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Introduction: Pancreatic β-cells and α-cells have been found in the murine 
extrahepatic biliary ducts but not in the gallbladder. However, there has been no 
information reported in the specialized literature about the presence of glucagon- 
and insulin-expressing endocrine cells in porcine bile ducts and gallbladder.

Aim: We aimed to perform an immunohistochemical study to identify glucagon- 
and insulin-positive cells and their distribution in the porcine extrahepatic biliary 
ducts and gallbladder.

Method: The immunohistochemical method was used to detect the presence 
and distribution of glucagon- and insulin-positive endocrine cells in the 
common hepatic duct (ductus hepaticus communis), common bile duct (ductus 
choledochus), cystic duct (ductus cysticus), and gallbladder (vesica fellea) of male 
pigs. Chromogranin A was used as a typical marker for endocrine cells.

Results: The density of chromogranin A-, glucagon- and insulin-positive cells per 
field was the largest in the common bile duct, followed by the common hepatic 
duct, cystic duct, and gallbladder. The three types of endocrine cells showed 
specific localization in the superficial and deep glands of the studied organs.

Conclusion and clinical importance: The distribution of glucagon- and insulin-
immunopositive endocrine cells in the porcine extrahepatic biliary tract was 
established for the first time as a new source of these hormones. The presence 
of α- and β-cells in the epithelium of extrahepatic bile ducts can be applied in 
treatment of diabetes, taking into account the possibility to reprogram the biliary 
epithelium to mentioned pancreatic endocrine cell types.
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Introduction

Due to the similarity in body weight, anatomy, and physiology between pigs and humans, the 
pig has become a model for morphological, physiological, biochemical, and genetic investigations (1).

The anatomical and physiological similarities of organs such as the liver, pancreas, kidney, 
and heart have also made the pig a major species of interest as an organ donor for 
xenotransplantation procedures (2, 3).
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Despite minor morphological differences, swine are the ideal 
species for liver xenotransplantation. Modern medical advances have 
enabled xenotransplantation of the liver from genetically modified pig 
donors. New medical techniques could make xenotransplantation an 
important method to solve the problem of providing livers from 
human donors (3–7).

It is well known that extrahepatic bile ducts are represented by the 
common hepatic duct (ductus hepaticus communis, DHC), the 
common bile duct (ductus choledochus, DCH), and the cystic duct 
(ductus cysticus, DC). The gallbladder (Vesica biliaris, VB) collects bile 
and releases it through the cystic duct into the common bile duct (8, 9).

Considering the common origin of the pancreas and gallbladder 
together with extrahepatic bile ducts (10–12), it is important to know 
if the porcine biliary tract has endocrine cells producing insulin and 
glucagon which can contribute to the pathophysiology and treatment 
of diabetes. Some authors like Dutton et  al. (13) described a 
population of pancreatic-like endocrine cells which are localized in 
murine extrahepatic bile ducts. The insulin-positive cells were 
described as situated between cholangiocytes of bile ducts, but not 
between cholangiocytes of the gallbladder. They were defined as 
β-cells producing insulin (14). The common bile duct’s ability to 
generate pancreatic cells is explained mainly by the common 
embryologic development of bile and pancreatic ducts (8, 12, 14–16). 
According to Shiojiri (17), the common bile duct developed from the 
caudal hepatic foregut endoderm near the pancreatic primordium 
(18–20). Other authors such as Terada et al. (21), found out that 
pancreatic amylase was expressed in both hepatocytes and 
cholangiocytes of the primitive hilar bile ducts (21). The endocrine 
pancreas in the sea lamprey was established to have arisen through 
the transdifferentiation of the common bile duct (22, 23).

In mice, it was established that the origin of endocrine cells are 
from the biliary duct epithelium but not from the pancreas (8, 12, 16). 
It was concluded that, according to their origin, biliary β-cells differ 
from pancreatic ones.

A new approach in islet transplantation therapies for type 1 
diabetes based on the production of β-like cells in vitro has been 
developed. This may involve the use of islet progenitor cells, adult and 
embryonic stem cells, and mature β-cells (24–27). Another method is 
to produce β-cells from cells belonging to tissues with similar origin 
to the pancreas. Several authors have managed to convert hepatocytes 
to β-like cells (26, 28–31). Therefore, β-cells of the DHC, DCH, DC, 
and VB could be used for the treatment of diabetes, but more studies 
should be performed in this direction.

