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Introduction: Brucella, a type of intracellular Gram-negative bacterium, has 
unique features and acts as a zoonotic pathogen. It can lead to abortion and 
infertility in animals. Eliminating brucellosis becomes very challenging once it 
spreads among both humans and animals, putting a heavy burden on livestock 
and people worldwide. Given the increasing spread of brucellosis, it is crucial 
to develop improved vaccines for susceptible animals to reduce the disease’s 
impact.

Methods: In this study, we effectively used an immunoinformatics approach with 
advanced computer software to carefully identify and analyze important antigenic 
parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides 
to enhance the vaccine’s strength and effectiveness. We used computer programs 
to find four important parts of the Brucella bacteria that our immune system 
recognizes. Then, we carefully looked for eight parts that are recognized by a 
type of white blood cell called cytotoxic T cells, six parts recognized by T helper 
cells, and four parts recognized by B cells. We connected these parts together 
using a special link, creating a strong new vaccine. To make the vaccine even 
better, we added some extra parts called molecular adjuvants. These included 
something called human β-defensins 3 (hBD-3) that we found in a database, and 
another part that helps the immune system called PADRE. We attached these 
extra parts to the beginning of the vaccine. In a new and clever way, we made the 
vaccine even stronger by attaching a part from a mouse’s immune system to the 
end of it. This created a new kind of vaccine called MEV-Fc. We used advanced 
computer methods to study how well the MEV-Fc vaccine interacts with certain 
receptors in the body (TLR-2 and TLR-4).

Results: In the end, Immunosimulation predictions showed that the MEV-Fc 
vaccine can make the immune system respond strongly, both in terms of cells 
and antibodies.

Discussion: In summary, our results provide novel insights for the development of 
Brucella vaccines. Although further laboratory experiments are required to assess 
its protective effect.
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1. Introduction

Brucella is a Gram-negative bacterium that lives inside cells and 
can cause reproductive problems in animals and chronic illnesses in 
humans (1). This disease, known as brucellosis or by other names like 
Wave fever or Malta fever, is a widespread bacterial infection affecting 
both animals and humans in various regions around the world. It is 
considered one of the most common bacterial zoonotic diseases 
globally (2). Brucella has a strong ability to invade a specific type of 
white blood cell called macrophages, which makes it resistant to many 
antibiotics commonly used against other bacteria. As a result, this 
harmful pathogen poses a significant threat to global public health, 
causing considerable social and economic challenges (3).

Controlling brucellosis in livestock currently relies on using 
Brucella abortus S19, B. abortus RB51, and B. melitensis Rev-1 strains 
(4). However, completely removing the remaining virulence associated 
with these weakened vaccine strains is a challenging task. There is also 
a risk that these vaccine strains could infect humans, which might 
worsen the spread of the disease. Furthermore, these strains can 
induce abortions in pregnant animals, causing significant economic 
losses. Additionally, their presence complicates the accurate diagnosis 
and management of brucellosis (5, 6). Consequently, we are facing 
significant challenges when it comes to diagnosing and treating 
brucellosis, emphasizing the urgent need for a safe and effective 
vaccine or therapy (7).

In light of these challenges, peptide vaccines offer a promising 
approach to combat brucellosis. Not only do they stimulate strong 
antibody responses, but they also address the safety concerns 
associated with live vaccines (7). Peptide-based interventions provide 
a safer and practical alternative for dealing with the devastating 
impact of brucellosis.

In previous studies, researchers have explored a range of outer 
membrane proteins (OMPs) and effector proteins as potential 
immunodominant antigens against Brucella. Notably, two such 
proteins, OMP16 and OMP19, which are outer membrane 
lipoproteins, are prominently found on the surface of all Brucella 
strains (8). These lipoproteins are universally present in Brucella.
OMP16, similar to a protein called peptidoglycan-associated 
lipoprotein (PAL) found in other Gram-negative bacteria, is highly 
conserved and plays a crucial role in maintaining the structural 
integrity and function of the outer membrane. Interestingly, OMP16 
also acts as a pathogen-associated molecular pattern (PAMP) in 
Brucella abortus, which means it triggers the activation of dendritic 
cells (DCs) in the body, leading to a strong Th1 immune response (9). 
Encouragingly, recombinant OMP16 has been shown to generate a 
potent protective immune response in mice, making it a highly 
promising candidate for a vaccine (10).

In contrast, OMP19 is resistant to protease degradation, 
particularly following oral infection with Brucella abortus. 
Additionally, it acts as a protective shield for another protein 
called OMP25, preventing it from being degraded by 
proteases (11).

