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testosterone production, testicular 
morphology, and related genes 
expression in cashmere goats
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Prolactin has multifaceted roles in lactation, growth, metabolism, osmoregulation, 
behavior, and the reproduction of animals. This study aimed to investigate 
the involvement of prolactin in testicular function in cashmere goats. Twenty 
cashmere goats were randomly assigned to either the control group (CON) or the 
bromocriptine treatment group (BCR, bromocriptine, prolactin inhibitor). Blood 
and testis samples collected for analysis after 30  days of treatment. The results 
indicated that, compared with the CON group, BCR significantly decreased 
(p  <  0.05) the serum concentrations of prolactin, and significantly increased 
(p  <  0.05) the levels of testosterone and luteinizing hormone (LH) on day 30. The 
serum level of the follicle-stimulating hormone (FSH) was not affected (p  >  0.05) 
by the treatment. The mean seminiferous tubule diameter and spermatogenic 
epithelium thickness were increased (p  <  0.05) in the BCR group. Subsequently, 
we  performed RNA sequencing and bioinformatics analysis to identify the key 
genes and pathways associated with the regulation of spermatogenesis or 
testosterone secretion function. A total of 142 differentially expressed genes 
(DEGs) were identified (91 were upregulated, 51 were downregulated). Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed 
that the DEGs were mainly involved in the extracellular matrix (ECM), hippo, 
and steroid hormone biosynthesis, which are related to testicular function. The 
expression of the genes SULT2B1, CYP3A24, and CYP3A74 in the steroid hormone 
biosynthesis pathway significantly increased (p  <  0.05) in the BCR group, which 
was validated by qRT-PCR. These results provide a basis for understanding the 
mechanisms underlying the regulation of testicular function by prolactin in 
cashmere goats.
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1. Introduction

Spermatogenesis and testosterone production are major functions of the testes (1). Normal 
testicular function relies on endocrine and paracrine hormonal pathways (2), including follicle-
stimulating hormone (FSH), luteinising hormone (LH), and testosterone (3). Prolactin (PRL) is 
a polypeptide hormone involved in various biological functions, such as lactation, growth 
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performance, animal behavior, metabolism, and reproduction—and 
acts in conjunction with FSH and LH to regulate testicular function 
in adult male rats, hamsters, and mice (4, 5). PRL is mainly synthesized 
and secreted by the lactotroph cells of the anterior pituitary gland and 
acts via its membrane PRL receptor (PRLR) (6). PRLR has been 
identified in the testes of various species, including rams (7), rats (8), 
yaks (9), and humans (4). Studies have revealed that the PRLR in ram 
testes is expressed by Leydig cells and germ cells in seminiferous 
tubules, and the expression site and pattern of the receptor gene 
indicates a crucial role for PRL in the regulation of steroidogenesis and 
spermatogenesis (7).

Several studies have shown that the abnormal level of PRL affects 
the reproductive function. Hyperprolactinemia, in which circulating 
PRL levels are higher than those in the reference population, may 
result in decreased sperm production, and infertility in men (10); and 
lead to decreased LH and FSH levels in rats (11). Besides, clinical 
observations in hypoprolactinemic infertile men have shown that the 
restoration of normal PRL levels leads to an increase in sperm density 
and quality and restores fertility, suggesting a role for PRL in regulating 
the testis and accessory glands (12). Bromocriptine (BCR), a 
dopamine receptor agonist widely used to study the function of PRL, 
can reduce the concentration of PRL in mammals blood (13). A study 
on rams (Ovis aries) suggested that testicular function is influenced 
by BCR-induced hypoprolactinaemia (14). However, another study 
showed that testicular function and fertility were not affected in 
PRLR-knockout mice (15). Suppressing of the concentration of PRL 
using BCR decreases testicular volume, sperm production, and 
testosterone secretion in ram (16). A study on adult male rats 
illustrated that serum PRL level suppressed by 2-bromo-α-ergocriptine 
reduces the weight of the reproductive organ, but increases the serum 
level of LH, while FSH remains unaffected (17). Despite this, the 
pathways through which PRL regulates the function of the testes 
remain unclear. It is also unclear if PRL levels affect testosterone 
secretion and fertility in male goats.