We aimed to describe for the first time the localization and density 
of glucagon- (Glu+Cs) and insulin (Ins+Cs)-immunopositive endocrine 
cells in the wall of porcine DHC, DCH, DC, and VB for better 
understanding of the pathophysiology and treatment of diabetes.

Methods

Animals

The present study used six clinically healthy male 6 months old 
pigs (Bulgarian White × Landrace cross) (92–100 kg) supplied from a 
single commercial farm, subjected to a standard age-appropriate diet 
and slaughtered in a regulated abattoir approved by the Bulgarian 
Food Safety Agency, and was funded by the Scientific Project number 
13/2017, Medical Faculty, Trakia University, Stara Zagora, Bulgaria. 

Six porcine livers, together with the gallbladder, cystic duct, common 
hepatic duct, common bile duct, and duodenum, were collected from 
pigs intended for meat consumption at the slaughterhouse. Tissue 
samples were obtained from the common hepatic duct (DHC), the 
initial part of cystic duct (DC) near the gallbladder’s neck, the initial 
part of the common bile duct (DCHO) near the junction with the 
cystic duct, the intramural part of common bile duct (DCHI), and 
the gallbladder’s neck immediately after slaughtering and fixed in a 
10% aqueous solution of formalin.

Routine histological techniques were used to process the material 
and to obtain serial paraffin sections that were stained with hematoxylin 
and eosin to exclude the presence of pathological findings. Another 
part of the sections was processed immunohistochemically for 
detection of glucagon and insulin expression.

Immunohistochemical method for 
visualization of glucagon- and 
insulin-positive endocrine cells compared 
with chromogranin A-positive endocrine 
cells

In this work, the ABC (avidin-biotin peroxidase complex) 
technique was performed. Serial tissue sections with 5 μm thickness 
were washed in 0.1 M PBS and placed in 1.2% hydrogen peroxide in 
methanol for 30 min. Antigen retrieval in buffer (pH 9.0) was done 
for 20 min. Between steps, sections were washed with an EnVision 
Flex Wash Buffer, then incubated in a humidified chamber overnight 
at 4°C with primary antibodies: glucagon mouse monoclonal 
antibody (1:50 dilution in PBS, (C-11) SC-514592, Santa Cruz 
Biotechnology, Dallas, TX, United States), insulin mouse monoclonal 
antibody (1:50 dilution, (2D 11–45), SC-8033, Santa Cruz), and 
chromogranin A rabbit antibody (PA 0430) (Leica Microsystems 
Inc.), which were ready to use. The immune reaction was visualized 
with diaminobenzidine. Three serial sections on a slide were stained 
consequently with glucagon-, insulin-, and chromogranin A 
antibodies. Three slides per animal were used.

PBS is used instead of primary antibody as a negative control.

Statistical analysis

The number of endocrine cells was estimated on three microscopic 
fields X100 from three sections of the DHC and extra- and intramural 
parts of the DCH, DC, and gallbladder’s neck for each antibody and 
per each animal. The data for endocrine cell density (number of 
endocrine cells per field and per cross section of a gland) were 
processed by Graph Pad Prism 6 for Windows (Graph Pad Software, 
Inc., United States) via one-way ANOVA followed by the Tukey–
Kramer post-hoc test. p-values of less than 0.05 were considered 
statistically significant. The data are presented as mean ± SD.

Results

Immunoexpression of chromogranin A

Immunoexpression of chromogranin A (ChA) was used as a 
marker for endocrine cells to detect all endocrine cells in the studied 
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organs. In this manner, we identified the largest number of endocrine 
cells (ChrA+Cs) in the glands of the gallbladder and extrahepatic bile 
ducts (Figure 1 and Table 1). The density of ChrA+Cs per field was 
largest in the DCHI, followed by DCHO, DHC, DC, and VB (Table 1).

The biliary epithelium lining the mucosal layer of the gallbladder 
and extrahepatic ducts was immunonegative. Only the cells of 
intramural glands of the studied organs were observed to 
be immunopositive (Figure 1). The density of ChrA+Cs per field was 
largest in DCHI, followed by DCHO, DHC, DC, and VB (Table 1).