Intriguingly, It has been revealed that OMP19 inhibits MHC-II 
expression and hinders antigen presentation, prevents T cell 
recognition to evade host immunity and establishes chronic infections 
(12). Because of its strong protective qualities against Brucella, OMP19 
looks like a very promising candidate for a vaccine to fight 
brucellosis (13).

OMP25 is an important protein on the outer membrane of 
Brucella abortus. It helps keep the cell’s outer covering strong and 
intact (14). Interestingly, OMP25 also plays a role in reducing the 
production of certain immune signals like tumor necrosis factor-alpha 
(TNF-α) and interleukin 12 (IL-12), which are typically produced 
when the body is fighting infections caused by other germs. This 
shows that OMP25 has a significant effect on the immune system (15). 
Studies have shown that vaccines made from OMP25’s DNA and 
protein can protect mice from Brucella abortus infection, making 
OMP25 a strong candidate for a vaccine (16, 17).

Another protein called Brucella ribosomal protein L7/L12 is 
known for being easily recognized by the immune system and 
staying similar across different Brucella types (18). This protein 
can activate a specific type of white blood cell called monocytes 
in animals with infections. This activation leads to the production 
of interferon-gamma, an important immune molecule that helps 
protect against Brucella abortus infection (19, 20). Because of 
these proteins’ ability to trigger immune responses, they seem like 
good options for designing vaccines that can delay or 
prevent brucellosis.

Antibodies are made of two parts: the antigen binding fragment 
(Fab) and the crystallizable fragment (Fc). Using Fc fragment fusion 
protein technology is a very effective way to make protein and peptide 
drugs last longer in the body. Important biological molecules found 
on the surface of cells, like cell receptors, cytokines, enzymes, and 
peptide antigens on harmful germs, can be combined with Fc parts. 
This makes these molecules more stable in the body and helps them 
last longer, making their effects stronger (21, 22). When we combine 
specific antigens with Fc parts, it creates a new and promising strategy 
for vaccines to fight diseases (23).

A study by David G. Alleva showed that when AKS-452 was 
fused with the Fc fragment, it produced much higher levels of 
neutralizing antibodies in mice compared to when Fc was not used. 
This significant boost in the body’s response highlights the 
enormous potential of using the immunoglobulin Fc fragment 
fusion in peptide vaccines (24). Using this method for making 
vaccines has a lot of promise for various treatments and 
preventive measures.

Previous studies have shown that Brucella multi-epitope 
vaccines (MEVs), created by predicting important parts 
recognized by the immune system, offer a level of immune 
protection, although not as effective as weakened vaccines. 
However, a new approach using peptide vaccines that include 
multi-epitope molecules fused to IgG-Fc for fighting Brucella 
infections has not been explored much. So, we combined the IgG 
Fc fragment with a multi-epitope structure, forming the peptide 
molecule MEV-Fc. This molecule includes important parts from 
different immune responses like CTL, HTL, B cells, hBD-3, 
PADRE, and IgG Fc.

To understand how effective this combined molecule could be, 
we used predictive tools to study its features, structure, and how it 
interacts with immune receptors such as TLR2 and TLR4. 
Additionally, we used a tool called C-ImmSim server to simulate how 
the immune cells would respond after the molecule is given as a 
vaccine to mice (Figure 1). Our main goal in this study was to create 
a peptide molecule that could enhance the immune protection 
provided by Brucella subunit vaccines. This could be a groundbreaking 
approach in preventing brucellosis.
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2. Materials and methods

2.1. Sequence retrieval

The amino acid sequences of the main Brucella antigens, 
specifically OMP16 (AEF59023.1), OMP19 (AAB06277.1), L7/L12 
(AAL51929.1), and OMP25 (AFJ79953.1), were retrieved from the 
NCBI database and are detailed in Table 1. To determine whether 
these four proteins have antigenic properties, we  employed the 
VaxiJen server v2.0, setting a threshold value at 0.5 (25).

2.2. Prediction of cytotoxic T-lymphocyte 
epitopes

To predict Cytotoxic T Lymphocyte (CTL) epitopes for the 
primary Brucella antigen, we  utilized the IEDB MHC I  server, 
accessible (26).1 The specific parameters we  used were as follows: 
Prediction Method: IEDB recommended 2020.09 (NetMHCpan EL 
4.1); Source species of MHC: Human; HLA allele reference set, and 
Length set to 9 and 10. We selected epitopes with a percentile rank of 
less than 0.5 for further analysis. We also used Class I Immunogenicity 
to predict immunogenicity and chose CTL epitopes with a percentile 
rank of less than 0.5 and an immunoscore greater than 0 for further 
analysis. To determine the antigenicity of these screened epitopes, 
we employed the VaxiJen server v2.0, setting a threshold at 0.5 (25). 
The epitopes that passed these criteria were considered as 
immunodominant CTL epitopes for the construction of MEV-Fc.

