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The composition and abundance of microorganisms in the gastrointestinal tract 
of cows are complex and extensive, and they play a crucial role in regulating 
nutrient digestion, absorption, maintaining digestive tract stability, and promoting 
the production and health of the host. The fermentation carried out by these 
microorganisms in the gastrointestinal tract is fundamental to the health and 
productivity of cows. Rumen microorganisms produce the majority of enzymes 
required to break down feed substrates, such as cellulose, protein, lipids, and other 
plant materials, through fermentation. This process provides energy metabolism 
substrates that satisfy approximately 70% of the host’s energy requirements for 
physiological activities. Gut microorganisms primarily decompose cellulose that 
is difficult to digest in the rumen, thereby providing heat and energy to the hosts. 
Additionally, they have an impact on host health and productivity through their 
role in immune function. Understanding the composition and function of the 
cow gut microbiota can help regulate dairy cattle breeding traits and improve 
their health status. As a result, it has become a popular research topic in dairy 
cattle breeding. This article provides a review of the composition, structure, 
physiological characteristics, and physiological effects of the cow gut microbiota, 
serving as a theoretical foundation for future studies that aim to utilize the gut 
microbiota for dairy cattle breeding or improving production traits. It may also 
serve as a reference for research on gut microbiota of other ruminants.
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1. Introduction

The gastrointestinal tract, the primary organ responsible for digestion, absorption, secretion, 
and immune function in ruminants like cows, harbors a rich and diverse microbial population. 
The microbial community, which coexists with the host and undergoes changes based on the 
host’s physiological state, plays a vital role in various aspects of the host’s nutrition, metabolism, 
and immune function (1). Despite the relatively small volume of the gastrointestinal microbiota, 
its total number exceeds 100 trillion, exerting a significant influence on the overall health and 
physiology of the host (2). The composition and structure of the gut microbial are crucial for 
maintaining the stability and functionality of the host’s gastrointestinal system. Microbial 
fermentation in the cow’s gastrointestinal tract serves as the foundation for ruminant production 
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and is a key factor enabling cows to convert low-quality feed into high-
quality milk and meat. This intricate ecosystem consists of diverse 
microorganisms, including bacteria, protozoa, and fungi.

Currently, bacteria are the most extensively studied within the 
cow gut microbiota. These bacteria play a vital role in the digestion of 
plant materials by producing enzymes that break down fiber into 
volatile fatty acids (VFAs), proteins, vitamins, and other nutrients. 
These metabolites contribute to the nutritional requirements of cows 
and the influences metabolic processes that ultimately affect 
productivity traits (3, 4). Moreover, these bacteria are involved in 
energy conversion, nutrient absorption and even participating in 
inflammation and tissue deposition processes that impact the overall 
life activities of cows (5). Recent studies have revealed that changes in 
the quantity and abundance of cow gut microbiota occur with age and 
variation in feed intake. These changes play a crucial role in guiding 
nutrient digestion, absorption and immunity response within the 
cow’s body (6–9).

For instance, the Firmicutes/Bacteroidetes ratio in the cow’s 
gastrointestinal tract (GIT) shows a positive correlation with milk fat 
yield. Variations in the abundance change of GIT microbes are 
associated with genes related to milk fat production, indicating a close 
relationship between dairy performance traits and GIT microbes (10). 
Additionally, significant correlations have been observed between the 
expression levels of lipid-metabolism-related genes ad  intestinal 
mucosal immune genes with GIT microbes, highlighting the essential 
role of these microbes as “secretory organs” that contribute to internal 
energy balance and immune regulation (11). The community structure 
of the cow gut microbiota is the result of co-evolution between 
prokaryotes and eukaryotes. Understanding the physiological 
characteristics and functions of cow gut microbiota is crucial for 
comprehending its pivotal role in production and health, making it a 
hot topic in research fields such as dairy breeding, nutrition, and 
reproduction. However, the regulatory mechanisms governing the 
cow gut microbiota are still not fully understood. This review aims to 
summarize the characteristics and physiological effects of cow gut 
microbiota, providing a theoretical foundation for further studies on 
the utilization of gastrointestinal microorganisms in dairy cattle 
breeding and productivity improvement. It also serves as a valuable 
reference for research on gastrointestinal microbial communities in 
other ruminants.