Immunoexpression of insulin and glucagon

The density of Ins+Cs and Glu+Cs was compared with that of 
ChrA+Cs to estimate the percentage of Ins+Cs and Glu+Cs. 
Immunohistochemical reactions for the detection of insulin and 
glucagon showed that the number of Ins+Cs and Glu+Cs was lower than 
the number of ChrA+Cs (Table 1). In the DHC, the density of Ins+Cs 
and Glu+Cs was almost equal, for example, Ins+Cs were 42% from all 
ChrA+Cs but Glu+Cs – 39%. In the DCHO, the number of Ins+Cs (48% 
from all ChrA+Cs) was significantly larger than Glu+Cs (28% from all 
ChrA+Cs). In the DCHI, the number of Ins+Cs (8% from all ChrA+Cs) 
and Glu+Cs (9% from all ChrA+Cs) was similar. In DC, the density of 
Ins+Cs was 89% from all ChrA+Cs but of Glu+Cs – 60%. In VB, the 
number of Ins+Cs, Glu+Cs, and ChrA+Cs was the same.

The largest number of Ins+Cs and Glu+Cs per field was detected in 
the DCHI, followed by the DCHO, DC, DHC, and VB (Table 1).

More ChrA+Cs per cross section of glands were observed in the 
superficial intramural glands than in the deep ones of the DCHO and 
DCHI while in the DHC, these cells in the deep glands were in higher 
abundance than in the superficial ones (Table  1). In the DC, the 
number of ChrA+Cs in the superficial and deep glands was the same.

Ins+Cs and Glu+Cs were found in the superficial glands only of the 
DHC, DCHO, and DC.

In the DCHI, Ins+Cs and Glu+Cs were observed in the superficial 
and deep glands. Their number was larger than in other ducts (Table 1).

Open and closed type endocrine cells

In the VB, ChrA+Cs, and Ins+Cs were of closed type while Glu+Cs 
were of open type.

In the extrahepatic bile ducts, both open and closed types of 
ChrA+Cs were observed (Figure 1). In the DHC, the percentage of 
open type ChrA+Cs was 29% and those of closed type was 71%; in the 
DCHO, 33% of ChrA+Cs were open type and 67% were closed type; 
in the DCHI, 65% were open type and 35% were closed type; in the 
DC, 49% were open type and 51% were closed type.

Ins+Cs and Glu+Cs were represented by closed type only in the 
DHC, DCHO, DC, and VB.

In the DCHI, both open and closed types were present and their 
number was equal. The open type of Ins+Cs were 5.7% of the whole 
amount of open type ChrA+Cs, but open type Glu+Cs were 6.2% of the 
whole amount of open type ChrA+Cs.

In the connective tissue of the mucosal, muscular, and serosal 
layers of all studied organs, abundant chromogranin A-, glucagon-, 
and insulin-immunoreactive cells were detected but they were not 
described in this work because they are the object of our other as yet 
unpublished study (Figure 1).

Discussion

In this study, porcine β- and α-cells were immunohistochemically 
identified for the first time in porcine DHC, DCH, DC, and VB. In 
our previous study (27), it was established that other endocrine cells 
are present in the porcine gallbladder and extrahepatic bile ducts 
such as ghrelin-, somatostatin-, serotonin-, and gastrin-positive 
endocrine cells but the data were not statistically analyzed. In the 

FIGURE 1

Chromogranin A-positive cells (A), glucagon-positive cells (B) and 
insulin-positive glandular cells (C) in the intramural part of common 
bile duct (A–C). Open (arrowheads) and closed (arrows) types of 
endocrine cells can be seen in the biliary glands. In the interglandular 
connective tissue, many chromogranin A- (A), glucagon- (B), and 
insulin- (C) immunoreactive cells were detected as well (double 
arrows). Bar  =  50  μm.
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current study, we  used the immunohistochemical detection of 
chromogranin A as a well-known marker for endocrine cells to 
identify the total number of endocrine cells in the DHC, DCHO, 
DC, and VB. As in our previous study (27), we  revealed the 
localization of ChrA+Cs in the intramural glands of the studied 
organs, but unlike that study we  statistically analyzed the 
distribution of ChrA+Cs per the superficial and deep glands. It is 
well known that ChrA regulates the secretory processes in an 
autocrine or paracrine manner. ChrA-positive cells were found to 
be chromaffin cells of the adrenal medulla, paraganglia, and entero-
chromaffin-like cells and beta cells of the pancreas (28). 
Chromogranins including ChrA, chromogranin B, and 
secretogranin II are acidic proteins that have an important role in 
the formation of secretory granules in neuroendocrine cells (29, 
30). Since chromogranins, including chromogranin A, are localized 
into neuroendocrine cells (31), they have been used as appropriate 
markers for this cell type in different organs. Helmant et al. (32) 
found that ChrA may be  the prohormone of pancreastatin. 
We found out that the density of ChrA+Cs per microscopic field was 
the largest in porcine DCHI, followed by the DCHO, DHC, DC, 
and VB. The density of Ins+Cs and Glu+Cs per field of view in the 
same organs showed a similar manner of distribution.