1 http://tools.iedb.org/mhci/

2.3. Prediction of helper T-lymphocyte 
epitopes

To predict Helper T Lymphocyte (HTL) epitopes for the 
dominant Brucella antigen, we utilized the IEDB MHCII server 2, 
which can be accessed (27).2 The specific parameters we used were as 
follows: Prediction Method: IEDB recommended 2.22; MHC source 
species: Human; MHC allele set selected as all reference. We set the 
epitope length to 15. The predicted epitopes were ranked based on 
percentile rank, and we selected those with a percentile rank of less 
than 0.5. To predict their antigenicity, we used the VaxiJen server v2.0 
with a threshold set at 0.5 (25). We chose epitopes with an antigenicity 
value greater than 0.5, and we predicted their inducibility of IFN-γ 
using an epitope server (28) specifically designed for IFN-γ. 
Ultimately, the epitope that was predicted to induce IFN-γ was 
selected as the HTL immunodominant epitope for the construction 
of MEV-Fc.

2.4. Prediction of linear B-cell epitopes

To predict linear B-cell epitopes for the dominant Brucella antigen, 
we used the ABCpred server, which is accessible,3 with the following 
parameters: epitope length = 16 and screening threshold = 0.51. 
We employed thresholds ranging from +0.1 to +1.0 (29). The highest 
ABCpred score among these thresholds was selected as the 
immunodominant B-cell epitope for MEV (Multi-Epitope Vaccine) 
construction.

2 http://tools.iedb.org/mhcii/

3 https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html

FIGURE 1

Illustrates the construction and analysis flow chart of MEV-Fc.
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2.5. Construction of MEV-fc

To create the MEV, we used an appropriate linker to connect the 
individual epitopes. This linker prevents these epitopes from 
interacting with each other. The MEV was formed by connecting the 
predicted and screened CTL epitopes, an HTL epitope, and a linear 
B-cell epitope using the GPGPG linker.

To further enhance its ability to trigger an immune response and 
ensure the persistence of the helper T cell 1 (TH1) response (30), 
we  added the hBD-3 sequence (PDB ID: 1KJ6) and the PADRE 
sequence to the N-terminal end of the MEV, using EAAAK linkers. 
Finally, to make the peptide more effective at triggering an immune 
response and to make it last longer in the body, we added the sequence 
of the mouse immunoglobulin IgG Fc fragment (P01868-1) by 
connecting it to the C-terminus of the MEV with KK linkers. This 
resulted in the complete sequence of the vaccine construct.

2.6. Evaluation of physical and chemical 
properties of vaccines

We evaluated the properties of MEV-Fc using bioinformatic 
analysis software. Firstly, we  analyzed its physical and chemical 
characteristics using the ProtParam server, accessible.4 Next, 
we conducted antimicrobial and immunogenicity analyses using the 
VaxiJen v2.0 server. We  specifically utilized the IEDB I  class 
immunogenicity module, with VaxiJen predictions showing an 
accuracy range of 70 to 89% (25). Subsequently, we predicted solubility 
using the SOLpro server, available,5 which demonstrated an overall 
accuracy of 74.15% (31). Finally, we performed sensitivity and toxicity 
analyses using AlergenFP v1.0, accessible (32),6 and ToxinPred, 
available (33).7

2.7. Prediction of secondary and tertiary 
structures

We predicted the secondary structure of MEV-Fc using the 
SOPMA secondary structure prediction tool. To forecast the tertiary 
structure of MEV-Fc, we utilized the Robetta server (34). To assess the 
quality of the constructed models, we employed the Prosa Web Server 
(35), the Ramachandran Plot, and the PROCHECK Server (36), which 
can be accessed.8 These tools help evaluate the correctness and quality 
of the protein’s three-dimensional structure. We further assessed the 
uncertainty of the tertiary structure through ERRAT, available.9 
ERRAT examines the overall quality factor of non-bonded atomic 
interactions, with higher values indicating better quality (37).

4 https://www.expasy.org/resources/protparam

5 http://scratch.proteomics.ics.uci.edu//

6 http://ddg-pharmfac.net/AllergenFP/

7 http://crdd.osdd.net/raghava/toxinpred/

8 https://saves.mbi.ucla.edu/

9 http://services.mbi.ucla.edu/ERRAT/T
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2.8. Prediction of B-cell epitopes

B-cell epitopes are particular sites on antigens where B-cell 
antibodies can bind and trigger immune responses (38). In 
vaccine development, these epitopes play a crucial role in 
generating an effective immune response. To predict B-cell 
epitopes for MEV-Fc, we utilized the ElliPro server with default 
parameters (39).

