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Quercetin (QR) is a naturally occurring flavonoid organic compound that has poor

solubility in water and highly unstable in alkaline conditions, resulting in limited

absorption in poultry. Consequently, in our experiment, QR was employed as a

model compound, encapsulated within the ca�eic acid graft chitosan copolymer

(CA-g-CS) self-assembled micelles to enhance its solubility, stability and exhibit

a synergistic antibacterial e�ect. The optimization of the formula was carried out

using a combination of single-factor experimentation and the response surface

method. The in vitro release rate and stability of CA-g-CS-loaded QR micelles

(CA-g-CS/QR) in various pH media were studied and the pharmacokinetics in

white feather broiler chickens was evaluated in vivo. Additionally, the antibacterial

activity was investigated using Escherichia coliCMCC44102 and Escherichia coli

of chicken origin as the test strain. The results showed the optimized formula for

the self-assembled micelles were 4mL water, 0.02 mg/mL graft copolymer, and

1mg QR, stirring at room temperature. The encapsulation e�ciency was 72.09%.

The resulting CA-g-CS/QR was uniform in size with an average diameter of 375.6

± 5.9 nm. The release pattern was consistent with the Ritger-Peppas model.

CA-g-CS/QR also significantly improved the stability of QR in alkaline condition.

The relative bioavailability of CA-g-CS/QR was found to be 1.67-fold that of the

reference drug, indicating a substantial increase in the absorption of QR in the

broiler. Compared to the original drug, the antibacterial activity of CA-g-CS/QR

was significantly enhanced, as evidenced by a reduction of half in the MIC and

MBC values. These results suggest that CA-g-CS/QR improves the bioavailability

and antibacterial activity of QR, making it a promising candidate for clinical use.
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1. Introduction

The excessive use of antibacterial drugs in the livestock and poultry industry has

caused significant harm to the health of both animals and humans, such as drug poisoning

and antibiotic resistance (1). As people’s living standards improve and modern farming

practices become more widespread, there is growing concern about the safety of these drugs

in the food supply. As a result, some antibacterial drugs used for growth promotion in

livestock and poultry are being banned or restricted. With advances in pharmacological

technology, it has been shown that many natural products are safe and have various

beneficial effects. Quercetin (QR), a representative molecule in the flavonoids family, is

being increasingly studied as a potential alternative to antibacterial drugs in the livestock

and poultry industry (2, 3).
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QR, commonly known as oak essence, is a naturally occurring

polyhydroxy flavonoid found in fruits, vegetables, and other

natural plants, it exhibits various pharmacological activities, such

as an antioxidant (4), anti-inflammatory (5), anti-cancer (6), and

antibacterial (7) effects. Moreover it has a positive impact on

livestock and poultry, reproduction (8), egg-laying performance

(9), immunity (10), etc. Despite its structure containing five

phenolic hydroxyl groups, its molecular crystals overlap closely,

causing its solubility in water to be limited, only 0.17–7.70µg/mL

(11). This affects its in vivo absorption and biological activity,

especially in alkaline aqueous solutions, which may destroy

QR’s structure by hydroxyl ions. Studies have shown that its

solubility in water, simulated gastric and simulated intestinal fluids

are 7.7µg/ml, 5.5µg/ml, and 28.9µg/ml, respectively. Its oral

bioavailability in rats is <17% and even lower in humans, making

its use in traditional dosage forms limited (12, 13).

Efforts have been made to overcome these challenges, by

incorporating QR into various carriers, such as polymeric

conjugates (14), micelles (15), emulsions (16), liposomes (17)

and nanocrystals (18). The modification of QR nanoparticles

with silver nanoparticles showed a significant improvement

in antibacterial effect against drug-resistant Escherichia coli

and Staphylococcus aureus (19). Compared to pure QR, the

nanoemulsions formulated withQR not only resolved immiscibility

and unfavorable interactions, but also displayed greater antioxidant

and antibacterial activity and were more effective against Gram-

negative bacteria (20). In general, the utilization of natural

polymers as drug carriers offers advantages, including low

toxicity, versatility in modifying surface properties, increased water

solubility, superior biocompatibility, protection of the encapsulated

drug, and improvement in stability and prolonged plasma half-life

(21, 22).

Chitosan (CS) is a unique cationic polysaccharide with

properties such as mucoadhesion, adhesion, film formation, and

metal chelation (23). Previous research conducted by our team has

demonstrated that chitosan significantly enhances oral absorption.

This may be attributed to the reduction in tight junction integrity

and improved intestinal absorption facilitated by chitosan (24).

However, its limited solubility in water restricts its application.

Chemical modification can enhance its solubility and impart new

properties to CS (25). Among the various chemical modification

methods, the graft copolymerization reaction is the most widely

used (26). Additionally, phenolic acids have been effectively

covalently linked to CS through graft copolymerization reactions,

leading to improve the solubility and biological activity of CS

(27, 28).