Our finding regarding the ability of the biliary tract epithelium to 
produce extrapancreatic glucagon and insulin may contribute to 
improving the treatment of diabetes. To date, we have not been able to 
detect the presence of glucagon-secreting cells in the bile ducts and 
gall bladder of the domestic pig. Glucagon was primarily produced by 
the pancreatic α-cells using its precursor pro-glucagon (33, 34). There 
was no information about the glucagon-secreting cells in porcine bile 
ducts and gallbladder.

Pancreatic β-cells morphology and physiology have been well 
studied. There are data about the existence of extrapancreatic insulin-
positive cells existing as single cells or groups of cells in and along the 
epithelium of the bile ducts, but not in the epithelium of the 
gallbladder. They are considered true β-cells because they produced 
insulin (35). There is evidence that some embryonic extrahepatic bile 
duct epithelial cells can be  transformed into β-cells which are 
regulated by transcription factors such as Pdx1 (pancreatic and 
duodenal transcription factor 1 (36), HNF6 (37), and Hes1 (38)).

Regarding type 1 diabetic hyperglycemia, it is clear that several 
factors can cause it, such as the loss of β-cells and the postprandial 
increase of glucagon secretion from α-cells (39). Other authors have 
suggested that unsuitable glucagon secretion in type 1 diabetes 
depends on glucagon secretion directly from the gut (40).

Several mechanisms are known to prevent hypoglycemia, namely, 
reduced secretion of insulin from beta cells, reduced absorption of 
glucose in peripheral tissues, raised releasing of glucagon from α-cells, 
raised level of glucose, and a stimulated adrenal medulla. Defective 
α-cells and a reduced number of α-cells in type 1 diabetes alter 
glucagon responses (39).

The study by Dutton et al. (13) provided for the first time data on 
β-cells localization outside the pancreas in mammals, specifically 
mice. The authors found single β-cells among the cholangiocytes of 
the biliary mucosal epithelium, proving by measuring insulin mRNA 
that this type of endocrine cell arises precisely from the epithelium of 
the bile duct as early as the 17th embryonic day and their number 
increases up to 6 months after birth. Dutton et al. (13) also observed 
that clusters of cells appeared in the connective tissue layer of the 
extrahepatic bile ducts in the liver’s hilus, increasing in number after 
birth until 6 months of age. Regarding the presence of α-cells, these 

TABLE 1 Number of chromogranin A-, insulin-, and glucagon-positive cells (ChrA+C, Ins+C, and Glu+C, respectively) per microscopic field or per cross 
section (average number of sections from all animals) of a gland in the gall bladder (VF), ductus cysticus (DC), ductus hepaticus communis (DHC), initial 
segment of ductus choledochus (DCHO), and intraduodenal part of ductus choledochus (DCHI) represented as mean  ±  SD (standard deviation).