2.9. Molecular docking of MEV-fc and 
immune receptors TLR2 and TLR4

Molecular docking is a fundamental and promising method for 
studying how peptides interact with human immune receptors like 
TLR2 and TLR4 (40). It offers a quick and cost-effective way to 
understand the detailed interactions at the atomic level within the 
structure of the antibody–antigen complex and its interface.

Here’s how we  conducted the molecular docking analysis: 
We obtained the PDB files of TLR2 (PDB ID: 2Z7X) and TLR4 (PDB 
ID: 2Z63) from the NCBI Molecular Modeling Database (MMDB), 
which is accessible.10 Next, we performed ligand-receptor docking 
analysis using the ClusPro 2.0 online server, which you  can find 
(41).11 We then examined the interaction surfaces of the resulting 
complexes using PDBE Pisa, available (42).12 Finally, we visualized 
the complexes using PyMOL software and analyzed them using 
Ligplot+ software.

2.10. Molecular dynamics simulation

We performed molecular dynamics simulations of the 
MEV-Fc-TLR2 and MEV-Fc-TLR4 complexes using the iMODSweb 
server. This server, which is accessible,13 allows us to explore possible 
trajectories between two conformations and enables interactive 
analysis of the resulting structures, animations, and trajectories in 
three dimensions. Importantly, it can effectively simulate and explore 
even large molecules (43).

2.11. Immune simulation

We used the C-ImmSim server, which you can access,14 to predict 
the ability of MEV-Fc to stimulate the production of specific 
antibodies and various cytokines by immune cells (44). This server is 
capable of predicting the immune response of both B lymphocytes and 
T lymphocytes, including Th1 and Th2 lymphocytes.

In our simulation, we considered the recommended minimum 
interval between the initial and subsequent doses of most vaccines, 
which is 28 days (45). Therefore, we  configured the simulation 

10 https://www.ncbi.nlm.nih.gov/structure/

11 https://cluspro.bu.edu/login.php?redir=/home.php

12 https://www.ebi.ac.uk/pdbe/pisa/

13 https://imods.iqfr.csic.es/

14 https://150.146.2.1/C-IMMSIM/index.php

parameters as follows: three injections, with each injection spaced 
28 days apart; a random seed value set to 12,345; a simulation volume 
of 50; and a total of 1,050 simulation steps. We kept the remaining 
parameters at their default values.

2.12. In silico cloning

To obtain an optimized nucleotide sequence, we used the Java 
Codon Adaptation Tool (JCat), which is available.15 This tool quickly 
generates optimized codon sequences tailored to the chosen 
expression host, thereby enhancing the production yield of 
heterologous proteins (46). In this case, we selected E. coli (strain K12) 
as the preferred bacterial strain. The ideal Codon Adaptation Index 
(CAI) value is 1, and the GC content percentage should ideally fall 
within the range of 30 to 70%.

After obtaining the optimized gene sequence, we cloned it into the 
expression vector pET28a(+) using Hind III and BamHI digestion 
sites. Subsequently, we  analyzed the cloned sequence using 
Snapgene software.

3. Results

3.1. Selection and construction of 
immunodominant epitopes

A set of four proteins was retrieved from the NCBI server, and 
subsequently, their antigenicity was predicted using VaxiJen 
(Table  1). Utilizing the IEDB MHCI and MHC II servers, 
we predicted a total of 308 CTL epitopes (Supplementary Table 1) 
and 89 HTL epitopes (Supplementary Table 2) with a percentile 
rank of 0.5. Among the 308 CTL epitopes, 57 epitopes with 
immunogenicity >0 and an antigenicity score > 1 were selected 
(Supplementary Table 3). Additionally, from the 89 HTL epitopes, 
28 epitopes exhibiting positive induction of IFN-γ and an 
antigenicity score > 0 were selected (Supplementary Table 4). The 
ABCpred server was employed to predict 68 linear B cell epitopes 
(Supplementary Table 5). Ultimately, 18 epitopes were chosen as 
candidates for vaccine construction (Table  2), including eight 
epitopes with the highest immunogenicity or highest antigenicity 
score, six HTL epitopes with the highest antigenicity score or 
highest IFN-γ scores, and four B cell epitopes with the highest 
ABCpred prediction scores. The predicted and screened CTL 
epitopes, HTL epitopes, and linear B-cell epitopes were linked 
together using GPGPG linkers. The hBD-3 sequences and PADRE 
sequences were connected via EAAAK linkers, while the fc (PDB 
ID: 1KJ6) sequences were linked using KK linkers. The resulting 
peptide molecule was named MEV-Fc, and its schematic diagram 
and amino acid sequence are presented in Figure 2.

