves of Ilex aquifolium L. North-East Corsica, France Soxhlet apparatus (hexane and dichloromethane) 1.3% (21)

Fruits of Chaenomeles speciosa China Accelerated solvent extraction (80% ethanol) 0.164–0.340 mg/g (22)

Leaves of Catharanthus roseus India Soxhlet apparatus (hexane, chloroform, and methanol) – (23)

Leaves of Neolamarckia 

cadamba

Sono-Maceration (ethyl acetate) 27.5 mg/g (24)

Leaves of Rosmarinus officinalis Lithuania Ultrasound assisted extraction (90% ethanol) 15.8 mg/g (25)
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levels in the liver and plasma, effectively relieve liver steatosis and 
reduce the number of epididymal fat cells. Meanwhile, in vitro 
experiments also confirmed that UA (20 μM) significantly reduced TC 
(37.2%) and TG (50.4%) contents in HepG2 cells and upregulated 
P-AMPK protein expression (71). Therefore, UA may reduce the lipid 
content of cells and inhibit lipid synthesis by activating the AMPK 
signaling pathway. UA improves the richness of beneficial intestinal 
flora through inhibition of the NOX4/NLRP3 inflammasome pathway, 
thus alleviating liver fibrosis caused by CCl4 (72). UA can also reduce 
the activation of mitogen-activated protein kinases (JNK, p38 MAPK, 
ERK) and inactivate the immunoregulatory transcription factor 
NF-κB in the liver after treatment with CCl4, thereby relieving CCl4-
induced inflammation (73).

In vitro experiments have also shown that UA can reverse the 
progression of liver fibrosis by inhibiting the activation of the NADPH 
oxidase (NOX)/ROS signaling pathway in hepatic stellate cells (74). 
UA protects the intestinal barrier by inhibiting the inflammatory 
factor TNF-α and increasing the expression of tight junction proteins 
and antimicrobial peptides. A 16S rRNA gene sequencing study also 
confirmed that UA treatment increased the abundance of beneficial 
bacteria, such as Firmicutes, Lactobacillus, and Bifidobacterium, thus 
alleviating the liver fibrosis process (75). Speculatively, the protective 
effect of UA on the liver may be related to reducing inflammation and 
oxidative stress levels or regulating intestinal flora. The possible 
mechanism underlying the role of UA in hepatoprotection against 
liver fibrosis, inhibiting the proliferation of cancer cells, and reversing 
nonalcoholic fatty liver disease, thus promoting liver regeneration by 
different pathways, is shown in Figure 3.

2.5. Antibacterial activity

Antibiotic resistance and the emergence of superbugs have 
become serious public health problems in both human and 
veterinary medicine. To treat infections caused by multi-drug 
resistant pathogens, many different strategies have been used, 
including phages (76), antimicrobial peptides (77), metal 
nanoparticles (78), and plant-derived compounds--polyphenols 
(79), flavonoids (80), terpenoids (81), plant essential oils (82), and 
alkaloids (83). Traditional Chinese Medicine and Ayurveda have 
also been used in health care and disease prevention in ancient 
China and Egypt (84). UA, as a representative triterpenoid, 
showed significant antibacterial activity against the production of 
biofilm by Escherichia coli CFT073 (ATCC 700928), Enterobacter 
cloacae ATCC-BAA 2468, and Pseudomonas aeruginosa ATCC 
25000 (81).

Although the antibacterial effects of plant extracts may not 
be  as obvious as those of antibiotics, plant extracts can have 
synergistic effects when combined with antibiotics. UA showed a 
strong synergistic effect when combined with β-lactam antibiotics 
(ampicillin and benzacillin), increasing the sensitivity of 
Staphylococcus aureus and Staphylococcus epidermidis to antibiotics 
(85). UA (32 μg/mL) also displayed synergy with colistin against 
clinical isolates of Klebsiella pneumoniae BC936 and E. coli U3790 
(86). Table 3 shows the MIC values of UA against different Gram-
positive and Gram-negative pathogens. The MIC value of UA or its 
oleanolic acid isomer was 31.25 μg/mL against both S. aureus 
ATCC 6538 and methicillin-resistant S. aureus, whereas the MIC 