Caffeic acid (CA) is a phenolic acid compound that exhibits

widespread distribution in plants and possesses numerous

biological activities. It is characterized by a relatively simple

chemical structure and rapid metabolism. Given its status as

a widely distributed secondary metabolite in plants, there has

been a growing interest in investigating the synthetic pathways

and conformational relationships of CA and its derivatives in

recent years (29). Extensive research has demonstrated the natural

fungicidal properties of CA, which effectively inhibits a diverse

range of fungi and bacteria. The inhibitory impact of caffeic acid on

E. coli stems from its ability to disrupt the cell wall and membrane

structure of bacteria, thereby enhancing cell permeability and

causing the leakage of cellular contents. This disruption ultimately

leads to the demise of the bacterial cells. (30, 31). The application

of CA in derivative design for the synthesis of novel physiologically

active green compounds holds considerable practical significance.

Hence, the purpose of this study was to assess the viability

of graft copolymer of chitosan and caffeic acid loaded with

quercetin micelles (CA-g-CS/QR) in enhancing the stability and

solubility of QR and to examine its antibacterial properties and

pharmacokinetics in animals following instillation administration,

this aims to expand the clinical application of QR.

2. Materials and methods

2.1. Materials and reagents

QR (≥97%), kaempferol (≥98%), caffeic acid (CA, ≥98%),

chitosan (CS, 90% deacetylation), all the above reagents were

purchased from Source Leaf Bio (Shanghai, China). DMSO was

purchased from Comio Chemical Reagent Co., Ltd. (Tianjin,

China). Phosphoric acid was purchased from Beichen Founder

Reagent Factory (Tianjin, China). Chromatography grade

methanol purchased from Fisher Chemical (USA). The entire

experiment utilized ultrapure water.

2.2. Experiment animals

The experimental procedures were reviewed and approved

by the Institutional Animal Care and Use Committee of Hebei

Agricultural University and carried out in accordance with the

Guidelines for the Care and Use of Laboratory Animals of China.

In this study, 12 healthy 30 days old Chinese white-finned broilers

were used for the trial. All broilers were reared from 1 day of

age and were provided with adequate basal diets and water, which

were formulated to meet or exceed the nutritional requirements

of broilers. Room temperature was maintained at 35◦C for the

first 3 days, then decreased to 28–30◦C for the next 2 weeks

and 25◦C for the rest of the period. Broilers were randomly

divided into two treatment groups (six broilers per treatment,

n = 6) before the experiment, fasted for 18 h, and watered ad

libitum. The experiment was administered by instillation, and

blood was collected under the wings during the experiment

according to the time designed for the experiment, and the plasma

was centrifuged and separated for storage in a refrigerator at−20◦C

for processing and analysis. At the end of the experiment, broilers

were euthanized.

2.3. Establishment of a method for the
determination of QR

QR was determined by UV spectrophotometric method by

weighing an appropriate amount of QR, dissolving it in methanol

and then diluting it to a certain multiple, and scanning it in

the wavelength range of 200∼600 nm with methanol as the blank

control. The results showed that QR had the maximum absorption

at 256 nm, so 256 nm was used as the detection wavelength of QR.

This assay was developed for the determination of QR content in in

vitro assays.
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2.4. Preparation of CA-g-CS/QR

2.4.1. Preparation of graft copolymers of chitosan
and ca�eic acid

0.5 g of CS was completely dissolved in 50mL of 1% acetic acid

solution. subsequently, 1.32 g of ascorbic acid and 1 g of caffeic

acid were added. the pH of the solution was adjusted to 6.0 and

nitrogen was allowed to flow slowly through the reactor for 60min.

thereafter, 0.375mL of 10 mol/L hydrogen peroxide was added to

the reactor to initiate the reaction. The reaction was carried out

under a continuous flow of nitrogen for 16 h. The reacted solution

was transferred to a dialysis bag and dialyzed in ultrapure water for

72 h. After dialysis, it was transferred to a flat dish and placed in a

freeze dryer for drying (32).

2.4.2. Determination of critical micelle
concentration of copolymers

The critical micelle concentration (CMC) of chitosan and

caffeic acid graft copolymer (CA-g-CS) was determined by

fluorescence spectrophotometry with pyrene as the fluorescent

probe, the prepared copolymer solution was diluted step by step,

50 µL pyrene/acetone solution (6 × 10−5 mol/L) was added

to 10mL different concentration copolymer solutions, vortex for

2min, sonicated for 2 h and shaken at 37◦C without light overnight

for putting the probe pyrene into micelles. After the acetone was

completely evaporated, cooled to room temperature, and then

measured. The measurement was carried out under the condition

that the excitation wavelength was 350 nm, and the slit width of

both excitation and emission was 5.0 nm. The intensity ratio of

the absorption peaks at the first peak (373 nm) and the third peak

(383 nm) was selected as the vertical coordinate, and the logarithm

of the concentration was used as the horizontal coordinate to make

a graph to obtain two straight lines, and the intersection point

was CMC.

2.4.3. Preparation of CA-g-CS/QR
A certain concentration of CA-g-CS were prepared according

to the above steps, and QR powder was dissolved in a small

amount of methanol, and then this QR solution was slowly

dropped into the CA-g-CS solution under high-speed stirring at

room temperature and stirred overnight to allow the methanol to

evaporate fully.

2.5. Optimization of preparation
process conditions

2.5.1. Single-factor examination of process
conditions

Single-factor experiments were conducted with different

weights of QR powder (0.5, 1, 2, and 3mg), different temperature

conditions (25, 37, and 60◦C) conditions, different concentrations

of CA-g-CS (0.01, 0.02, 0.05, and 0.1mg/mL), and different volumes

of CA-g-CS (2, 4, and 6mL) as the influencing factors, and the

solutions obtained from each factor were filtered and subjected

to UV detection. Three parallel experiments were performed for

each factor, and the formulation encapsulation rate was calculated

according to the following equation:

Encapsulation rate (%) = Wpackage/Wtotal× 100%

Where, Wpackage is the amount of encapsulated QR in the

micelles and Wtotal is the total amount of QR in the system.

