
Frontiers in Veterinary Science 01 frontiersin.org

Swine gut microbiome associated 
with non-digestible carbohydrate 
utilization
Sriniwas Pandey 1†, Eun Sol Kim 1†, Jin Ho Cho 2†, Minho Song 3†, 
Hyunok Doo 1, Sheena Kim 1, Gi Beom Keum 1, Jinok Kwak 1, 
Sumin Ryu 1, Yejin Choi 1, Juyoun Kang 1, Jeong Jae Lee 4 and 
Hyeun Bum Kim 1*
1 Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea, 2 Division 
of Food and Animal Science, Chungbuk National University, Cheongju, Republic of Korea, 3 Division of 
Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea, 4 Institute of 
Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea

Non-digestible carbohydrates are an unavoidable component in a pig’s diet, as all 
plant-based feeds contain different kinds of non-digestible carbohydrates. The 
major types of non-digestible carbohydrates include non-starch polysaccharides 
(such as cellulose, pectin, and hemicellulose), resistant starch, and non-digestible 
oligosaccharides (such as fructo-oligosaccharide and xylo-oligosaccharide). 
Non-digestible carbohydrates play a significant role in balancing the gut 
microbial ecology and overall health of the swine by promoting the production 
of short chain fatty acids. Although non-digestible carbohydrates are rich in 
energy, swine cannot extract this energy on their own due to the absence of 
enzymes required for their degradation. Instead, they rely on gut microbes to 
utilize these carbohydrates for energy production. Despite the importance of 
non-digestible carbohydrate degradation, limited studies have been conducted 
on the swine gut microbes involved in this process. While next-generation high-
throughput sequencing has aided in understanding the microbial compositions 
of the swine gut, specific information regarding the bacteria involved in non-
digestible carbohydrate degradation remains limited. Therefore, it is crucial to 
investigate and comprehend the bacteria responsible for the breakdown of non-
digestible carbohydrates in the gut. In this mini review, we have discussed the 
major bacteria involved in the fermentation of different types of non-digestible 
carbohydrates in the large intestine of swine, shedding light on their potential 
roles and contributions to swine nutrition and health.
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1. Introduction

Dietary carbohydrates (DCs) are principal substrates for maintaining physiological health 
and serve as an energy source for animals. In the diets of pigs, carbohydrates contribute to the 
majority of feed energy, accounting for approximately 60–70% of overall energy intake. In 
addition, the digestion of carbohydrates has significant impacts on various aspects of colonic 
functions, including the metabolism, balance of commensal flora and the health of large intestine 
epithelial cells (1).
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DCs encompass a group of chemical substances and can 
be classified based on molecular sizes, ranging from simple mono- and 
disaccharides to complex compounds with intricate structures (2). 
Moreover, carbohydrates can be divided into two nutritional categories 
based on chemical classification. The first category is digestible 
carbohydrates (DGCs), which are metabolized by the host’s 
endogenous enzymes and absorbed in the small intestine. This 
category includes monosaccharides, disaccharides, and polysaccharides 
such as starches. The second category is dietary fiber, which consists of 
non-digestible soluble and insoluble carbohydrates and lignin. These 
components have the potential to be  degraded through microbial 
fermentation in the large intestine (3). Non-starch polysaccharides 
(NSPs) are a component of dietary fiber. American Association of 
Cereal Chemists (AACC) defined the dietary fiber in 2000 as edible 
plant parts or comparable carbohydrates that are resistant to digestion 
and absorption in the small intestine but can be completely or partially 
fermented in the large intestine (4). Dietary fiber contains a substantial 
amount of energy, but the majority of enzymes required for its 
breakdown are not encoded in the mammalian genome.

Starch is the principal source of energy for monogastric animals 
and cereals are the primary source of starch in animal feeds (5). Starch 
is a polysaccharide composed of polymers amylose and amylopectin. 
Resistant starch (RS), on the other hand, refers to starches that resist 
digestion in the small intestine by amylases and instead reach the large 
intestine, where they are available for bacterial fermentation (6).