2. Structure of the gastrointestinal 
tract of cow

A cow’s gastrointestinal tract consists of several parts, including 
the stomach, duodenum, jejunum, ileum, cecum, and rectum. The 
stomach of a cow has four chambers: rumen, reticulum, omasum, and 
abomasum (also known as the true stomach). The rumen is the largest 
chamber, comprising about 80% of the total stomach volume, and it 
possesses a large capacity and a complex microbial ecosystem (12). 
The small intestine in cows is composed of the duodenum, jejunum, 
and ileum, with an average length of 7–8 m in adult cows. On the other 
hand, the hindgut consists of the cecum, colon, and rectum, with an 
average length of 5–5.6 m in adult cows (13). The digestion process in 
cows begins in the rumen, followed by the reticulum, omasum, and 
abomasum. In the rumen, microbial fermentation and mechanical 
action help break down crude fiber into easily absorbable nutrients. 

The reticulum and omasum aid in further digestion and absorption. 
The abomasum, considered the true stomach, mainly digests protein 
from the partially digested food (chyme). As chyme enters the 
duodenum, it undergoes additional breakdown by digestive enzymes 
released from the pancreas, as well as the action of bile juice. The small 
intestine, particularly the duodenum, jejunum, and ileum, is 
responsible for nutrient absorption, facilitated by the presence of villi 
that increase the surface area of the intestinal wall, enhancing nutrient 
absorption capacity. Any remaining food residues move into the 
hindgut, specifically the cecum, where further microbial fermentation 
takes place. The final product, feces, is then excreted through the 
rectum (14, 15).

3. Composition and characteristics of 
microbes in gastrointestinal tract of 
cows

Microorganisms are ubiquitous in the environments where 
animals reside, as long as suitable nutritional conditions are present 
for their growth. Surfaces exposed to the external environment, such 
as the skin, oral cavity, gastrointestinal tract, respiratory system, and 
reproductive system, all harbor microbial communities. Among these, 
the gastrointestinal tract provides a particularly favorable environment 
for microbial colonization due to the availability of nutrients. The 
number of microbes present in the gastrointestinal tract is remarkably 
high, exhibiting extensive genetic diversity.

Studies have revealed that the gastrointestinal microbiota of cows 
comprises over 1,800 genera and 40,000 species of bacteria, with the 
total number of bacteria reaching billions. These numbers are 10–100 
times higher than the numbers of host cell. Additionally, the plasmid 
gene numbers carried by these microbes is approximately 150 times 
higher than the number of genes found in hosts (1, 2, 10). Microbes 
colonize various regions throughout the entire structure of the cow’s 
gastrointestinal tract, working synergistically to degrade fiber in the 
feed. They produce volatile fatty acids, proteins, vitamins, and other 
substances that meet the nutritional requirements of the 
host nutritional.

The rumen of an adult cow can have a volume of up to 180 L and 
contains approximately 1010~1011 bacteria/mL, 106 ~ 108 archaea/mL, 
104 ~ 106 protozoa/mL and 103 ~ 106 fungi/mL (3, 16). Among these 
microorganisms, bacteria are the most abundant in rumen and can 
be categorized into four subgroups: liquid-phase bacteria, solid-phase 
bacteria, rumen epithelial adherent bacteria, and eukaryotic-
associated bacteria. Studies have demonstrated that the rumen 
exhibits the highest diversity of bacterial species compared to other 
parts of the digestive system, with a total of 47 genera, including 16 
specific ruminal genera. The dominant phyla in the rumen are 
Firmicutes, Bacteroidetes, and Prevotella, Fibrobacter, and Succinivibrio 
are major genus (17, 18).