Endocrine cell 
types

DHC mean  ±  SD DCHO 
mean  ±  SD

DCHI mean  ±  SD DC mean  ±  SD VF collum 
mean  ±  SD

ChrA+C/F 5.00 ± 0.76 A4, B4, C2, 

D4, b4, c4

7.50 ± 0.51 E4, F4, G4 59.94 ± 3.55 H4, I4 3.05 ± 0.63 J4 1.00 ± 0.00

Ins+C/F 2.11 ± 1.27 d0 A4, B4, C0, 

D4

3.61 ± 0.50 d4 E4, F2, G4 4.83 ± 0.85d0 H4, I4 2.72 ± 0.46 d0 1.00 ± 0.00 d0

Glu+C/F 1.94 ± 0.93 A0, B4, C0, D4 2.11 ± 0.83 E4, F0, G4 5.22 ± 0.80 H4, I4 1.83 ± 0.38 1.00 ± 0.00

ChrA+C/GL-SGls-DGls A2, B4, C0, D0 1.33 ± 0.48 

a4 2.33 ± 0.48 A4,B0,C4

E4, F4, G4 2.11 ± 0.75 a4 

3.22 ± 0.73 E0, F4, G4

H4, I4 7.27 ± 0.75 a4 

2.66 ± 0.48 H4, I4

J0 1.16 ± 0.38 a0 

1.11 ± 0.32 J0

1.00 ± 0.00

Ins+C/GL-SGls-DGls A0, B4, C0, DO 

1.50 ± 0.78

E4, F2, G2 1.94 ± 0.80 H4, I4 3.44 ± 0.51 a4 

1.33 ± 0.48

1.11 ± 0.32 1.00 ± 0.00

Glu+C/GL-SGls-DGls A3, B4, C0, D0 1.11 ± 0.32 1.94 ± 0.80 3.44 ± 0.51 a4 1.61 0.50 1.11 ± 0.32 1.00 ± 0.00

ChrA+Cot/F 1.4 ± 0.51 A2, B4, C0 2.50 ± 0.51 E4, F1 39.44 ± 1.19 H4, h4, i4 1.50 ± 0.51 –

Ins+Cot/F – – 2.27 ± 0.46 j0 – –

Glu+Cot/F – – 2.44 ± 0.51 – 1.00 ± 0.00

ChrA+Cot/F, Ins+Cot/F, and Glu+Cot/F – open type endocrine cells. SGls and DGls – superficial and deep glands, respectively. p-values ≤0.05 were statistically significant. The number of 
endocrine cells was defined as mean ± SD. A – Significant difference between DHC and DCHO; B – Significant difference between DHC and DCHI; C – Significant difference between DHC 
and DC; D – Significant difference between DHC and VF; E – Significant difference between DCHO and DCHI; F – Significant difference between DCHO and DC; G – Significant difference 
between DCHO and VF; H – Significant difference between DCHI and DC; I – Significant difference between DCHI and VF; J – Significant difference between DC and VF; a – Significant 
difference between SGls and DGls; b – Significant difference between ChrA+C/F and Ins+C/F; c – Significant difference between ChrA+C/F and Glu+C/F; d – Significant difference between 
Ins+C/F and Glu+C/F; e – Significant difference between ChrA+C/GL and Ins+C/GL; f – Significant difference between ChrA+C/GL and Glu+C/GL; g – Significant difference between Ins+C/GL 
and Glu+C/GL; h – Significant difference between ChrA+Cot/F and Ins+Cot/F; i – Significant difference between ChrA+Cot/F and Glu+Cot/F; j – Significant difference between Ins+Cot/F and 
Glu+Cot/F. 0, 1, 2, 3, 4 – absence of significance, p < 0.05, p < 0.01, p < 0.001, p < 0.0001, respectively.
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authors found single cells and a significantly lower number than 
β-cells. Dutton et al. (13) reported for the first time β cell formation 
from cholangiocytes.

Unlike Dutton et  al. (13), we  found that α- and β-cells were 
absent in the mucosal epithelium of all extrahepatic bile ducts. Such 
cells were observed in the biliary glands located in the propria of the 
mentioned organs, with the amount of β-cells approaching that of 
α-cells. Unlike Dutton et al. (13), we compared the amount of both 
types of cells in the different extrahepatic bile ducts and as a 
percentage of all endocrine cells positive for chromogranin A. For 
example, the highest number of Ins+Cs and Glu+Cs per field of view 
was found in the DCHI, followed by in the DCHO, DC, DHC, and 
VB. Ins+Cs and Glu+Cs were observed only in the superficial glands 
of the DHC, DCHO, and DC. In the DCHI, these cells were found in 
both superficial and deep glands and their number was highest, 
followed by DCHO, DHC, DC, and VB.