15 http://www.jcat.de/
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3.2. Prediction of physicochemical 
properties, antigenicity, immunogenicity, 
sensitization, and toxicity of MEV-fc

MEV-Fc, a protein we studied, has some important characteristics. 
It is composed of 600 amino acids and has a molecular weight of about 
61.2 kilodaltons. Its isoelectric point (PI) is approximately 8.89, 
indicating its charge at a specific pH. It is relatively stable with an 
instability index of 24.06 and Aliphatic index of 57.35. In terms of its 
lifespan, MEV-Fc is estimated to last about 30 h in mammalian 
reticulocytes in vitro. It has a slight preference for water, making it 
slightly hydrophilic with a GRAVY value of −0.500 (Table  3). 
Moreover, it is highly likely to be soluble during production, with a 
probability of 0.976819.

Regarding its potential as an antigen, predictions suggest it has a 
high likelihood of triggering an immune response with an 
immunogenicity score of 4.18 and good antigenicity (1.0342). 
Importantly, MEV-Fc is considered non-sensitizing and non-toxic 
based on prediction, indicating its safety profile.

In summary, MEV-Fc possesses favorable characteristics, 
including stability, solubility, and the potential to elicit an immune 
response, making it a strong candidate for a peptide vaccine. 
Additionally, it is considered safe for use.

3.3. Prediction and validation of secondary 
and tertiary structures of MEV-fc

The results of the secondary structure prediction (Figure  3A) 
show that MEV-Fc’s conformation consists of 15.33% alpha helix 
(Hh), 19.17% extended strand (Ee), 7.17% beta-turn (Tt), and 58.33% 
random coil (Cc). To predict the tertiary structure of MEV-Fc, 
we used the Robetta server, and the resulting model was visualized 
using the Pymol software package (Figure 3B). To assess the model’s 
quality, we conducted ProSA-web analysis, which yielded a Z-Score of 
−7.88 (Figure 4A). This Z-Score falls within the normal range for 
native proteins of similar size, confirming the credibility of the model. 
Additionally, we  generated a Ramachandran plot using the 

TABLE 2 Final selection of HEL, CTL, B-cell peptides.

Protein name CTL epitope HTL epitope B-cell epitope

L7/L12
VLADGGANK AAGGAAPAAAAEEKT AAAAEEKTEFDVVLAD

AQLEAAGAKV AGGAAPAAAAEEKTE –

OMP16
HADERGTREY NAGDLGLGAGAATPG LGLGAGAATPGSSQDF

ADERGTREY REYNLALGQRRAAAT –

OMP19
LTPGAVAGV – IATPQTKYGQGYRAGP

DLTPGAVAGV – –

OMP25
FKTNDIRLGV GETQLRWSGAVRARA GWTVGAGIEYAATDNV

RTNGGTSEFK TQLRWSGAVRARAGY –

FIGURE 2

(A) Schematic diagram of the MEV-Fc construct. (B) Amino acid sequence of the MEV-Fc construct.
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PROCHECK server to comprehensively evaluate the overall quality of 
the structural arrangement (Figure  4B). The analysis showed that 
87.1% of residues were in the most favored regions, 10.2% in 
additional allowed regions, 1.2% in generously allowed regions, and 
1.6% in disallowed regions.

In conclusion, the ERRAT server indicated an overall quality 
factor of 86.531, surpassing the generally accepted threshold of 50 for 
a good model. Therefore, we can confidently consider the tertiary 
structure of MEV-Fc as a reliable and accurate model.

3.4. Prediction of B-cell epitopes

Using the ElliPro server, we identified a comprehensive set of 
311 residues that make up discontinuous B cell epitopes 

(Supplementary Table 6). These epitopes had scores ranging from 
0.524 to 0.854. Additionally, our prediction revealed 18 consecutive 
B cell epitopes (Supplementary Table 7), which varied in size from 4 
to 42 residues, with scores ranging from 0.512 to 0.832.

3.5. Molecular docking

We used a powerful tool called ClusPro 2.0 to understand how 
our vaccine interacts with TLR2 and TLR4, two important proteins. 
When we examined how the vaccine connects with TLR2, we got 
10 different models. We found that one model stood out, showing 
11 hydrogen bonds and 5 salt-bridge interactions (Figure  5; 
Supplementary Table 8). The strength of the bond, called binding 
free energy, was −10.4 kcal/mol, indicating a strong connection 

TABLE 3 Physicochemical properties predicted by Expasy Protparam server.