In the present study, we hypothesized that PRL can change the 
serum hormone levels and the expression of related genes to influence 
the reproductive function. To test this hypothesis, we investigated the 
effects of PRL inhibition on serum biochemical indicators, testicular 
morphological, and differentially expressed mRNAs using 
transcriptome sequencing, and we  try to elucidate the molecular 
mechanisms underlying PRL regulation of the testes in male 
cashmere goats.

2. Materials and methods

2.1. Ethics statement

This study was conducted under the guidance of the Animal Care 
and Use Committee of the Hebei Agricultural University (approval 
number: 2023133).

2.2. Animals and experiments

The study was conducted at the Qinglong Lihong Cashmere Goat 
Farm (Qinhuangdao, China) from August 17, 2020 to October 1, 2020. 
All goats had free access to fresh water and were fed twice daily (07,00 

and 15,00  h) throughout the experiment, consistent with the 
requirements for raising and managing farms goats. All goats were 
housed in individual pens. Twenty healthy male goats (Capra hircus, 
Yanshan Cashmere goat breed, 10 months old, body 
weight = 22.98 ± 1.95 kg) were selected, and randomly assigned to two 
groups: 1) BCR treatment (n = 10, 0.06 mg/kg BW) and 2) the control 
group (CON, n = 10; equal volume of water). BCR was administered in 
the form of tablets dissolved in water that was sprayed onto the 
concentrate feed in the morning feed. The dose was based on the dosing 
instructions given in Zhang et al. (13) and Dicks et al. (18), which were 
approximately 0.05 mg/kg BW–0.07 mg/kg BW). The experiment was 
conducted over 45 days, with a 15-day adaptation period.

2.3. Sample collection

The body weights of the goats were recorded on days 0 and 30 
before the morning feed, and the average daily gain (ADG) 
was calculated.

Before the morning feed was given, blood samples were obtained 
by jugular venipuncture from each goat into 5 mL coagulation-
promoting tubes on days 0, 15, and 30. The samples were immediately 
centrifuged at 3000 × g for 15 min to harvest serum and stored at 
−20°C until analysis.

On day 30 of treatment, all goats were slaughtered at a local 
slaughterhouse before morning feeding to collect the testes. The left 
testes were immersed in 10% formaldehyde for histological analysis. 
A portion of the testicular samples from the right testis was 
immediately frozen in liquid nitrogen and then stored in a refrigerator 
at −80°C for subsequent RNA and protein extraction.

2.4. Hormone analysis

Serum concentrations of PRL, testosterone, FSH, and LH were 
determined using commercial goat enzyme-linked immunosorbent 
assay (ELISA) kits (Nanjing jiancheng Bio, Nanjing, China), in 
accordance with the manufacturer’s instructions. The absorbance 
(OD) of each well was measured at 450 nm and a standard curve was 
generated. Based on the standard curve, the concentrations of each 
sample were calculated as ng/mL, ng/L, mIU/mL, and mIU/mL, 
respectively.

2.5. Testicular morphological evaluation

The excised testes were fixed in 10% formaldehyde and kept at 
room-temperature overnight. The fixed tissues were dehydrated by 
automatic dewatering machine in ascending concentrations of graded 
ethanol baths (75, 85, 95 and 100%). Then the tissues were infiltrated 
with paraffin. The testicular tissues were sectioned into 5-μm-thick 
sections. After wax removal, the slides were stained with hematoxylin 
and eosin (H&E) and sealed with neutral gum. We randomly selected 
eight samples from each group and each slide was analyzed in at least 
five different fields. The diameters of the seminiferous tubules and the 
thickness of the spermatogenic epithelium were captured and 
measured using a Panoramic 250 digital microscope (3DHISTECH, 
Budapest, Hungary) at × 400 magnifications.
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2.6. RNA isolation and evaluation of RNA 
integrity