NSPs (cellulose, pectin, and hemicellulose), RS and non-digestible 
oligosaccharides (NDOs) (Fructo-oligosaccharide and Xylo-
oligosaccharide) are the major types of non-digestible carbohydrates 
(NDCs). The large intestine serves as an anaerobic digestive 
environment for complex molecules, such as NDCs. It is predominantly 
colonized by obligate anaerobic microorganisms, although a small 
number of aerobic and facultative microorganisms are also present (7, 
8). These microorganisms within the large intestine utilize NDCs as 
their primary energy sources. As a result, they produce Short Chain 
Fatty Acids (SCFAs), vitamins, and participate in various metabolic 
processes. Moreover, these microorganisms engage in intricate 
interactions with host cells and the host immune system (9–11).

With the aid of next-generation high-throughput sequencing, 
researchers have been able to comprehend the gut microbial composition 
of swine. However, knowledge concerning the gastrointestinal tract 
microbiome that facilitates the fermentation of NDCs remains limited, 
despite several research endeavors aimed at understanding such 
bacterial species. Therefore, this mini review aims to consolidate 
information regarding the major bacterial species involved in the 
fermentation of different types of NDCs in the large intestine of swine.

2. Degradation of NDCs by the swine 
gut microbiota

DGCs are such carbs that can be digested by host’s enzymatic 
system (3), whereas NDCs are those carbs that resist the action of 

salivary and intestinal digestive enzymes and hence are fermented by 
microbes in the large intestine (12).

The carbohydrates in the swine feed like cereal grains, legumes, 
oil seeds, and potato are also composed of DGCs and NDCs (13). The 
legumes and oil seeds are source of protein however the cell wall of 
these crops contains NDCs (14). NDCs have a significant role in pig 
diets, and it is necessary to add a certain amount to ensure proper 
physiological functioning (15).

As summarized in Figure  1A, NDCs are a distinct group of 
carbohydrates found almost entirely in plants and is generally 
classified as NSPs (cellulose, hemicellulose, pectin), RS (potato starch) 
and NDOs (Fructo-oligosaccharide, Xylan-oligosaccharide, soybean 
Oligosaccharide) (16).

NDCs are either water soluble or insoluble based on its solubility 
in water. Insoluble NDCs includes cellulose, hemicellulose, lignin, 
whereas soluble NDCs includes pectin, β-glucan, fructan, mucilage, 
gum, and psyllium fiber (17, 18). The most commonly present NDCs 
are cellulose, hemicellulose and pectic substances.

Digestion of simple carbs and starch occurs predominantly by 
enzymatic digestion, whereas the complex carbs that are resistant to 
host’s digestive enzymes are degraded by microbial fermentation after 
reaching large intestine (19).

Even though a host’s genome does not encode the enzymes 
required to break down the linkage between the monomers in NSPs 
and NDOs, 20 to 25% of NSPs and 40 to 95% of NDOs is found to 
be degraded while passing through the small intestine (Figure 1B). 
This breakdown is facilitated by the microbial enzymes of the 
microflora present in this part of the gut and not by the host’s 
enzymatic system (20). Nevertheless, the major types of carbs reach 
the large intestine, and those available for fermentation are plant cell 
wall polysaccharides, also known as NSPs, RS, and NDOs. Those 
carbohydrates are fermented by the swine gut microbiota.

Gastro-intestinal tract microbiota is defined as the ecological 
community made up of commensal, symbiotic and potentially 
pathogenic microorganisms that harbors the gut (17). The gut 
microbial composition of the swine is of great significance, as it affects 
the overall physiology and health, along with the feed conversion ratio. 
The swine gut microbiota are mainly made up of anaerobic & 
facultative anaerobic bacteria, and more than 90% of these bacteria 
belong to the phyla Firmicutes, Proteobacteria and Bacteroidetes 
(Figure  1C) (21–24). Several studies have shown ‘core’ genera 
consisting of Prevotella, Clostridium, Ruminococcus, Lactobacillus, 
Faecalibacterium, Bacteroides, Fusobacterium, and Alloprevotella in a 
larger portion of studied healthy pigs (25, 26). In this review, we will 
discuss major bacterial species involved in fermentation of different 
types of NDCs in the large intestine of swine.