As the digestive process progresses from the rumen to the small 
intestine and then the hindgut, the acidity level gradually decreases, 
accompanied by a reduction in oxygen content, resulting in an 
increase in both the quantity and abundance of gut microbiota. In the 
small intestine and hindgut, bacteria are the predominant 
microorganisms in the cow’s gut microbiota. The small intestine 
contains approximately 109–1010 bacteria/mL, with Firmicutes and 
Proteobacteria being the dominant phyla. In the hindgut, there can 
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be  approximately 1012 ~ 1014 bacteria/mL, with Firmicutes, 
Bacteroidetes, Actinobacteria, and Verrucomicrobia as the dominant 
phyla. Furthermore, the relative abundance of these bacterial phyla in 
the small intestine and hindgut is higher than that in the rumen (14, 
19) (as shown in Table 1).

Numerous studies have highlighted distinct differences in the 
microbial communities found in the rumen, small intestine and 
hindgut of dairy cows (5, 10, 20). These differences have been shown 
to have a direct impact on immune function and production traits in 
cows (21, 22). Therefore, the composition of cow’s gut microbiota 
plays a crucial role in determining their health status and production 
traits. Investigating the patterns of variation and exploring the 
interactions between the cow’s gut microbiota and the hosts has 
become a prominent and active area of research in the fields of cattle 
breeding and nutrition.

4. Physiological functions of cow 
gastrointestinal microorganisms

As research on gastrointestinal microorganisms in animals 
progresses, there has been a shift in focus from changes in 
composition, abundance, and diversity to understanding their 
biological functions. Studies have revealed that the gastrointestinal 
microorganisms in cows possess a wide range of metabolic 
capabilities and diverse biological functions. They maintain a 
symbiotic relationship with the host’s gastrointestinal mucosa and 
rely on the dietary components and shed epithelial cells as sources 
of nutrition (5, 23). These microorganisms primarily perform 
metabolic functions such as the uptake and conversion of fatty 
acids and amino acids. They also play a protective and defensive 
rile by reducing the absorption of toxic substances and preventing 
the invasion of harmful bacteria or pathogens. Furthermore, they 
have a structural function in regulating host immunity through 
interactions with gastrointestinal mucosa, acting as an intestinal 
barrier (1, 16).

4.1. Nutritional and metabolic functions of 
rumen microbiota in dairy cows

Dairy cows and other ruminants possess an impressive ability to 
convert low-quality fibrous feed into high-quality milk and meat 
products. This remarkable feat is made possible, in large part, by the 
rumen microbiota (as shown in Table 2).

4.1.1. Rumen microbiota
The fermentation of microorganisms in the rumen is the 

foundation of dairy cow production. These microorganisms maintain 
a synergistic and symbiotic relationship, collectively providing the 
majority of enzymes required to break down feed substrates. Through 
fermentation, they degrade cellulose, protein, and lipids in plant feed, 
producing volatile fatty acids (VFAs), microbial proteins, and vitamins 
as nutrients for the host. These nutrients serve as substrates for energy 
metabolism, meet 70% of the host’s energy needs for physiological 
activities (62). Studies have shown that in cows with higher feed 
conversion rates, the diversity and abundance of rumen 
microorganisms are lower, but there are more fiber-degrading 
bacteria. On the other hand, cows with lower feed conversion rates 
exhibit higher diversity and abundance of microorganisms, 
particularly those that produce gas (28, 29). For instance, Prevotella 
and Succinimonas amilolytica are relatively abundant in cows with 
higher feed conversion rates. These microorganisms exhibit strong 
cellulose digestion functions in carbohydrate-digesting enzyme 
activities, leading to higher concentrations of VFAs. Short-chain fatty 
acids enter the small intestine where they are emulsified by bile and 
synthesized into triglycerides in the intestinal mucosal cells. They are 
then transported to the bloodstream in the form of chylomicrons, 
very-low-density lipoproteins, low-density lipoproteins, and high-
density lipoproteins. After enzymatic breakdown through capillary 
walls, they become free fatty acids and glycerol that are taken up by 
the mammary gland (25, 26). Within the mammary epithelial cells, a 
series of enzymes acts on them to re-synthesize triglycerides by 
combining with glycerol. They are then incorporated into the 
cytoplasm as lipid droplets, combined with lipoproteins such as 
phospholipids, and form milk fat globules. These globules are secreted 
extracellularly through apocrine secretion and enter the milk, 
contributing to the formation of milk fat (27). Additionally, these 
microorganisms can potentially regulate the expression of key genes 
in rumen epithelial cells, enhancing cellulose digestion and the 
absorption and metabolism of nutrients such as VFAs. This ultimately 
influences fat metabolism and the synthesis of milk components such 
as milk fat and milk protein in mammary epithelial cells (27). In cows 
with lower feed conversion rates, microorganisms such as Clostridium 
aerogenes, Actinomyces, and Methanobrevibacter have higher 
abundance in the rumen. These microorganisms utilize cellulose 
fermentation to produce gas, maintaining normal gas pressure in the 
rumen to promote food digestion and emptying. However, 
Methanobrevibacter, which is more abundant in this context, produces 
a significant amount of methane and other greenhouse gasses through 
cellulose digestion in the rumen. This not only reduces feed conversion 