The total RNA from each testis sample was extracted using TRIzol 
reagent (Invitrogen, Carlsbad, CA, United States) according to the 
manufacturer’s instructions. The RNA sample was qualified using 1% 
agarose gel electrophoresis for possible contamination and 
degradation. Thereafter, RNA purity, concentration, integrity, and 
quantity were examined and measured using the NanoPhotometer® 
spectrophotometer and RNA Nano 6,000 Assay Kit of the Bioanalyzer 
2,100 system, respectively.

2.7. Library preparation, RNA sequencing, 
and data analysis

To create the library, 3 mg of high-quality RNA from each sample 
and the NEBNext Ultra Directional RNA Library Prep Kit for Illumina 
(NEB E7420) were used. Ribosomal RNA (rRNA) depletion and 
stranded method were used for the RNA library (19). After library 
construction, the concentration of the library was measured by the 
Qubit®fluorometer and adjusted to 1 ng/μL. An Agilent 2,100 
Bioanalyzer was used to examine the library insert size. The qualified 
libraries were pooled and sequenced on Illumina platforms using the 
PE150 (paired-end 150 nt) strategy at Novogene Bioinformatics 
Technology Co., Ltd. (Beijing, China). Raw data (raw reads) in the 
FASTQ format were first processed using in-house Perl scripts. 
Further, clean data were screened from the raw reads by trimming and 
filtering reads containing adaptor, more than 10% unknown 
nucleotides (N), and more than 50% nucleotides with Qphred ≤20. 
Simultaneously, the Q20, Q30, and GC contents of the clean data was 
calculated. All downstream analyzes were performed based on high-
quality clean data and were mapped to the Capra hircus reference 
genome using HISAT2 (20).

2.8. Differential expression and functional 
enrichment analysis of mRNAs

Gene quantification was performed using StringTie software and 
fragments per kilobase of transcript sequence per millions mapped 
reads (FPKM) were obtained. Differential expression was analyzed 
using DESeq2 (21), and the threshold of adjusted p-value <0.05 and 
|log2(fold change)| ≥ 1 were considered differentially expressed genes 
(DEGs) in CON vs. BCR. Furthermore, we performed gene ontogeny 
(GO) annotation of the DEGs using the GOseq R package and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis 
using the KEGG orthology-based annotation system (KOBAS).

2.9. Quantitative real-time PCR (qRT-PCR)

To verify the accuracy of the RNA-Seq, 14 differential expression 
(DE) mRNAs were randomly selected for qRT-PCR. Total RNA was 
extracted from tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, 
United  States) according to the manufacturer’s instructions, and 
reverse transcribed to cDNAs using an Evo M-MLV RT Kit with 
gDNA Eraser for qRT-PCR (Accurate, Hunan, China). qRT-PCR was 

performed using the SYBR Green Master Mix (Vazyme, Nanjing, 
China) and conducted on an ABI QuantStudio 7 Flex System. The 
qRT-PCR was performed in accordance with the following procedures: 
95°C for 3 min, followed by 40 two-step amplification cycles of 95°C 
for 10 s and 60°C for 30 s. The primer sequences are listed in Table 1. 
The relative expression levels were computed by the 2−ΔΔCt approach, 
with β-actin as an endogenous reference gene.

2.10. Statistical analysis

All experiments were performed in triplicate, and the statistical 
significance between the two groups was evaluated by Student’s t-test 
using SPSS (version 21.0; SPSS, Chicago, United States). Data are 
presented as mean ± standard error of the mean. p < 0.05 was regarded 
as statistically significant.

TABLE 1 List of the primers used in qRT-PCR.