2.5.2. Optimization of preparation conditions by
response surface method

According to the results of the single-factor experiments, it

is clear that the increase in temperature did not significantly

improve the encapsulation rate of CA-g-CS/QR. Therefore,

weight of QR, concentration and volume of CA-g-CS, were

selected as independent variables to design a 3-factor, 3-level

experiment with encapsulation rate as the response value,

and the software Design-Expert was used to optimize the

process parameters.

2.6. Characterization of CA-g-CS/QR

We evaluated the successful preparation of CA-g-CS by UV

absorption and IR detection of CS, CA, and CA-g-CS and compared

the solubility of CS as well as CA-g-CS in water. The morphology

of CA-g-CS/QR andQRwas characterized by transmission electron

microscopy. CA-g-CS/QR and QR were dropped on clean copper

grids, negatively stained with 2% phosphotungstic acid solution,

and the water was evaporated in the air at room temperature.

The samples were dried and placed under transmission electron

microscopy to observe the morphology.

2.7. Determination of encapsulation rate

The CA-g-CS/QR solution was prepared according to the above

method, filtered, and diluted to a certain concentration by adding

methanol for UV detection and calculating the encapsulation rate

according to the above encapsulation rate formula. All analyses

were performed using three batches of samples.

2.8. In vitro release performance

According to the pre-experiment to make QR reach the leaky

tank condition and stable, 25% DMSO solution was selected as

the release medium. The CA-g-CS/QR solution was prepared, and

the above solution was aspirated into a dialysis bag, tied at both

ends, placed in 100mL of release medium, and placed in a water

bath at 37◦C for release evaluation. Sampling times were 0.5, 1,

1.5, 2, 3, 4, 6, 8, and 10 h, with 1mL of sample and 1mL of

rehydration solution. UV measurements were performed at the

end of sampling and the cumulative release was calculated. Three

batches of samples were used for all analyses. CA-g-CS/QR and

QR were placed in release media with different pH values and a
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pharmacokinetic model was fitted to evaluate the release behavior

based on the release data.

2.9. Stability studies

The CA-g-CS/QR solution and QR were subjected to different

pH conditions, and samples were taken periodically to determine

the retention rate of QR and to investigate the effect of pH value on

the stability of QR.

2.10. In vivo pharmacokinetic studies

2.10.1. Determination of QR
The Waters Acquity UPLC H-Class system (Waters, Milford,

MA, USA) includes a four-stage solvent manager, an autosampler

set at 4◦C and a Waters Acquity UPLC Shield RP18 column (100×

2.1mm, 1.7µm,Waters.Milford,MA, USA). Themobile phase was

methanol-0.1% phosphate (72:28, v/v). Detection was performed

by a photodiode array detector at 373 nm at a flow rate of 0.2

mL/min. This assay was developed for the determination of QR in

blood plasma.

2.10.2. Preparation of calibration standards
The standard stock solutions of QR and kaempferol were

prepared in methanol/0.1% phosphoric acid (4:1, v/v). A series of

QR working standard solutions at different concentrations (50.0–

5000.0 ng/mL) were prepared by diluting the stock solution. 200µL

of blank plasma were combined with 20 µL of the appropriate QR

working solution to create calibration standards, which were then

used to create a range of standard solutions with concentrations of

5.0, 10.0, 20.0, 50.0, 100.0, 200.0, and 500.0 ng/mL. Three separate

levels of quality control samples representing low, medium, and

high QR concentrations of 10.0, 100.0, and 500.0 ng/mL in plasma

were generated similarly to the aforesaid procedure.

2.10.3. Plasma sample processing
A 200µL aliquot of plasma was sequentially added 20µL of

40µg/mL kaempferol internal standard, 100 µL of 25% HCL and

2mL of ethyl acetate vortexed for 2min equally. This mixture

was centrifuged at 5000 rpm for 10min, and the supernatant

was transferred into a centrifuge tube and then concentrated to

dryness under nitrogen. The analytes were dissolved in 200 µL of

methanol/0.1% phosphoric acid water (4:1, v/v).

2.10.4. Linear relation detection
A series of QR standard solutions with different concentrations

were prepared by dilution, 200µL of blank plasmawas taken and 20

µL of QR standard solution was added to obtain standard plasma

sample solutions in the concentration range of 5.0∼500.0 ng/mL,

and the linear regression of QR concentration in plasma was

performed by plotting the peak area ratio of QR to kaempferol.

2.10.5. Precision and accuracy and stability
Precision and accuracy were assessed by running the standards

(n = 6) for 1 day and three consecutive days for three levels of

concentration (10.0, 100.0, and 500.0 ng/ml) at low, medium, and

high. The stability of QR in the samples was also investigated by

sampling and analyzing the three levels of spiked plasma at −20◦C

for 1 week and 4◦C for 24 h.