In the present study, elongated open-type endocrine cells and oval 
closed-type endocrine cells were observed, which correlated with the 
findings of a number of authors regarding the shape of intestinal 
endocrine cells (35–37). It is known that intestinal endocrine cells of 
open type contact the luminal content, where they react to stimuli from 
their apical membrane receptors (33, 34), whereas the closed type of 
endocrine cells do not reach the lumen and have a paracrine manner of 
action on the surrounding target cells (35). In the current study, it was 
revealed that the three types of endocrine cells (ChrA+Cs, Ins+Cs, and 
Glu+Cs) in the VB were of closed type. However, in the extrahepatic bile 
ducts, both open and closed type of ChrA+Cs were observed. Ins+Cs and 
Glu+Cs were represented by closed type only in the DHC, DCHO, DC, 
and VB. In the DCHI, both open and closed Ins+Cs and Glu+Cs types 
were present and their number was equal. Therefore, the secretory 
products of open cell type acted locally or on distant target cells through 
the bloodstream. The cells of closed type were localized between other 
epithelial cells which means that, like intestinal closed cell types, they do 
not interact directly with luminal substances (35–37).

The presence of glucagon- and insulin-positive endocrine cells in 
porcine bile ducts and gallbladder can be explained by studies by other 
authors (38, 39) that have revealed the key role of transcription factor 
Sox9, the activation of which leads to the transition of pancreatic 
progenitor cells to mature endocrine cells. For example, in mice and 
humans, endocrine cell differentiation has been shown to be primarily 
regulated by Sox9 relaying on the PI3K/Akt signaling pathway (39).

According to Banga et al. (38), Sox9+ liver cells are represented by 
small bile ducts, hepatoblast-like progenitors in the periportal area, or 
peribiliary glands within larger bile ducts. Thus, Banga et al. (38) 
provided evidence of the in vivo reprogramming of bile duct cells to a 
β-cell-like phenotype that can relieve diabetes in adult individuals.

Lund et  al. (40) revealed that extrapancreatic glucagon and 
observed postprandial hyperglucagonemia in total 
pancreatectomized patients may have clinical and scientific 
applications. These authors found that the glucagon secreted from 
extrapancreatic tissue in humans changed the concept of glucagon 
as a pancreas-specific hormone and thus opened the way to a new 
explanation of postprandial hyperglucagonemia, as it may be  a 
gut-dependent phenomenon. Lund et  al. (40) suggested that 
gut-derived glucagon might play a previously unknown role in 
secondary diabetes, following pancreatectomy, and possibly, 
although speculatively, also in the pathophysiology of other 
conditions following dietary hyperglucagonemia, including type 
2 diabetes.

We supposed that the presence of glucagon-producing cells in 
porcine extrahepatic bile ducts and gallbladder was probably related 
to the ability of this hormone to perform the same function in these 
organs like gut. Based on the results of our research, we hypothesize 
that there is a functional connection between the extrahepatic bile 
ducts and the islets of Langerhans which can be defined as a biliary-
islet axis, similar to the functional connection between the intestine 
and the islets of Langerhans named by Fehmann et  al. (41) the 
entero-islet axis. The therapy of type 1 diabetes by means of 
pancreatic islet transplantation has been investigated for many years 
and applied with increasing success, but the number of transplants 
was limited due to the limited supply of donors (19). That is why 
alternative ways to synthesize β-cells has been sought (20). Several 
studies have shown that hepatocytes (26) and pancreatic acinar cells 
(42) can transform into β-cells. These findings define the biliary 
endocrine cells as a component of the gastroenteropancreatic 
endocrine system and as another source of glucagon and insulin, 
which could be used in the development of new approaches in the 
treatment of diabetes mellitus. Endocrine cells in pancreatic 
excretory ducts release insulin, glucagon, somatostatin, and 
pancreatic polypeptide which might regulate the function of rat 
pancreatic acinar cells (43) as well as influence bile production (44). 
Diabetes mellitus influences duct endocrine cell function and alters 
cholesterol metabolism in the direction of stone formation in bile 
and pancreatic ducts (45, 46). Glucagon positive cells in gut and 
extrahepatic bile ducts participate in functional connection between 
these organs and pancreatic islands.

Conclusion

The original distribution of our study was identification of 
porcine β- and α-cells in porcine extrahepatic bile ducts and 
gallbladder. The largest number of glucagon- and insulin-positive 
cells was detected in the intramural part of the DCH, followed by its 
extramural part, the DC, DHC, and VB. These findings defined 
biliary endocrine cells as components of the gastroenteropancreatic 
endocrine system and as another source of glucagon and insulin, 
which can be used in the development of new approaches in the 
treatment of diabetes mellitus.
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