AUTHOR=Olayinka Jadesola Temitope , Nagarkar Akanksha , Ma Diana Junyue , Wong Neil B. , Romasco Andrew , Piedra-Mora Cesar , Wrijil Linda , David Clement N. , Gardner Heather L. , Robinson Nicholas A. , Hughes Kelly L. , Barton Bruce , London Cheryl A. , Almela Ramón M. , Richmond Jillian M. TITLE=Cathepsin W, T-cell receptor-associated transmembrane adapter 1, lymphotactin and killer cell lectin like receptor K1 are sensitive and specific RNA biomarkers of canine epitheliotropic lymphoma JOURNAL=Frontiers in Veterinary Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2023.1225764 DOI=10.3389/fvets.2023.1225764 ISSN=2297-1769 ABSTRACT=
Cutaneous T-cell lymphoma (CTCL) is an uncommon type of lymphoma involving malignant skin-resident or skin-homing T cells. Canine epitheliotropic lymphoma (EL) is the most common form of CTCL in dogs, and it also spontaneously arises from T lymphocytes in the mucosa and skin. Clinically, it can be difficult to distinguish early-stage CTCLs apart from other forms of benign interface dermatitis (ID) in both dogs and people. Our objective was to identify novel biomarkers that can distinguish EL from other forms of ID, and perform comparative transcriptomics of human CTCL and canine EL. Here, we present a retrospective gene expression study that employed archival tissue from biorepositories. We analyzed a discovery cohort of 6 canines and a validation cohort of 8 canines with EL which occurred spontaneously in client-owned companion dogs. We performed comparative targeted transcriptomics studies using NanoString to assess 160 genes from lesional skin biopsies from the discovery cohort and 800 genes from the validation cohort to identify any significant differences that may reflect oncogenesis and immunopathogenesis. We further sought to determine if gene expression in EL and CTCL are conserved across humans and canines by comparing our data to previously published human datasets. Similar chemokine profiles were observed in dog EL and human CTCL, and analyses were performed to validate potential biomarkers and drivers of disease. In dogs, we found enrichment of T cell gene signatures, with upregulation of