2.10.6. Pharmacokinetic experimental design
White-finned broilers were randomly divided into two

experimental groups, one for the QR solution group and the other

for the CA-g-CS/QR group, with six replicates in each group. The

CA-g-CS/QR solution and the original QR solution were prepared

and administered to the chickens at a dose of 36 mg/kg, and

blood was collected under the wings at 15, 30, 60, 120, 240, 360,

480, 720, 1440, and 2160min after the administration, placed in

sodium heparin anticoagulation tubes and centrifuged to separate

the plasma.

2.10.7. Pharmacokinetic data analysis
Pharmacokinetic parameters were estimated by blood

concentration-time curves from PhoenixWinNonlin software. The

non-atrial model was used to calculate the terminal elimination

half-life (t1/2, λz), the area under the blood concentration-time

curve (AUC0−t), terminal feed time (AUC0−∞), total clearance

(CL), and volume of distribution (Vd, λz). The peak blood

concentration (Cmax) and time to peak (Tmax) were read directly

from the observed individual blood concentration-time data. For

instillation administration, the relative bioavailability (F) was

calculated using the AUC0−∞ of CA-g-CS/QR versus QR.

2.11. Antibacterial test

We selected Escherichia coli CMCC44102 and Escherichia

coli of chicken origin as experimental strains to determine

their Minimum Inhibitory Concentration (MIC) and Minimum

Bactericidal Concentration (MBC). The culture medium was

configured and autoclaved, and the bacteria were cultured. The

bacterial broth of the logarithmic growth period was diluted by

micro broth twofold dilution method, 100 µL broth was added to

each well of a sterile 96-well plate, and then 100 µL of prepared

drug solution was added to the first well respectively, mixed well,

and then diluted in multiples until the last well was mixed and 100

µL of the mixture was discarded. Each well was added with 100

µL of the prepared bacterial diluent, and a positive control (with

bacteria and no drug) and a negative control (without bacteria and

no drug) were set up. 24 h of incubation at 37◦C was taken out

and bacterial growth was observed, and each group of experiments

was repeated at least three times, and the lowest antibacterial drug

concentration contained in the wells without bacterial growth was

the MIC. The tritriazolium chloride (TTC) method was used to

determine the MIC results. 5 g/L TTC was added to each well of

the 96-well plate after incubation for 1 h at 37◦C, and the MIC

was determined as the lowest antibacterial drug concentration in

the wells with bacterial growth and the wells without bacterial
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FIGURE 1

Critical micelle concentration of CA-g-CS(CMC = 5 × 10−3).

growth. 100 µL of the liquid from each well clarified in the above

test group was spread on solid, and the lowest drug concentration

for no colony growth was its MBC. Agar plate experiments were

also performed using the Oxford cup method, using CA-g-CS/QR

withQR aqueous solution andmaintaining the same concentration,

sterile water group and CA-g-CS group were set, and three parallel

experiments were performed to further confirm the antibacterial

activity of the compounds.

3. Results

3.1. Critical micelle concentration of graft
copolymer

As shown in Figure 1, the CMC value of CA-g-CS was

5 × 10−3 mg/mL, and the results showed that the emission

spectrum intensity of pyrene gradually increased with the

increase of CA-g-CS concentration. When the CA-g-CS solution

concentration was lower than 5 × 10−3 mg/mL to make, there

was no significant change in the I373/I383 value, and the emission

spectrum changed when the CA-g-CS solution concentration was

higher than 5× 10−3 mg/mL.

3.2. Single-factor experiments

From Figure 2A, it can be seen that the encapsulation rate of

CA-g-CS/QR increased with the increase of the solution volume,

and after 4mL, the effect of volume on the encapsulation rate did

not change much, so the best volume was determined to be 4mL.

From Figure 2B, it can be seen that the encapsulation rate decreased

instead of increased after the concentration of CA-g-CS reached

0.02 mg/mL, so the concentration of CA-g-CS was chosen to be

the best at 0.02 mg/mL. As shown in Figure 2C, the encapsulation

rate started to decrease when the amount of QR reached 1mg, so

1mg of QR was chosen as the best amount. From the Figure 2D

graph, it can be seen that the increase in temperature does not

improve the encapsulation rate of CA-g-CS/QR, probably with the

increase in temperature, there is a certain effect on the nature of the

drug, resulting in a decrease in the encapsulation rate, so the room

temperature can be selected for the preparation.

3.3. Response surface data

We used the results of the single-factor test to optimize

the optimal conditions for the synthesis of CA-g-CS/QR. We

found that temperature had minimal impact on the results,

and the preparation method was improved through the use

of the response surface method. The effect of the preparation

method variables (A, B, and C) on the dependent variable (Y) was

systematically optimized using response surfaces. The regression

equation for each factor and response value after regression fitting

was Y=69.00-1.01A+1.92B-0.74C+2.09AB-2.48AC+0.062BC-

4.49A2-7.98B2-5.92C2. The results showed (Table 1) that the model

P < 0.05, indicating that the model was significant. The misfit

term = 0.2517 > 0.05 and the model misfit term is not significant.

The correlation coefficient R2 = 98.11%, indicating that 98.11%

of the data could be explained by the equation, which has a high

correlation, and the experimental error of the model is reasonable.