Primer 
name

Sequence (5′-3′) Amplicon 
size (bp)

TBXAS1-F ACTTAGCGTTTTTCCGCCAG 206

TBXAS1-R ACTGTCAGCCACTGGTTTGG

CYP3A74-F ACATTGCTGTCTCCAACCTTCACC 113

CYP3A74-R GTGCCTTTCTCTGCTTCCTTCCTC

COL11A2-F ACTACATTCCGCCCTGGACT 158

COL11A2-R TGGCCTGTACCTTAGGATGC

SERPINA12-F ATGGACGAGAAGGGCACAGAGG 95

SERPINA12-R AGGAAGCGGCGGTTTATCTTGAC

SULT2B1-F CTCCAAGATCGCCAGGCAGTTG 122

SULT2B1-R TCATCCGAATCCAGCCCTTAATGTG

WEE2-F AGAGGTCAGGATTCAGAGGCGAAG 85

WEE2-R CTTTCCCGAAGTGTGCTGAGGTC

CYP3A24-F GCTGTGACGGTGCCAATCTCTG 147

CYP3A24-R ATTTCGGGGTCCAGTTCCAAAAGG

PKP2-F CACACAGCGAGCACCAGTACAG 115

PKP2-R ACAATTTCTGAGCGGGCGTAGC

BANF2-F GAGGGAAGCCGAGTTTCAGAAGTG 109

BANF2-R CTACAGGAAGCAGGAGCACCATTC

ALDH1A3-F AGCAGCAATTTCTTCTCACCCTCAG 81

ALDH1A3-R GCCTCCTTAACCAGCTTCCCAAC

SV2C-F TCTCTTGCCTCCTCTTGACTCTCG 92

SV2C-R AGCCAGCACAGCATCACATTCC

RPSO2-F TAGAGGCCGTTGCTTTGAGG 184

RPSO2-R GCCAACCTCACATCCCTTCCA

PDCD1-F ATGCCACCATTGTCTTCCCA 196

PDCD1-R CCTTCTCCTCTCCACCACAC

MVP-F GGTCGGGCCAAAGACTTACA 111

MVP-R GATCTCTAGGTCCGCATGGC

β-actin-F CCCTGGAGAAGAGCTACGAG 98

β-actin-R CAGGAAGGAAGGCTGGAAGA
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FIGURE 1

Effects of bromocriptine on serum concentration of (A) prolactin, (B) testosterone, (C) LH, and (D) FSH. Values are the mean  ±  standard error of the 
mean. FSH: follicle-stimulating hormone; LH, luteinizing hormone; CON, the control group; BCR, the bromocriptine treatment group; *p  <  0.05.

3. Results

3.1. Body weight of cashmere goat

The body weights of the cashmere goats in the two groups are 
presented in Table  2. BCR treatment did not significantly affect 
(p > 0.05) the body weight or ADG of goats.

3.2. Serum concentrations of PRL, 
testosterone, FSH, and LH level

There were no differences in the serum concentrations of PRL, 
testosterone, FSH, or LH (p > 0.05) on days 0 and 15 (Figure 1). 
Compared with the CON group, BCR significantly decreased 
(p < 0.05) the serum concentrations of PRL and significantly 

increased the levels of testosterone and LH (p < 0.05) on day 30 
(Figure  1). The FSH serum level was not affected (p > 0.05) by 
treatment on day 30.

3.3. Testicular morphology

Testicular morphology of the two groups are shown in Figure 2. 
The mean seminiferous tubule diameter was significantly higher in 
the BCR group compared to that of the CON group 
(203.62 ± 5.55 μm vs. 180.53 ± 5.70 μm, p < 0.05). In addition, the 
thickness of the spermatogenic epithelium in the BCR group 
significantly greater than that of the CON group (57.06 ± 2.10 μm 
vs. 54.12 ± 2.30 μm, p < 0.05).