FIGURE 2

The potential mechanism underlying the anticancer effects of ursolic acid (64–68). UA upregulates and activates the expression of the cell tumor 
antigen p53 and the AMP-activated protein kinase (AMPK) signaling pathway, respectively, together with suppression of the mammalian target of 
rapamycin (mTOR) pathways and downregulation of the apoptosis regulator Bcl-2. UA damages the mitochondrial membrane, decreasing the 
mitochondrial membrane potential ΔΨm, which induces cytochrome c release from the mitochondria to the cytosol, activating the caspase proteins 
and leading to apoptosis. In addition, UA treatment significantly increases the production of mitochondrial ROS, reducing both DNA synthesis and cell 
proliferation. UA, ursolic acid; p-AMPK, phosphorylated AMP-activated protein kinase; mTOR, mammalian target of rapamycin; Bcl-2, B-cell lymphoma 
2; ROS, reactive oxygen species; Cyt C, Cytochrome C; ∆Ψm, mitochondrial membrane potential.
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TABLE 3 MIC values of UA against different bacterial pathogens.

Pathogens Source MIC value (μg/mL) Bibliography

Gram-positive 

pathogens

MRSA ATCC 43300 Leaves of Alstonia scholaris 64 (87)

MSSA ATCC 29213 16

Enterococcus faecalis ATCC 29212 1

Bacillus cereus ATCC 9139 8

Listeria monocytogenes ATCC 7644 2

MRSA (ATCC33591) Leaves and twigs of Vitellaria paradoxa 16 (88)

Streptococcus sanguinis ATCC 10556 128 (89)

Streptococcus gordonii ATCC 10558 64

Streptococcus mutans UA159 256

Streptococcus sobrinus ATCC 6715 64

Actinomyces viscosus ATCC 15987 32

Actinomyces naeslundii ATCC 12104 16

K. pneumoniae ATCC 43816 400 (90)

Four clinical isolates of MRSA 8 (88)

Gram-negative 

pathogens

Escherichia coli (ATCC 35150) Leaves of Alstonia scholaris >128 (87)

Salmonella enterica (ATCC 13311) >128

Pseudomonas aeruginosa (ATCC 27853) >128

Four clinical isolates carbapenem-resistant 

Klebsiella pneumoniae strains

800 (90)

against Listeria monocytogenes ATCC 19115 was 250 μg/mL (91). 
UA is also known to show antifungal activity against Cryptococcus 
neoformans H99 with a MIC value of 250 μg/mL (92).

UA exposure led to a decrease in intracellular pH and ATP, 
downregulated the expression of four biofilm-related genes (pgaA, 
luxS, wbbM, and wzm), and inhibited biofilm formation of 

FIGURE 3

The hepatoprotective mechanisms of ursolic acid (71–75). UA suppresses the NOX4/ROS pathway to relieve nonalcoholic fatty liver disease, activates 
the AMPK pathway to enhance liver regeneration, and inhibits the MAPK/NF-κB pathway to decrease the proliferation of cancer cells. In addition, the 
protective effect of UA against liver fibrosis may be related to reducing inflammation and oxidative stress levels or regulating intestinal flora by 
downregulation of the NOX4/NLRP3 pathway. UA, ursolic acid; AMPK, AMP-activated protein kinase; NOX4, NADPH oxidase 4; MAPK, mitogen-
activated protein kinase. NLRP3, NOD-like receptor thermal protein domain associated protein 3; ROS, reactive oxygen species; NF-κB, nuclear factor 
kappa-B.
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carbapenem-resistant Klebsiella pneumoniae (90). The antimicrobial 
activity of UA is stronger than that of tetracycline, with reductions of 
50.5 and 12.7%, respectively, in staphylococcal membrane integrity 
(87). The MIC value of UA against E. coli (ATCC 25922), 
K. pneumoniae (ATCC10031), and Shigella flexella (ATCC12022) was 
64 μg/mL. However, the MIC of UA against these bacteria was 
significantly reduced by modification of C-3 (hydroxyl) in UA to form 
UA ester analogs. Hence, the modified UA derivatives showed 
markedly increased antibacterial effects (51). Gram-negative bacteria 
contain an outer membrane, which is rich in LPS and phospholipids 
and prevents entry of UA into the bacterial cells, and hence the MICs 
of UA against Gram-negative bacteria are higher than that against 
Gram-positive bacteria (81).