And the correlation off correction coefficient R2
Adj

= 95.67%,

indicating that high accuracy and reliability of the experiment

(33). The results showed that the influence of each factor on the

encapsulation rate was B>A>C in order, and the test points of

the normal distribution of residuals (Figure 3A) were basically

on the same straight line, indicating that the model could better

reflect the true relationship between the factors and the response

values, confirming that there was a good correlation between the

experimental values. The optimal preparation conditions obtained

from the analysis were QR quality amount of 1mg, solution

volume of 4mL, and graft solution concentration of 0.02 mg/mL.

And the response surface analysis plots were obtained based on

the regression equation, as shown in Figure 3B, the response

surface slope is steeper, indicating that the interaction between

the amount of QR and the volume of the solution has a strong

effect on the encapsulation rate. While the experimental factors

interacting in Figures 3C, D have relatively minor impact on the

encapsulation rate.

3.4. Validation tests

Based on the results of response surface analysis, the

preparation conditions of CA-g-CS/QR were determined

as follows: QR 1mg, CA-g-CS volume 4mL, and CA-g-CS

concentration 0.02 mg/mL. The encapsulation rate under these

conditions can reach 70.78%, and the encapsulation rate obtained

from the validation test according to this preparation condition is

71.98%, which is very close to the predicted value of the model,

indicating that the final optimization of the response surface

model The final optimization result of the response surface model

is reliable.
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FIGURE 2

Single-factor experimental results. (A) The e�ect of CA-g-CS solution volume on the preparation of CA-g-CS/QR; (B) The e�ect of CA-g-CS solution

concentration on the preparation of CA-g-CS/QR; (C) The e�ect of QR dosage on CA-g-CS/QR preparation; (D) The e�ect of temperature on

CA-g-CS/QR preparation.

TABLE 1 Variance analysis of response surface regression model.

Source Sum of
Squares

df Mean Square F Value p-value
Prob>F

Model 639.24 9 71.03 40.28 <0.0001 Significant

A-Solution volume 8.16 1 8.16 4.63 0.0685

B-QR quality

quantity

29.41 1 29.41 16.68 0.0047

C-Graft

concentration

4.38 1 4.38 2.48 0.1590

AB 17.43 1 17.43 9.88 0.0163

AC 24.55 1 24.55 13.92 0.0073

BC 0.016 1 0.016 8.80 0.9276

A2 84.78 1 84.78 48.08 0.0002

B2 268.28 1 268.28 152.13 <0.0001

C2 147.68 1 147.68 83.74 <0.0001

Residual 12.34 7 1.76

Lack of Fit 7.46 3 2.49 2.03 0.2517 Not significant

Pure Error 4.89 4 1.22

Cor Total 651.59 16
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FIGURE 3

Response surface plots of the interaction e�ects of di�erent reaction conditions. (A) Response surface method to optimize the residual normal plots

of the preparation method; (B) Response surface plot of the e�ect of the interaction between solution volume and quercetin amount on the

preparation of CA-g-CS/QR; (C) Response surface plot of the e�ect of the interaction of solution volume and graft copolymer concentration on the

preparation of CA-g-CS/QR; (D) Response surface plots of the e�ect of the interaction between quercetin amount and graft concentration on

CA-g-CS/QR preparation.
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FIGURE 4

QR and CA-g-CS/QR characterization chart. (A) Aqueous QR solution; (B) CA-g-CS/QR solution; (C) QR transmission electron micrograph, particle

size 1.5 ± 0.1µm; (D) CA-g-CS/QR transmission electron micrograph, particle size 375.6 ± 5.6nm.

3.5. Characterization of CA-g-CS/QR.

Supplementary Figures 1, 2 present the UV and IR spectra

of CS, CA, and CA-g-CS, respectively. It is noteworthy that

CS exhibits limited solubility in water, whereas the CA-g-CS

compound synthesized in our study demonstrates favorable

solubility in aqueous solutions. The UV spectrograms obtained

for CS, CA, and CA-g-CS reveal notable distinctions in the UV

absorption spectra among these three compounds. In IR spectra, it

can be judged that the new absorption peak of CA-g-CS at 1619.55

cm−1 may be caused by the stretching vibration of caffeic acid

C=C, which proves that caffeic acid can be successfully grafted onto

chitosan. Both UV and IR results verified the successful preparation

of CA-g-CS.

Figure 4A shows aqueous QR solution, and Figure 4B shows

CA-g-CS/QR solution, from which it can be observed that aqueous

QR solution exhibits poor solubility and rapid sedimentation,

while QR solubility increases in the CA-g-CS. The electron

micrographs Figure 4D showed that the particle size of the

CA-g-CS/QR prepared in this experiment was 375.6 ± 5.9 nm

and the CA-g-CS/QR morphology was small, while the QR

Figure 4C was not uniform in size and showed larger rod-

shaped crystals. The prepared micelles showed uniform dispersion

without aggregation and a smaller particle size compared to

the original drug, which was characterized by larger rod-shaped

crystals.

3.6. CA-g-CS/QR encapsulation rate
measurement

The encapsulation rate of CA-g-CS/QR was determined to

be 72.09%, which improved the difficulty of poor solubility of

QR in water. The determination of the encapsulation rate further

validated the feasibility of CA-g-CS/QR preparation.