2.1. Fermentation of NSPs by swine gut 
microbiota

NSPs comprise plant cell wall polysaccharides (Cellulose, 
hemicellulose, Pectin), structural non-polysaccharide (lignin) and 
non-structural polysaccharides. (7, 27). Numerous parameters, 
including the animal species, solubility, chemical composition, and 
consumption amount, influence the ease of digestion of NSPs. The 
order of microbial degradation in the large intestine is sugar 
residues = NDOs > Starch residues > Soluble NSP > RS=Insoluble NSP 

Abbreviations: DCs, Dietary carbohydrates; DGCs, Digestible carbohydrates; NSPs, 

Non-starch polysaccharides; RS, Resistant starch; NDOs, Non-digestible 

oligosaccharides; NDCs, Non-digestible carbohydrates; SCFAs, Short Chain 

Fatty Acids..
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(3). Lignin, a component of plant cell wall, is however not digested by 
the enzymes of the small intestine and neither fermented by the gut 
bacteria. It is however supposed to impact the fermentability of other 
components in the diet (12, 28).

The degradation of complex fiber by the fibrolytic bacterial 
community is mainly carried out by several anaerobic gut microbes 
that possess the ability to produce enzymes. They belong to the 
dominant bacteria groups including Bacteroides, Roseburia, 
Ruminococcus or Bifidobacterium species (Table 1). Several specific as 
well as multi-carbohydrate degrading bacteria is found in swine gut. 
The anerobic bacteria mainly degrade cellulose through cell-bound 
organelle-like structure, cellulosome (46). Cellulosome is a large 
multi-enzyme complex bound to the bacterial cell wall, that helps 
degrade plant cell wall polysaccharides into usable sugars (47, 48). It 
basically consists of 2 major subunits: the enzymes and the 
noncatalytic subunit scaffoldin (Figure  1D). Scaffoldin possess 6 
cohesin domains which bind with the dockerin module present in the 
enzymes and hence forms the functional cellulosomal-complex. 
Scaffoldin also has one another module, the cellulose-binding domain 
(CBM) that helps bind to the cellulosic substrates.

Ruminococcus flavefaciens (R. flavefaciens), one of the 
predominant and important cellulolytic bacteria, degrades cellulose 
and a variety of plant cell walls (30) using a high-molecular-weight 
enzyme complex, cellulosome (49). It is essential for the R. flavefaciens 
to bind to the cellulose in order to break it down. Another bacteria, 
Ruminococcus albus (R. albus), is also a well-known specialist 
cellulose-degrading bacterium found in rumen and gastro-intestinal 
tract of herbivores, but it has also been isolated from swine gut (8). It 

is also known to produce a cellulosome-like complex. However, it is 
supposed to employ another mechanism for adhesion to cellulose. It 
has been found that a cellulose-binding protein belonging to the 
Pil-protein family is involved in attachment (50). Ruminococcus 
champanellensis (R. champanellensis), a recently identified cellulolytic 
strain from human feces, ferments cellulose and xylase, while 
metabolizing cellobiose to acetate, succinate, ethanol, dihydrogen and 
small quantities of formate and lactate (31, 32).

Clostridium (C. leptum and C. herbivorans), which are normal 
inhabitants of the pig’s intestine, also possess multi-enzyme system 
including cellulosome and xylanosome, which aid in the breakdown 
of complex cellulosic polymers and several cellulosic by-products (29). 
However, it should be noted that not all polysaccharidase activities in 
R. flaveciens or the cellulolytic Clostrdia are linked to a 
cellulosome (51).

Bacteroides, another highly prevalent genus in swine gut, possess 
a high concentration of the carbohydrate-active enzyme (CAZyme) 
genes. These enzymes enable Bacteroides to degrade various 
components of plant cell wall, like glucronylxylans, xyloglucans and 
pectin (52). Moreover, a unique feature of Bacteroidetes is the presence 
of polysaccharide utilization locus (PUL), which consists of linked 
genes involved in the saccharification of complex carbohydrates, such 
as glycans (53, 54). Bacteroides ruminicola (B. ruminicola) and 
Bacteroides xylanisolvens (B. xylanisolvens) are significantly involved 
in the degradation of xylan (36, 37). Another species, Bacteroides 
succinogens (B. succinogens), isolated from the swine’s large intestine, 
also possesses the ability to degrade cellulose (34). Metagenome-
assembled genomes (MAGs) have identified several members of the 