Number of 
amino acids

Molecular 
weight

Theoretical pI Estimated half-
life

Instability 
index

Aliphatic 
index

GRAVY

600 61202.56 Da 8.89 30 h (mammalian 

reticulocytes, in vitro). 

>20 h (yeast, in vivo); 

>10 h (Escherichia coli, 

in vivo)。

24.06 57.35 −0.5

FIGURE 3

Prediction of MEV-Fc secondary and tertiary structures. (A) The prediction of MEV-Fc secondary structure. (B) The 3D model showcases the MEV-Fc 
tertiary structure, providing both front view and back view perspectives.
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between MEV-Fc and TLR2. To better understand this interaction, 
we used Ligplot+ to create a clear 2D picture of how they bond 
(Figure 6).

In a similar way, we looked at how our vaccine interacts with 
TLR4. We  also got 10 different models. One model showed an 
impressive 27 hydrogen bonds and 5 salt-bridge interactions 
(Figure 7; Supplementary Table 9). The strength of this bond, in 
terms of binding free energy, was even higher at −18.8 kcal/mol, 
suggesting a very strong link between MEV-Fc and TLR4. We used 
Ligplot+ again to create a clear 2D picture of this complex bond 
(Figure 8).

3.6. Molecular dynamics simulation 
between MEV-fc and TLR

We used a tool called IModS to simulate how the molecules in our 
vaccine move and behave. In Figures 9 A-F, we show the results of this 
simulation. In Figure A, we  can see how our vaccine (MEV-Fc) 
behaves when it is connected to TLR2. We  used a method called 
normal mode analysis (NMA) to understand how flexible the proteins 
are. Figure B shows specific values related to this analysis for the 
MEV-Fc-TLR2 complex. In Figure C, variance plots showed a 
cumulative or individual variance of MEV-Fc-TLR2 complex with 

FIGURE 4

(A) Z-score evaluation results: the x-axis represents the number of amino acids in the protein, while the y-axis represents the score. The figure displays 
regions marked by blue and gray spots, which indicate the expected scoring range for proteins. The black spots represent the target proteins. 
(B) Ramachandran plot: the plot illustrates the distribution of residues based on their conformational angles.

FIGURE 5

(A) Outcome plots derived from the ClusPro molecular docking of the vaccine structures (cyan) and TLR2 receptors (red). (B) Analysis of interactions 
within the MEV-Fc-TLR2 complex and generation of their 3D images utilizing the PyMol visualization tool.
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FIGURE 6

Further analysis of the interactions within the MEV-Fc-TLR2 complex and generation of their two-dimensional images using the Ligplot+ visualization 
tool.

FIGURE 7

(A) Result plots generated from the molecular docking of Cluspro, displaying the vaccine structures in cyan and TLR4 receptors in red. (B) Analysis of 
the MEV-Fc-TLR4 complex interactions and generation of their 3D images using the PyMol visualization tool.
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green or purple, respectively. In Figure D, we compare the actual 
movement (B factor) with what we predicted through NMA. Figure E 
displays a map that highlights how different parts of the complex 
move together. The red areas show significant motions happening 
together. Lastly, Figure F provides a diagram showing how the parts 
of the docked protein complexes are interconnected, like springs with 
varying stiffness. Darker areas indicate stiffer connections. Similar 
results were obtained for TLR4 (Supplementary Figure 1).

3.7. Immune simulation

We used a tool called C-ImmSim to predict how the immune 
system in mice would respond to the MEV-Fc vaccine. Here are the 
key findings (Figure 10): (1) Antibody Levels: The results showed that 

the levels of IgM and IgG antibodies increased progressively after 
three rounds of vaccine injections (Figure 10A). This suggests that the 
vaccine triggered an antibody response in mice. (2) B-Cells: B-cells, 
which are responsible for producing antibodies, became more active 
with each vaccine injection, reaching their highest level after the final 
injection (Figure 10B). (3) Helper T Cells (TH-Cells): Both the total 
and memory populations of helper T cells (TH-cells) increased 
significantly (Figure  10C). The active TH-cell population also 
expanded robustly, reaching its peak after the third immunization 
(Figure 10D). (4) Cytotoxic T Cells (TC Cells): The count of active 
cytotoxic T lymphocytes (TC cells) increased gradually after each 
immunization injection (Figure  10E). (5) Cytokines: There was a 
notable increase in the levels of interferon-γ and IL-2, which are 
immune system signaling molecules, in response to antigen 
stimulation (Figure 10F). These findings suggest that the MEV-Fc 

FIGURE 8

Analysis of the MEV-Fc-TLR4 complex interactions using the Ligplot+ visualization tool, resulting in two-dimensional images of the interactions.