3.4. Identification of DEGs

RNA sequencing data were analyzed for the two groups and 
82,351,036–106,053,662 raw reads and 81,827,660–105,359,700 clean 
reads were obtained (Table  3). A total of 142 (91 upregulated, 51 
downregulated) DEGs were identified in the CON vs. BCR groups 
(adjusted p-value <0.05 and |log2(fold change)| ≥ 1; Figure 3A). The 
details of the mRNA are presented in Supplementary Table S1. 
Figure  3B showed the hierarchical clustering of the differentially 
expressed (DE) mRNAs.

TABLE 2 Effects of bromocriptine on the growth performance of male 
cashmere goat.

Itema CON BCR SEM p-value

Initial weight, kg 22.39 23.57 1.952 0.563

Final weight, kg 23.20 24.25 1.885 0.593

Average daily gain, g 35.30 29.74 17.437 0.758

aCON, the control group; BCR, the bromocriptine treatment group.
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3.5. Enrichment and functional annotation 
analysis of DEGs

According to the GO analysis, 64 GO terms were significantly 
enriched between the CON and BCR groups (p < 0.05; 
Supplementary Table S2). The top  30 GO terms are listed in 
Figure 4A. These GO terms are involved in biological processes, 
such as regulation of the meiotic cell cycle, transmembrane 
transport, cell adhesion, and post-translational protein 

modification. The molecular functions are associated with 
sulfotransferase activity, calcium ion binding, extracellular matrix 
(ECM) structural constituents, and structural molecule activity. 
KEGG analysis indicated that numerous pathways were associated 
with the biosynthesis of steroid hormones and spermatogenesis, 
including steroid hormone biosynthesis, ECM-receptor interaction, 
and the Hippo signaling pathway (Figure  4B and 
Supplementary Table S3). Notably, we found that sulfotransferase 
family 2 B member 1 (SULT2B1) and cytochrome P450 family 3 

FIGURE 2

Diameter of the seminiferous tubules and the thickness of spermatogenic epithelium of goat testis from two groups with HE staining. Seminiferous 
tubules in the testis of (A) the CON group and (B) the BCR group depicting diameters under higher-power magnification. Scale bar  =  20  μm. The 
diameters of the seminiferous tubules (C) and the thickness of spermatogenic epithelium (D) in goat testis. Values are the mean  ±  standard error of the 
mean. CON: the control group; BCR: the bromocriptine treatment group; *p  <  0.05.

TABLE 3 Detailed information on RNA sequencing.

Sample 
namea

Raw reads Clean reads Raw 
bases (G)

Clean 
bases (G)

Error rate 
(%)

Q20 (%) Q30 (%) GC content 
(%)

CON1 87,341,224 86,768,840 13.1 13.02 0.02 98.17 94.54 49.93

CON2 83,846,588 83,289,182 12.58 12.49 0.02 98.29 94.85 49.78

CON3 84,640,348 84,063,702 12.7 12.61 0.02 98.19 94.54 48.91

BCR1 97,251,588 96,586,010 14.59 14.49 0.02 98.26 94.78 50.46

BCR2 82,351,036 81,827,660 12.35 12.27 0.02 98.23 94.68 50.04

BCR3 106,053,662 105,359,700 15.91 15.8 0.02 98.08 94.28 49.67

aCON, the control group; BCR, the bromocriptine treatment group.
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FIGURE 3

Analyzes of differentially expressed genes (DEGs) between the CON and BCR groups. (A) Quantity of DEGs displayed as a bar chart. (B) Hierarchical 
clustering heatmap of DEGs. Red represents upregulation and blue represents downregulation.

subfamily A (CYP3A24 and CYP3A74) are involved in the steroid 
hormone biosynthesis signaling pathway.