FIGURE 1

Non-digestible carbohydrates, pig gut microbiome, carbohydrate digestion in the intestine, and celluosome structure. (A) Classification and examples 
of non-digestible carbohydrate addressed in this mini review. (B) Schematic illustration of digestion of different carbohydrates in small and large 
Intestine. The figure gives a rough idea on the amount of carbohydrates digested in the small and large intestine. Modified from Bach Knudsen et al. 
(C) Predominant genus of swine gut microbiota. Each area of the circle signifies the domination of the respective phyla in the swine gut. 
(D) Cellulosome structure. The Type I dockerins, attached to the catalytic subunit (blue) interacts with the cohesin (yellow) of the primary CipA 
scaffoldin protein forming cellulosome complex. The cellulosome is attached to the bacterial surface through interaction of Type II dockerin in CipA 
with Type II cohesin module of a membrane-bound protein (red). The Cellulosome complex binds to cellulose through cellulose-binding module 
(CBM) of the CipA primary scaffoldin protein. Modified from Gilbert H.J.
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Bacteroidaceae family, including Bacteroides fragilis (B. fragilis), 
Bacteroides heparinolyticus (B. heparinolyticus), Bacteroides stercoris 
(B. stercoris), Bacteroides thetaiotaomicron (B. thetaiotaomicron), 
Bacteroides uniformis (B. uniformis), and Bacteroides xylanisolvens 
(B. xylanisolvens). These bacteria have been found to possess the 
carbohydrate-active enzyme (CAZyme) genes involved in the 
degradation of starch, pectin, fucose oligosaccharides, rhamnose 
oligosaccharides, and other complex carbohydrates. Additionally, 
using metagenome-assembled genomes (MAGs), it has been predicted 
that B. thetaiotaomicron and Bacteroides ovatus (B. ovatus) 
possess PULs.

Several species of Fibrobacter, including Fibrobacter intestinalis 
(F. intestinalis) and Fibrobacter succinogenes (F. succinogenes), possess 
the ability to ferment NSPs. These species, found in the caeca of pigs, 
have gained significant attention due to their relatively higher 
fibrolytic activity (33). F. succinogenes, in particular, is known for its 
efficient degradation of cellulose. The specific mechanism by which it 
utilizes cellulose is still not fully understood, but it has been proposed 
that F. succinogenes binds to cellulose through a protein present in its 
outer membrane, facilitating the degradation of cellulose (55, 56). 
Bacteroides, along with Prevotella, is known to contain carbohydrate-
active enzymes (CAZymes) and play a major role in the degradation 
of pectin, a component of plant cell walls. However, it is important to 
note that while these bacterial genera contribute to the breakdown of 
various dietary carbohydrates, cellulose degradation is mainly carried 
out by other cellulolytic bacteria such as Ruminococcus, Fibrobacter, 
and certain species of Clostridium (38, 39). It is also widely known that 
Butyrivibrio spp., found in swine colon, can hydrolyze hemicellulose 
(8). Butyrivibrio fibrisolvens is a ruminal hemicellulose- degrading 
bacteria but also show modest cellulolytic activity (35).

2.2. Fermentation of RS by swine gut 
microbiota

Starch is the principal source of energy for monogastric animals, 
and cereals are the primary source of starch in animal feeds (5). Starch 
is a polysaccharide composed of polymers: amylose and amylopectin. 
RS, on the other hand, refers to starches that escape digestion in small 
intestine by the amylases and reach the large intestine, where they 
become available for bacterial fermentation (6).

Based on their physiochemical characteristics, resistant starch 
(RS) is classified into five different types. RS1 refers to starches that are 
physically inaccessible as they are located inside a fiber-protein matrix 
and are resistant to breakdown even with normal cooking. RS2 is a 
type of starch found in green bananas and raw potatoes, which can 
be reduced by thermal treatment. RS3 refers to retrograded starches 
that occur when starchy foods like bread or potatoes are gelatinized 
through heating and then undergo retrogradation upon cooling. RS4 
is a group of resistant starches that are generated through chemical 
modifications such as esterification, etherification, and cross-linking. 
RS5 is predominantly associated with amylose-lipid V-type complexes, 
such as starch-monoglycerides and starch-fatty acids (57, 58). Given 
that starchy ingredients consumed by pigs typically contain significant 
quantities of RS1, RS2, and RS3, these three types of resistant starch 
are commonly regarded as the primary ones in the swine industry.