3.7. In vitro dissolution

In vitro release experiments Figure 5A showed that CA-g-

CS/QR showed a significant release-promoting effect compared

with QR, and the drug release rate reached 75.89%. The drug

release rate was faster when the release medium was pH = 1.2

(Figure 5B), and the drug release was relatively stable when the

release medium was pH= 6.8 (Figure 5C). CA-g-CS also enhanced

the release rate of QR when the release medium was pH = 7.4

(Figure 5D). In order to clarify the release mechanism of CA-g-

CS/QR, several mathematical models were used to fit the release

kinetics of CA-g-CS/QR, and the fitting results were shown in
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FIGURE 5

In vitro release analysis of QR and CA in di�erent media. (A) Cumulative release of CA-g-CS/QR and QR in 25% DMSO; (B) Cumulative release of

CA-g-CS/QR with QR in release medium at pH 1.2; (C) Cumulative release of CA-g-CS/QR with QR in release medium at pH 6.8; (D) Cumulative

release of CA-g-CS/QR with QR in release medium at pH 7.4.

Table 2. The fitting results were determined according to R2. As

can be seen from the table, the Ritger-Peppas model has the best

regression effect. The Ritger-Peppas model was used to study the

mechanism of drug release in different pH media. The R2 obtained

were 97.72%, 96.72%, and 91.18% respectively, so it is reasonable to

choose the Ritger-Peppas model to describe the release mechanism

of the drug. The fitted equations were F=3.379t0.541, F=2.855t0.556,

and F=1.667t0.630 at pH of 1.2, 6.8, and 7.4, respectively, where

the n values were all consistent with 0.45<n<0.89, so the drug

release followed the combined effect of drug diffusion and skeletal

dissolution at this time.

3.8. Stability test

As can be seen from Figure 6, the preservation rate of

QR decreased significantly with increasing solution pH, while

CA-g-CS/QR was significantly better than QR under different pH

environmental conditions. In particular, the preservation rate of

CA-g-CS/QR was significantly higher than that of QR solution in

the medium with pH 7.4, and the results were consistent with the

results of in vitro dissolution experiments.

3.9. Pharmacokinetic studies

3.9.1. Methodological validation
The calibration curve is Y = 0.0004x + 0.0087 (20.0–

500.0 ng/mL) R2 = 0.9993; Y = 0.0004x + 0.0059 (5.0–

100.0ng/mL) R2 = 0.9993. The data of precision, accuracy, stability,

and recovery are shown in Tables 3, 4.

3.9.2. Pharmacokinetic studies
The relationship between the mean blood concentration and

time of CA-g-CS/QR and the prodrug is shown in Figure 7, and the
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TABLE 2 Di�erent kinetic model fitting of CA-g-CS/QR drug release data.

Function A B C R2

Zero order: y= a·t 0.125± 0.013 NA NA 91.98

First order: y=

a·[1- exp(-b·t)]

98.04± 11.75 0.0024± 0.001 NA 98.01

Higuchi: y= a·t0.5 3.90± 0.21922 NA NA 97.53

Ritger-Peppass: y= a·tb 0.73± 0.33 0.73± 0.07 NA 99.04

Weibull: : y= a·[1- exp(-b·tc)] 73.52± 3.88 0.04± 0.001 1.47± 0.38 98.35

Data presented as mean± SD. NA, not available.

FIGURE 6

Investigation of QR and CA-g-CS/QR stability in di�erent pH media. (A) Investigation of the stability of CA-g-CS/QR and QR in medium at pH 1.2; (B)

Investigation of the stability of CA-g-CS/QR and QR in medium at pH 6.8; (C) Investigation of the stability of CA-g-CS/QR and QR in medium at pH

7.4.

pharmacokinetic parameters are shown in Table 5. CA-g-CS/QR

increased the absorption of QR in white broiler chickens over 36 h.

Compared with the QR prodrug, the Cmax increased by 1.23 times,

the area under the curve AUC0−∞ of the CA-g-CS/QR was about

1.7 times that of the prodrug, and the clearance CL decreased

to 126.04 mL/min/kg and the bioavailability was 167%, which

indicated that the CA-g-CS/QR could promote the absorption

of QR.
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TABLE 3 The within-day and between-day precision, accuracy and stability of this method for the determination of QR in plasma.

Conc. (ng/mL) Within-run (n = 6) Between-run (n = 6, three runs) Recovery (%)

Precision
(RSD %)

Accuracy (%) Precision (RSD
%)

Accuracy (%)

10 0.15 93.67± 0.75 0.07 104.95± 8.92 92.18± 7.49

100 0.29 97.23± 1.46 0.16 101.65± 3.47 104.38± 6.34

500 0.33 90.34± 1.65 0.21 99.63± 1.11 99.25± 1.29

Each value represents the mean± SD (n=6).

TABLE 4 Stability of QR in white broiler plasma at −20◦C for 7 days and

4◦C for 24h assay.

Conc.
(ng/mL)

Remaining (%)

In plasma
stored at

−20◦C for 7
days

In prepared plasma
sample stored at

4◦C for 24h

10 96.64± 6.62 92.76± 2.94

100 103.28± 8.97 97.25± 5.63

500 93.52± 1.78 99.98± 0.45

Each value represents the mean± SD (n= 6).