3.6. Validation of DE mRNAs by quantitative 
real-time PCR

To validate our RNA-Seq results, 14 DE mRNAs were identified: 
TBXAS1, CYP3A24, CYP3A74, COL11A2, SERPINA12, SULT2B1, 
WEE2, PKP2, BANF2, ALDH1A3, SV2C, RPSO2, PDCD1, and 
MVP. As depicted in Figure  5, the relative fold changes in the 
qRT-PCR assay were statistically significant (p < 0.05) and consistent 
with the RNA-Seq results, indicating the reliability of our 
RNA-Seq data.

4. Discussion

Testicular endocrine function is accomplished by the production 
of steroid hormones in Leydig cells which regulate numerous 
physiological processes critical for male fertility. In the present study, 
we investigated the changes in serum reproductive hormone levels, 
testicular morphology, and the transcriptome after treatment with a 
PRL inhibitor, and the results were consistent with our hypothesis. The 
serum PRL level was decreased, however, the efficacy of BCR without 
affecting growth. Similar to the results obtained in adult male rats 
(17), we found that the concentration of LH and testosterone in goats 
was increased, demonstrating that lower concentrations of PRL may 
be  beneficial for testosterone production. This major relationship 
between PRL and LH is better described as “reciprocal,” which implies 
that while PRL is high and the gonadotrophins are low (22), which is 
consistent with our research. PRL stimulates steroidogenesis in the 
testes by inducing or maintaining LH receptors in Leydig cells and/or 
by affecting androgen biosynthesis in Leydig cells via steroidogenic 
enzymes activity (7). After BCR treatment, increased serum level of 
LH might improve testicular function, including testosterone 
production and sperm quality (23). Similar to hyperprolactinemia in 
humans, which can be  reversed with BCR therapy, the highest 
secretion of PRL in rams during the summer solstice may have 

detrimental effects on sperm (24). Thus, regulating the serum 
concentration of PRL is beneficial for through increases in the 
concentrations of LH and testosterone.

We also observed significant changes in testicular morphology in 
the BCR group that may be  related to the resultant increase in 
testosterone and/or the changes in gene expression. Maintenance of 
testicular function is a complex and harmonized molecular process 
that is regulated by numerous gene (25–27). Understanding the 
functional and compositional differences at the molecular level can lay 
the foundation for connecting these differences with testicular 
development and spermatogenesis in goats. In this study, we found 
DEGs (including VNN2, HS3ST2, SULT4A1, SULT2B1) between the 
treatment groups that were identified by GO functional annotation as 
being involved in biological processes associated with regulation of 
the meiotic cell cycle, transmembrane transport, cell adhesion, and 
post-translational protein modification. In the germ cells of the 
normal and hypothalamic–pituitary disconnected rams and rat testes, 
the expression pattern of the PRLR gene may indicate a role for PRL 
in the regulation of cell division, functioning as a mitotic/meiotic 
inducer, and/or in the cell differentiation during spermatogenesis (5, 
7). Our results suggested that the DEGs (including VNN2, HS3ST2, 
SULT4A1, SULT2B1), which are significantly enriched in the 
regulation of the meiotic cell cycle may provide new insights into the 
mechanism of the regulation of spermatogenesis by PRL. We also saw 
upregulation of SPATA25 following BCR treatment. The 
spermatogenesis (SPATA) family including SPATA6 (28), SPATA4 
(28), SPATA17 (29), and SPATA19 (30), plays a critical role in the 
regulation of spermatogenesis.

In addition, the GO terms for cell adhesion, collagen trimers, and 
ECM structural constituents were mainly related to the ECM (31–33), 
including the genes YAP1, COL11A2, EVC, and TM7SF2. A KEGG 
analysis of DEGs also revealed the pathways of “ECM-receptor 
interaction” related to the ECM. As a critical portion of the wall of the 
seminiferous tubule, the ECM directly affects spermatogenesis and 
supports Sertoli and germ cells functions in the seminiferous 
epithelium (34), which are vital for the movement of germ cells 
through the blood-testis-barrier (BTB) during spermatogenesis (35). 
Testis is composed of the seminiferous tubules and interstitial tissues. 
The increased diameter of seminiferous tubule and thickness of the 
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seminiferous epithelia may be  associated with these ECM-related 
genes, which might be enhance the testicular function of the goats.