Several types of gut bacteria are involved in fermenting resistant 
starch in the hindgut, which leads to the production of SCFAs (such 
as acetate, butyrate, propionate, and valerate), gasses (including CO₂, 
H₂, and CH₄), as well as lesser amounts of organic acids (like lactate, 
succinate, and formate), branched SCFAs, and alcohols (such as 
methanol and ethanol) (57).

TABLE 1 Gut bacteria involved in fermentation of non-digestible carbohydrates.

Non-Digestible Carbohydrates (NDCs) Genus Species References

NSP1

Cellulose

Clostridium leptum, herbivorans (29)

Ruminococcus
flaveciens, albus, (8, 30)

champanellensis (31, 32)

Fibrobacter intestinalis, succinogenes (33)

Bacteroides succinogenes (34)

Hemicellulose

Butyrivibrio fibrisolvens (8, 35)

Bacteroides ruminicola, xylanisolvens (36, 37)

Ruminococcus champanellensis (31, 32)

Pectin Bacteroides, Prevotella – (38, 39)

Resistant Starch –

Ruminococcus bromii

(40, 41)
Bifidobacterium adolescentis

Bacteroides thetaiotaomicron

Eubacterium rectale

NDO

FOS

Bifidobacterium

Lactobacillus

–

plantarum, acidophilus

(42, 43)

(44, 45)

GOS

MOS

SBOS

IMO

NSP, Non-Starch Polysaccharide; NDO, Non-Digestible Oligosaccharide; FOS, Fructo-oligosaccharide; GOS, Galacto-oligosaccharide; MOS, Mannan-oligosaccharide; SBOS, Soybean-
oligosaccharide; IMO, Isomalto-oligosaccharide.
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The main three phyla involved in starch fermentation are 
Firmicutes, Bacteroidetes, and Actinobacteria, which collectively 
account for 95% of the total gut bacteria in mammals. Numerous 
studies have indicated the interactions between resistant starch and 
microorganisms in the gut. It has been observed that as the levels of 
RS increase, there is an increase in the populations of the Bifidobacteria 
and Lactobacillus genera. Specifically, Lactobacillus sobrius and 
Lactobacillus amylovorus have been identified as the major amylolytic 
genera in the digestive system of swine. It is important to note that not 
all Bifidobacteria species are involved in the degradation of 
RS. However, Bifidobacterium breve, Bifidobacterium dentium, and 
Bifidobacterium pseudolongum have shown extracellular starch-
degrading activities (59). A human study also evaluated the roles of 
four dominant amylolytic bacteria in the human colon, namely 
Bacteroides thetaiotaomicron (B. thetaiotaomicron), Ruminococcus 
bromii (R. bromii), Eubacterium rectale (E. rectale), and Bifidobacterium 
adolescentis (B. adolescentis), in the breakdown and utilization of 
RS. The findings of the study indicated that R. bromii exhibited a much 
greater capacity for RS degradation compared to the other three 
bacteria. However, all four bacteria demonstrated the ability to utilize 
RS (40, 60).

The starch-utilization system of B. thetaiotaomicron has been 
thoroughly investigated and found to possess a starch-utilization-
structure (sus) gene clusters, which play a role in binding and 
utilization of starch (41, 61). On the other hand, the remarkable 
starch-degrading capacity of R. bromii is believed to be attributed to 
cohesion (Coh)-dockerin interactions, which are particularly 
significant in cellulosomal enzyme systems (62).

E. rectale depends on a large extracellular amylase attached to its 
cell wall, along with some membrane-associated binding proteins and 
hydrolases to use resistant starch, however it is not a primary degrader 
(63, 64) (Table 1).

2.3. Fermentation of NDOs by swine gut 
microbiota

NDOs are a type of oligosaccharides that cannot be broken down 
by mammalian endogenous enzymes (65). The terms “resistant 
oligosaccharides,” “NDOs” and “resistant short chain carbohydrates 
(RSCC)” are interchangeable and refer to the same compound. NDOs, 
such as fructo-oligosaccharides (FOS), transgalacto-oligosaccharides 
(TOS), xylo-oligosaccharides (XOS), and soybean oligosaccharides, 
occur naturally in legume seeds and cereals. They can also 
be artificially synthesized. These examples represent some common 
types of NDOs. Numerous studies have demonstrated that the 
presence of NDOs leads to an increase in Bifidobacterium species 
compared to other bacteria (42, 43). While Bifidobacterium shows a 
strong preference for fermenting NDOs, other bacteria such as 
Lactobacillus, Bacteroides, and Clostridium also have the ability to 
ferment NDOs, albeit at lower levels.