3.10. Antibacterial test

CA-g-CS/QR could effectively inhibit the growth of Escherichia

coli and chicken Escherichia coli, and the inhibition effect was

significant with the increase in CA-g-CS/QR concentration. For

Escherichia coliCMCC44102, the measured MIC and MBC of QR

were 0.013 mol/L and 0.026 mol/L, while the MIC and MBC of the

CA-g-CS/QR were 0.0065 mol/L and 0.013 mol/L. For E. coli of

chicken origin, the MIC and MBC measured by QR were 0.0585

mol/L and 0.117 mol/L, respectively, while the MIC and MBC of

CA-g-CS/QR were 0.029 mol/L and 0.0585 mol/L, respectively, and

the inhibition circle and diameters of each experimental group

is marked in Figure 8, and it can be clearly observed that the

inhibition activity of CA-g-CS/QR group is better than QR group

which judged that the CA-g-CS/QR could significantly improve the

antibacterial effect of QR.

4. Discussion

The ban on the use of antibiotics as additives in animal

production has led to a new consensus in utilizing biologically

active chemical chemicals in plants to enhance animal performance

and prevent animal illnesses (34). QR exhibits a range of

pharmacological properties making it a promising candidate as

green feed additives in animal production. Despite its potential

benefits, QR’s low solubility and bioavailability have prompted

research into the synthesis of QR derivatives to improve its

properties (2).

To examine the self-assembly behavior of CA-g-CS in water, we

employed pyrene as a fluorescent probe. The pyrene interacted with

the hydrophobic region of CA-g-CS while its hydrophilic end was

exposed to the aqueous environment, leading to the maintenance

of micelle stability. The results showed that the emission spectrum

intensity of pyrene increased as the concentration of CA-g-CS

increased. The polarity of the pyrene’s medium affected the

intensity of its vibrational peaks in the emission spectrum.

When the CA-g-CS solution concentration was below 5 × 10−3

mg/mL, the I373/I383 values remained stable, suggesting that

CA-g-CS was present as single chains and non-stable micelles.

However, when the concentration exceeded 5 × 10−3 mg/mL,

the copolymer self-assembles in water to form nano micelles,

increasing in intermolecular force and transfer of hydrophobic

pyrene from the polar water to the non-polar hydrophobic

region of the nano micelles, leading to changes in the emission

spectra (35).To synthesize CA-g-CS, we employed free radical-

mediated graft copolymerization reaction. This reaction method

offers several advantages, such as utilizing green materials and

reagents, producing a less toxic reaction products, and being

economically and environmentally friendly as it can be performed

in room temperature and reduces the degradation and oxidation of

phenolic acid (36, 37). Self-assembled micelles exhibit exceptional

physical and chemical characteristics, allowing for the reduction

or avoidance of toxic side effects from drugs on healthy tissues

and organs. This is achieved by encapsulating drugs at higher

concentrations specifically at the site of the lesion through self-

assembly. In comparison to conventional micelles, self-assembled

micelles are more straightforward to prepare and widely utilized

due to their lack of dependence on emulsifiers and additional media

(38, 39).

Chemical composition is the material basis of a drug, so the

number and position of absorption peaks on the absorption spectra

of the same drug should be the same, and if there are differences

in the number, shape and position of absorption peaks, they can

be used to differentiate the drugs. We chose UV absorption spectra

and IR spectra to verify the successful preparation of CA-g-CS. the

solubility of CS in water was poor, while our prepared CA-g-CS

showed good solubility in water. the results of UV and IR spectra

of CS, CA and CA-g-CS showed significant differences between

the three. The successful preparation of CA-g-CS was verified,

which laid the foundation for the successful preparation of CA-

g-CS/QR. And we used the results of the single-factor test to

optimize the optimal conditions for the synthesis of CA-g-CS/QR.

We found that temperature had minimal impact on the results,

and the preparation method was improved through the use of the

response surface method. The model showed a significant results,

with a P value of less than 0.05. The model fit was also deemed

appropriate as the misfit term (0.2517) was greater than 0.05,

Frontiers in Veterinary Science 11 frontiersin.org

https://doi.org/10.3389/fvets.2023.1218025
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ren et al. 10.3389/fvets.2023.1218025

FIGURE 7

Time profiles of mean blood concentrations in white-finned broiler chickens after infusion of QR or CA-g-CS/QR (i.g., 36 mg/kg) administration

(mean ± SD, n = 6).

and the correlation coefficient (R2) was 98.11%, indicating that

98.11% of the data could be explained by the equation. which

has a high correlation, and the experimental error of the model

is reasonable. Furthermore, the adjusted correlation coefficient

(R2
Adj

) was 95.67%, indicating the high accuracy and reliability

of the experiment (33). The residuals were found to be normally

distributed, further confirming the validity of the model. The

optimal preparation condition was determined to be the loading of

1mg of QR with 4mL of 0.02 mg/mL CA-g-CS. And the response

surface analysis plots were obtained based on the regression

equation, and the shape of the response surface was examined after

fitting. The optimal process parameters were determined through

the analysis of response surface contours, and the interaction

between factors could be visualized through the examination of

3D surface plots (40, 41). In the response surface plot, the slope

of the surface reflects the level of influence of the test factor on

the response value. A steeper slope indicates a greater influence

of the test factor on the response value (42). Our experimental

results indicate that the interaction between the quantity of QR

and the volume of the solution has a significant impact on the

encapsulation rate. Additionally, the prepared micelles showed

uniform dispersion without aggregation and a smaller particle

size compared to the original drug, which was characterized by

larger rod-shaped crystals. The determination of the encapsulation

rate of the prepared micelles further validated the feasibility of

CA-g-CS/QR preparation.