Interestingly, we discovered that steroid hormone biosynthesis 
and hippo signaling pathway were enriched and linked with 
testosterone secretion and spermatogenesis. As the main effector of 
the Hippo signaling pathway, Yes-associated protein 1 (YAP1) plays a 
crucial role in regulating several biological functions such as 

proliferation, differentiation, and cell–cell contact inhibition (36). 
Testosterone is a major representative androgen, which regulates the 
development of testes and spermatogenesis in mammals (1). Leydig 
cells, the primary testosterone-generating endocrine cells, are highly 
regulated by feedback between LH and the LH-releasing hormone (37, 
38). LH binds to the luteinizing hormone receptor (LHR) on the 
Leydig cell membrane and activates LHR-coupled G protein, induces 

FIGURE 4

GO and KEGG pathway analyzes of DEGs. (A) The top 30 enriched GO terms. (B) The top 30 enriched KEGG pathways; GO, Gene ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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FIGURE 5

qRT-PCR validation of selected DEGs. Bar graphs present the mean  ±  standard error of the mean; CON, the control group; BCR, the bromocriptine 
treatment group; *p  <  0.05.

adenylate cyclase to increase cAMP concentration, and activates 
protein kinase A (PKA) and Ras in Leydig cells (39, 40). Previous 
studies have suggested that several genes such as steroidogenic factor 
1 (SF-1), orphan nuclear receptor (NUR77), and neuropeptide Y 
receptor Y1 (NPY1R) are involved in steroidogenesis in Leydig cells 
(41–44). NPY1R belongs to the superfamily of G protein-coupled 
receptors and is involved in the cAMP pathway, which was 
downregulated by BCR treatment in the present study. Testosterone 
biosynthesis is mainly mediated by the steroidogenic acute regulatory 
protein (StAR), cytochrome P450 family (CYP17A1, CYP11A1), 
hydroxysteroid dehydrogenase (HSD3B2, HSD17B3), and LHR in 
Leydig cells (45). Our study revealed that the steroid hormone 
biosynthesis signaling pathway was enriched and SULT2B1, CYP3A24 
and CYP3A74 were upregulated in the BCR group, which may explain 
the increased testosterone production. Previous research has also 
demonstrated that sulfation, desulfation, and intracellular transport 
of steroid hormones are the foundation for steroid hormone action 
(46). Cholesterol sulfate, generated by hydroxysteroid SULT2B1, 
activates the sterol regulatory element binding protein 2 (SREBP2), 
thereby promoting cholesterol biosynthesis (47). Thus, the results of 
RNA-Seq and qRT-PCR both indicated that genes SULT2B1, 
CYP3A24, and CYP3A74, which were differently expressed between 
the CON and PRL inhibitor group, might be the key factors involved 
in the regulation of the testis function by PRL. However, our research 
was primarily studied in vivo, the regulatory mechanisms of 
testosterone production need to be further explored in Leydig cells. 
Hence, further studies are required to delineate the function of these 
signature genes. Based on the results of our RNA-seq, we  will 
investigate the roles of non-coding RNA and small RNA in PRL 
regulation of the testes in Leydig cells, and provide new insights into 
the molecular mechanisms of testicular regulation in the goat.

5. Conclusion

Our findings confirm that the suppression of PRL increases serum 
concentrations of LH and testosterone and increases the diameter of 
seminiferous tubules and the thickness of spermatogenic epithelium. 

SULT2B1, CYP3A24, CYP3A74 genes, which are enriched in the 
steroid hormone biosynthesis pathway, might be  essential factors 
involved in the PRL-mediated regulating of testis function. Overall, 
our study provides an understanding of the mechanisms underlying 
the regulation of testicular function by PRL.
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