Lactic acid bacteria, such as Lactobacillus species can utilize 
simple carbohydrates broken down by other bacteria (66). However, 
their ability to utilize complex carbohydrates is generally limited, with 
only certain species such as Lactobacillus acidophilus and Lactobacillus 
plantarum having the capability to utilize NDOs (44, 45).

Bifidobacterium species are known for their production of 
glycolytic enzymes, which enable them to efficiently utilize NDOs. 

These enzymes allow Bifidobacterium strains to hydrolyze various 
monosaccharides and glycosidic linkages, providing them with a 
broader range of carbohydrate substrates. In contrast, other enteric 
bacteria such as Escherichia coli, Streptococcus, and Lactobacillus 
generally exhibit less diversified enzyme activities and lower levels of 
activity compared to Bifidobacterium (67) (Table 1).

3. SCFAs from complex carbohydrate 
fermentation

NDCs play a crucial role in the overall health of pigs at all stages 
of life. When these carbohydrates undergo fermentation in the gut, 
they contribute to the production of SCFAs, gasses, and organic acids.

The anaerobic fermentation of complex carbohydrates in the large 
intestine primarily produces SCFAs, which are small organic 
monocarboxylic acids (68, 69). SCFAs have several beneficial effects 
on the host’s gut health. They contribute to the maintenance of 
intestinal barrier integrity, promoting a healthy gut lining and 
preventing the entry of harmful substances into the bloodstream. 
SCFAs also stimulate the production of mucus, which forms a 
protective layer in the gut and aids in the proper functioning of the 
digestive system. Furthermore, SCFAs have anti-inflammatory 
properties and help regulate the immune response in the gut, reducing 
the risk of inflammation-related conditions. Overall, the production 
of SCFAs through the fermentation of complex carbohydrates plays a 
crucial role in supporting gut health and protecting against intestinal 
inflammation (70). The major SCFAs produced in the gut are acetate, 
propionate, and butyrate (71). Among these, butyrate plays a crucial 
role as it serves as the primary energy source for colonocytes (72). 
Propionate, on the other hand, is transported to the liver where it 
contributes to gluconeogenesis. Acetate, being the most abundant 
SCFA, has various important functions including improving 
cholesterol metabolism and lipogenesis, regulating the immune 
system, and exhibiting anti-inflammatory responses (73–75). SCFAs 
cause a decrease in the pH of the large intestine, which helps inhibit 
the growth of pathogenic microorganisms and facilitates the 
absorption of calcium and magnesium (71). Furthermore, SCFAs can 
function as signaling molecules by binding to G protein-coupled 
receptors (GPCRs) present in gut epithelial cells and immune cells 
(76). In both anaerobic ecosystems and the alimentary canal, an 
inevitable byproduct of microbial fermentation is gas, with 
representative gasses being H₂ and CO₂.

4. Conclusion

In addition to the energy production through fermentation of 
NDCs, they also play a crucial role in maintaining gut health by 
producing a diverse range of metabolites, such as SCFAs. Gut microbes 
contribute to host health through SCFA production, lowering pH, and 
synthesizing vitamins.

The specific gut anaerobes involved in the breakdown of complex 
carbohydrates in the large intestine are still not fully understood. 
Advancing our knowledge in this area is crucial to better understand 
the microbial ecosystem and its impact on swine health. Prioritizing 
research efforts to identify the bacterial species responsible for 
fermenting various dietary fibers will not only contribute to 
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maintaining overall health but also promote optimal growth and well-
being of swine. This knowledge can aid in developing targeted 
interventions and strategies to optimize gut health and maximize the 
benefits of complex carbohydrate fermentation in swine. Identifying 
and understanding the functional roles of different bacterial species 
involved in the fermentation of dietary fibers can greatly enhance 
swine production. By optimizing diets and developing targeted 
interventions based on this knowledge, we  can promote efficient 
fermentation and maximize the utilization of dietary fibers by 
beneficial gut bacteria. This can lead to improved nutrient absorption, 
enhanced gut health, and ultimately, better swine production 
outcomes. Additionally, such advancements can contribute to more 
sustainable and efficient farming practices by reducing feed waste and 
improving the overall utilization of available resources.
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