QR is insoluble in water and highly unstable in an alkaline

conditions, making it challenging to obtain accurate results in the

in vitro release assay with a conventional dissolution medium.

However, 25% DMSO was selected as the release medium as

it satisfied the leaky tank condition and ensured improved

release outcomes. The in vitro release experiments demonstrated

TABLE 5 Pharmacokinetic parameters after QR or CA-g-CS/QR

administration.

Parameters CA-g-CS/QR QR

Tmax(min) 120 120

Cmax(ng/ml) 342.96± 16.51 278.26± 18.52

T1/2,λz(min) 556.41± 88.97 419.03± 42.26

AUC0−t(ng.min/ml) 267757.13±

19032.85

165506.99±

38159.40

AUC0−∞(ng.min/ml) 284773.44±

21518.65

170593.89±

38072.75

Vd,λz/F(mL/kg) 101553.0±

15421.23

131782.24±

25460.13

CL/F (mL/min/kg) 126.04± 9.36 219.15± 44.09

F (%) 166.93

Each value represents the mean± SD (n= 6).

that CA-g-CS/QR exhibited a significant release-enhancing effect

compared to the QR stock solution. As the CA-g-CS/QR are

conjugates, the release of the drug occurs in two stages. The

first stage involves the disruption of the encapsulated structure,

where the chemically linked chains within the molecule are cleaved

before the drug is finally released (43). The combination of CS

with drugs can produce a triggered release behavior due to the

pH sensitivity of chitosan (44). The weak alkalinity of the release

medium and the instability of QR in alkaline solutions caused

changes in QR properties in the post-release solution measured

after 10 hours, which were consistent with the results of examining

the stability of CA-g-CS/QR in the medium solution with pH=7.4.

The encapsulation of CA-g-CS provided a protective effect on
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FIGURE 8

QR and CA-g-CS/QR antibacterial e�ect chart. (A) E�ect of QR, CA-g-CS/QR, CA-g-CS aqueous solution and sterile water on the inhibition circle of

E. coli CMCC44102 agar plate. The diameter of the inhibition circle is 1.27 cm, 1.77 cm, 0.93 cm, 0.76 cm respectively in order. (B) E�ect of QR,

CA-g-CS/QR, CA-g-CS aqueous solution and sterile water on the inhibition circle of E. coli agar plate of chicken origin. The diameter of the

inhibition circle is 1.43 cm, 1.97 cm, 1.0 cm, 0.73 cm respectively in order.

QR, which became more significant with an increase in solution

pH. This is because QR, a flavonoid, is weakly acidic and can

exist stably under acidic conditions, but can easily be converted

into organic quinones under alkaline conditions (45). The effect

of environmental acidity and alkalinity was mitigated through

encapsulation with CA-g-CS. Furthermore, the drug release kinetic

model was used to fit the drug release data of the particles under

different pH conditions. The values of “n” obtained from fitting the

drug release data to the Ritger-Peppas model was all consistent with

0.45 < n < 0.89, indicating that the drug release was a result of a

combination of drug diffusion and skeletal dissolution at this time.

These results correspond to the in vitro release performance results.

The clinical effects of QR have been of much interest since the

1990s, and designing new dosage forms have become a priority

as traditional forms such as granules or tablets are insufficient

for clinical use. Research has indicated that QR micelles have

a longer retention time in animals, leading to a higher drug

utilization (46). The effects of QR on chicken performance, such

as improved eggshell strength and thickness (9, 47) and meat

quality and lipid metabolism (48, 49) have been widely studied.

While the pharmacokinetic metabolism of QR has been extensively

studied in rats, there is limited knowledge in poultry (50, 51). The

ultra-high-performance liquid chromatography (UPLC) method

was used in this study to determine QR concentration in broiler

plasma, with kaempferol as the internal standard, is accurate,

sensitive, simple, specific, and reproducible. The results of our in

vivo pharmacokinetic study demonstrate that the CA-g-CS/QR can

reduce the in vivo clearance of QR and prolong its elimination half-

life, effectively improving its bioavailability in vivo and providing a

foundation for future in vivo studies of QR in poultry.

QR boasts a broad-spectrum of antimicrobial properties and

shows more potent antibacterial effects against Gram-negative

bacteria than Gram-positive ones. Its ability to damage cell walls,

impede protein/nucleic acid synthesis, and act as a metabolic

antagonist is opening up new possibilities for addressing the issue

of multidrug resistance in clinical settings (7). Escherichia coli, a

common pathogenic bacteria causing infections in livestock and

poultry, was targeted in this experiment. Results showed that

the MIC and MBC of the CA-g-CS/QR were lower than those

of the pure drug, implying that our micelles demonstrate an

improved level of bacterial inhibition compared to the original

drug. Further research will be conducted to more comprehensively

verify this idea.

In conclusion, CA-g-CS/QR not only has a protective effect

on QR at lower pH value, slowing down its degradation, but also

enhances its antibacterial activity. Most importantly, CA-g-CS/QR

showed higher bioavailability in vivo, indicating a significant

improvement in the formulation performance of QR proagents.

The successful preparation of CA-g-CS/QR laid a foundation for

further study of insoluble drugs and their pharmacokinetics in vivo.
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