FIGURE 9

Molecular dynamics simulation results of MEV-Fc-TLR2. (A) Deformability analysis. (B) Eigenvalues of the simulation. (C) Variance plots, indicating 
individual (red) and cumulative (green) variances. (D) B-factor comparison. (E) Covariance map showing correlated (red), uncorrelated (white), and 
anticorrelated (blue)movements. (F) Elastic network representation, with darker gray areas indicating higher rigidity.
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vaccine could elicit a strong and diverse immune response in mice, 
involving antibodies, B-cells, helper T cells, cytotoxic T cells, 
and cytokines.

3.8. In silico cloning

Codon optimization is a technique used to improve the way a 
particular genetic sequence is expressed by enhancing translational 
efficiency (47). In this context, we optimized the codon usage in the 
MEV-Fc construct sequence using a tool called JCat. This optimization 
resulted in a Codon Adaptation Index (CAI) value of 1, and the GC 
content was measured at 56.99%, which falls within the desirable 
range. These findings suggest that the optimized sequence is likely to 
be efficiently expressed in the E. coli expression system. You can see 
the result in (Figure  11), which shows the expression vector pET 
28a(+) with the inserted fragment of the multi-epitope vaccines.

4. Discussion

Brucellosis is a complex disease that poses a significant health risk 
to both humans and livestock (48). Vaccines are considered the most 
cost-effective way to prevent diseases caused by infectious agents (49). 
Subunit vaccines, in particular, show promise due to their safety, 
non-infectious nature, inability to revert to a virulent form, and 
precise control over desired effects (50). However, developing a safe 
and effective subunit vaccine against Brucella for use in humans and 
animals has been challenging (51, 52). Advances in bioinformatics, 
structural biology, and computational tools have transformed vaccine 

design (53). Bioinformatics has been used extensively to predict and 
design vaccines for various pathogens, including bacteria, viruses, 
fungi, and cancer (54).

In this context, we focused on Brucella abortus proteins OMP16, 
OMP19, OMP25, and L7/L12, which are known for their strong 
immunogenicity and potential to induce immune protection. 
We developed a multi-epitope vaccine based on these proteins and 
confirmed its immunogenicity. This vaccine has the potential to 
provide broad protection against Brucella infection.

Brucella, an intracellular and facultative intracellular parasite, 
has the ability to replicate within specialized or nonprofessional 
phagocytes (55). It has been demonstrated that cell-mediated 
immunity, particularly involving macrophages and T cells, plays a 
crucial role in immunoprotection against Brucella and other 
intracellular bacterial pathogens (56). B lymphocytes, are pivotal 
components of humoral immunity, producing antigen-specific 
antibodies that play a critical role in eliminating Brucella infection 
(57, 58). Therefore, an ideal anti-Brucella vaccine should encompass 
both T-cell and B-cell epitopes. In our study, we employed epitope 
prediction techniques to identify CD4+ and CD8+ short peptide 
sequences within the antigen, targeting both CTL and HTL epitopes 
(59). B cell epitopes can be recognized and bind to antibodies (on 
the surface of B cells or free antibodies), stimulating the immune 
system’s response against pathogens (38). By incorporating B cell 
epitopes, the vaccine can more effectively activate B cells and induce 
humoral immunity. Consequently, utilizing the IEDB server, 
we  identified 8 dominant CTL epitopes and 6 dominant HTL 
epitopes from the 4 proteins. Additionally, the ABCpred server was 
employed to identify 4 dominant linear B cell epitopes present in all 
four proteins.

FIGURE 10

Immune simulation. (A) Levels of immunoglobulins in different states after antigen stimulation. (B) Distribution of B-cell subtypes in different states 
after antigen stimulation. (C) Count of CD4 T-helper lymphocytes after antigen stimulation. (D) Distribution of CD4 T-helper lymphocytes divided by 
activation status after antigen stimulation. (E) Count of CD8 T-cytotoxic lymphocytes divided by activation status. (F) Production of multiple cytokines 
following antigen stimulation.
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The choice of a suitable linker is crucial when combining different 
components in a vaccine (60). It helps prevent unintended interactions 
and improves how the vaccine is processed and presented to the 
immune system. In our vaccine design, we added the Fc sequence to 
the vaccine to address the issue of the vaccine’s short lifespan and 
prevent its breakdown in the body. Fc fragment fusion proteins have 
been studied as potential vaccines or treatments for various diseases 
like influenza, tuberculosis, and swine fever (61–63). While Fc 
fragments can help with antigen presentation by binding to receptors 
on immune cells, this may not be enough to activate certain immune 
cells and promote the desired immune response. To boost the immune 
response, we paired our vaccine with adjuvants and molecular agonists 
(64). We chose β-defensin as an adjuvant because it has antimicrobial 
properties and can modulate the immune system (65). Additionally, 
we included the PADRE sequence, which acts as an activator of certain 
immune receptors, to enhance the vaccine’s long-term effectiveness 
(66). With these modifications, we  successfully created a peptide 
vaccine consisting of 600 amino acids.