UA kills bacteria by altering the structure of the bacterial cell, 
particularly by interfering with the cell membrane and adhesion 
proteins (93). UA also affects cell morphology and controls the 
expression of genes related to virulence factors, such as pili and 
fritillary (94). UA inhibits bacterial growth by reducing the ability of 
bacteria to adhere to host cells, as well as disrupting biofilm formation 
(95). In the presence of 10 mg/L UA from Diospyros dendo leaves/
flowers, decreases of 72, 87, and 57% were observed in the biofilm 
biomass of Escherichia coli (ATCC 25404), Pseudomonas aeruginosa, 
and Vibrio havii, respectively, after culture for 24 h. Furthermore, 10 
and 30 mg/L of UA induced the expression of genes related to 
chemotaxis (cheA, motAB, tap, and tsr). Overexpression of the motAB 
genes has been shown to cause increased bacterial activity, decreasing 
their stability in the biofilm environment and resulting in reduced 
biofilm formation (96). Experiments, such as measurement of 
bacterial glucosyltransferase activity, computer simulation, site-
directed mutagenesis, and capillary electrophoresis, have revealed that 
UA competes for occupancy of the active site of glycosyltransferase, a 
key enzyme required for the synthesis of extracellular polymeric 
substances (EPS), secreted by S. mutans, thus inhibiting EPS formation 
and reducing the viability of S. mutans and the structural integrity of 
its biofilm (97). Therefore, in vitro results support the use of UA for 
the treatment of bacterial diseases. However, UA is rarely used to 
prevent or treat bacterial diseases in animal husbandry.

3. The side effects of UA

It has been reported that UA (5 mg/kg body weight, 
intraperitoneally) could inhibit the spermatogenesis in Wistar strain 
male albino rats (3 months old) (98). 50 μM UA purified from loquat 
(Eriobotrya japonica) also exerts the cytotoxicities against A549 (lung 
cancer cell line) and NTUB1 cells (human bladder cancer cell line) 
(99). In the acute and toxicity test, UA (21.5 g/kg body weight, oral) 
extracted from Ledum pulastre L. can destroy the nervous and 
digestive systems of mice, and the LD50 of the UA was 9.26 g/ kg (100).

4. Application of UA in livestock, 
poultry, and aquatic animals

At present, the application of UA in animal husbandry is limited. 
UA is mainly used to improve antioxidant capacity in broilers (101) 
and as a cryopreservative for porcine semen (102). UA is also used to 
treat bacterial pneumonia in calves (103) and improve intestinal 

immunity or treat viral diseases in fish, indicating potential 
applications in aquaculture (104).

Although the protective effect of UA against asthenozoospermia 
in rats by increasing sperm density and motility has already been 
established (105), its use as a cryopreservative for porcine semen has 
also been documented. As UA is a natural antioxidant, its addition (at 
a concentration of 1.6 mg/mL) to the frozen diluent of porcine sperm 
resulted in a significant improvement in the integrity of the 
mitochondrial membranes, plasma membranes, and acrosomes of the 
sperm (102). Supplementation of UA (400 mg/kg, purified from pine 
bark, and Rosmarinus officinalis L., Aurantii fructus immaturus, and 
Eucommla ulmoides leaves) for 42 days resulted in a significant 
reduction in elimination and mortality rates of the sperm, while the 
malondialdehyde content was also decreased due to an increase in the 
activity of superoxide dismutase (101). UA or UA derivatives have also 
been used as anti-microbial and anti-influenza drugs (106–109), and 
feed additives for the improvement of intestinal health and immunity 
in livestock and poultry (110–112).

In addition, using in vitro studies, UA has been demonstrated as 
a promising candidate for the treatment of bovine endometritis (113). 
Furthermore, it was found that when UA was used at a concentration 
of 20 μM, it provided protection in an LPS-induced model of 
endometrial cell inflammation. Notably, reductions in the expression 
of several pro-inflammatory cytokines, such as IL-6, TNF-α, and 
IL-1β, and, particularly, the NF-κB signaling pathway, were observed 
(113). Treatment with UA can result in the suppression of IL-17A 
expression in the lungs of newborn calves, and UA has also been 
demonstrated to have some therapeutic effect on bovine bacterial 
pneumonia caused by Mannheimia haemolytica (103). UA treatment 
(at a concentration of 1 ppm) was also found to be significantly useful 
in relieving renal malformations (atrophic glomeruli and curvature 
defects of the anterior renal ducts) caused by aristolochia acid in 
zebrafish embryos (114). A previous study demonstrated the useful 
therapeutic effects of sage and lemon verbena, which are also rich in 
triterpenoids. These molecules can increase the number of intestinal 
goblet cells, change the glycosylation properties of mucin agglutinin, 
and enhance intestinal immunity in juvenile gilthead seabream 
(Sparus aurata) (115).