We conducted further analysis to assess the physical and chemical 
properties, sensitization, and toxicity of MEV-Fc. Previous research 
suggests that vaccine proteins should have a molecular mass of less 

than 110 kDa (67). MEV-Fc has a predicted molecular weight of about 
61.2 kDa, which falls within this desirable range. It also shows good 
antigenic properties, stability, hydrophilicity, solubility, and low 
sensitivity with an antigenicity score of 1.0342.

When we looked at its secondary structure, we found that MEV-Fc 
is composed of 15.33% alpha helix, 7.17% beta turns, and 58.33% 
random coils. These structural elements play a crucial role in how 
antibodies recognize the vaccine when the body is infected (40). The 
presence of beta turns and random coils in protein vaccines helps 
create antigenic epitopes (68).

We also generated a 3D model of the Brucella vaccine using the 
Robetta server. The Z score of −7.88 indicates that the protein structure 
prediction is accurate. In a Ramachandran plot analysis, over 98% of 
residues were located in favorable and permissive regions. This confirms 
the high accuracy and confidence of the predicted tertiary structure of 
MEV-Fc, making it a strong foundation for an effective vaccine model.

Protein–protein docking has become an important tool in the 
fields of immunoinformatics and pharmacological research. TLR2 
and TLR4 are particularly important because they play a crucial role 
in generating specific T cells and are essential for the body’s defense 
against Brucella infection (69, 70). Therefore, we selected TLR2 and 

FIGURE 11

In silico cloning. The multi-epitope vaccine sequence (highlighted in pink) was successfully inserted into the pET28a (+) expression vector at the HindIII 
and BamHI restriction endonuclease cleavage sites.
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TLR4 as the receptors for molecular docking with MEV-Fc. Through 
molecular docking and subsequent molecular dynamics simulations, 
the stability of the MEV-Fc-TLR complex interactions was assessed. 
The docking results revealed the presence of an atomistic interaction 
interface between MEV-Fc and TLR2/TLR4, indicating a strong 
interaction between them, it indicates that MEV-Fc can activate the 
TLR2/TLR4 receptor signaling pathway and activate the 
immune response.

As mentioned earlier, Brucella is a type of bacteria that can 
survive and multiply within cells. To combat this, stimulating a 
T-cell-dependent immune response is crucial, as it hinders the 
bacteria’s growth within cells (71). B cells are also vital for the body’s 
defense by producing specific proteins that aid in immunity (59). The 
predictions regarding MEV-Fc showed that it effectively triggered 
both the innate and adaptive immune responses in mice. Notably, it 
increased various cell populations related to immunity and promoted 
the production of antibodies (Ig). The predicted results also indicated 
a significant rise in interferon-gamma and IL-2 levels. Interferon-
gamma is important for fighting bacterial infections as it activates 
macrophages, aiding in the elimination of intracellular 
pathogens (72).

To ensure effective transcription and translation, we used JCAT 
software for codon optimization. The goal was to predict the best 
way to express the MEV-Fc construct in the E. coli K12 strain. The 
results showed a CAI value of 1 and a GC content of 56.99%. This 
suggests a high chance of successful and efficient expression in the 
E. coli expression system. Experimental verification of the 
immunogenicity and safety of the vaccine candidates designed and 
constructed in this study is required. The next step in this study will 
therefore be to perform high throughput cloning of the constructed 
vaccine candidates, expression of the purified recombinant 
proteins, immunization of the animals, and immunological 
assessments to ensure the true potential of the designed Brucella 
epitope vaccine.

5. Conclusion

In summary, this study introduces a novel vaccine candidate 
called MEV-Fc, designed specifically to prevent brucellosis. MEV-Fc 
includes 8 CTL epitopes, 6 HTL epitopes, 4 B cell epitopes, along 
with adjuvants and Fc fragments. MEV-Fc shows strong antigenicity 
and immunogenicity, and it is safe with no sensitizing or toxic 
effects. Importantly, MEV-Fc has a strong affinity for both TLR2 
and TLR4, indicating a stable interaction. Additionally, MEV-Fc 
triggers a robust innate and adaptive immune response, leading to 
increased levels of Th1-type cytokines like interferon-gamma and 
IL-2. These promising findings suggest that MEV-Fc could be an 
excellent vaccine candidate for preventing brucellosis. But in vivo 

studies and laboratory data are also required to confirm 
vaccine efficacy.
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