Although the water insolubility of UA limits its clinical application, 
structurally modified UA shows antiviral activity. UA derivatives 
(esterification of the C-17 carboxyl or conversion of the carboxyl into 
amide) also exhibited a strong anti-H5N1 activity (116). Furthermore, 
3-o-β-UA as well as UA’s ester equivalents showed antiviral activity 
against porcine reproductive and respiratory syndrome viruses in vitro 
(117). UA is one of the main components of Prunella vulgaris L., and 
hence showed antiviral activity against hematopoietic necrosis virus 
(IHNV) in rainbow trout (Oncorhynchus mykiss). When UA was 
injected intraperitoneally, a reduction in the expression levels of 
IHNV glycoprotein mRNA (in the spleen) was observed on day 1 after 
viral infection (118). In addition, 10% UA obtained from Lippia 
citriodora and Salvia officinalis could be used as an effective additive 
to improve the growth performance and feed conversion ratio and 
provide immune protection after LPS treatment in juvenile gilthead 
seabream (Sparus aurata) (119). UA could also effectively inhibit 
Micropterus salmoides rhabdovirus (MSRV) replication 
(IC50 = 5.55 μM) in vitro and increase the mortality rate by 12.5% in 
MSRV-infected largemouth bass (104). This indicates that UA can 
be considered as an alternative anti-MSRV agent in aquaculture. An 
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extract of O. sanctum containing UA was found to have potential anti-
influenza activity (120), and the juice from fresh O. sanctum leaves 
exhibited antibacterial activity due to the inhibition of the expression 
of extended-spectrum β-lactamase (ESBL) enzymes produced by 
E. coli (121). Based on these results, it can be predicted that UA has 
the potential to be used as an antiviral drug or antibiotic substitute in 
animal husbandry.

5. Insights and future directions

UA has a typical triterpenoid structure and thus has specific 
pharmacological characteristics. UA is found in a variety of fruits, 
spices, and medicinal herbs, such as Lavandula stoechas, apple peel, 
rosemary, and ligustrine. Numerous investigations have 
demonstrated that UA has a variety of biological activities, 
including anti-inflammatory, antioxidant, anti-cancer, and 
hepatoprotective effects, using both in vitro and in vivo animal 
model experiments (Figure  4). UA is mainly used in animal 
husbandry to improve intestinal immunity and for its anti-
inflammatory and antiviral activities. Based on its bacteriostatic 
effects, UA has the potential to be used as a therapeutic agent in 
farmed species to reduce the use of chemotherapeutics and 
enhance the move toward sustainability.

However, although ultra-pure and high-dose UA has specific 
beneficial effects, the economic cost of UA production from plants 
requires consideration for its widespread use in livestock and poultry 
production. Furthermore, the toxicology and pharmacokinetics 
(bioavailability) of UA require further investigation.
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FIGURE 4

Ursolic acid: biological functions and applications in animal husbandry.
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Glossary

UA ursolic acid

LPS lipopolysaccharide

NF-κB nuclear factor kappa B

NLRP3 NOD-like receptor protein-3

PI3K phosphatidylinositol 3-kinase

IAV influenza A virus

TNF-α tumor necrosis factor-alpha

IL-1α interleukin-1-alpha

IC50 inhibitory concentration 50

LD50 lethal dose 50

STAT3 phosphorylation of transcription 3

Nrf2 nuclear factor-erythroid 2-related factor 2

CCl4 carbon tetrachloride

Bcl-2 B-cell lymphoma-2

ARE antioxidant reaction element

AMPK AMP-activated protein kinase

HUVECs human umbilical vein endothelial cells

TC total cholesteroland

TGs triglycerides

IHNV hematopoietic necrosis virus

ESBL extended-spectrum beta-lactamase
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