TABLE 1 Distribution and magnitudes of gastrointestinal microbes in dairy cows.

Dominant bacteria Abundance Regulation References

Rumen
Firmicutes, Bacteroidetes, and 

Proteobacteria phyla
1010–1011 cells/mL

Providing volatile fatty acids, microbial proteins, 

vitamins to the host by fermentation to meet 70% 

of the host’s energy needs.

(3, 16–18)

Small intestine
Firmicutes and Proteobacteria 

phyla
109–1010 cells/mL

Further breaking down chyme and absorbing 

nutrients
(14, 19)

Hindgut

Firmicutes, Bacteroidetes, 

Actinobacteria, and 

Verrucomicrobia phyla

1012–1014 cells/mL

Fermenting and decomposing fibrous xylose and 

hemicellulose to meet 30% of the host’s energy 

needs, and participating immunity.

(14, 19)
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rates but also has a negative impact on global climate change (28, 34, 
35). These findings demonstrate that rumen microorganisms can 
affect the feed conversion rate and, consequently, the production traits 
of beef or dairy cattle through their nutritional metabolism functions.

Furthermore, rumen microorganisms can produce a large number 
of small-molecule metabolites, which play a crucial role in microbial 
information transmission and directly participate in the host’s 
nutritional metabolism, transcriptional mechanisms, and epigenetics, 

TABLE 2 The functions of cow gastrointestinal microorganisms in production and health.

Microorganisms Classification Beneficial function Mechanism References

Prevotella Bacteroidetes

Metabolic regulation

Digesting cellulose and produce volatile fatty acids to facilitate 

the milk fat synthesis;

Metabolically affecting the concentrations of glutathione, 

phenylalanine and galactose in rumen, and then affect the 

concentrations of glycine, serine and threonine in serum of 

dairy cows, thereby regulating the production of milk fat and 

milk proteins

(24–27)
Succinimonas amilolytica Pseudomonadota

Clostridium aerogenes Firmicutes

Metabolic regulation

Fermentation cellulose to maintain normal gas pressure in the 

rumen to facilitate the digestion and emptying of food; 

regulating the host’s food intake behavior

(28–33)
Actinomyces Actinomycetota

Methanobrevibacter Euryarchaeota Metabolic regulation
Digesting cellulose in the rumen produces large amounts of 

greenhouse gasses such as methane
(28, 34, 35)

Acetobacter Pseudomonadota

Metabolic regulation

Producing alpha-ketoglutaric acid, which ultimately promotes 

milk fat production in cows
(36)

Saccharofermentan Firmicutes

Enterococcus faecalis Firmicutes
Effectively reduce the activity of Methanogenium by producing 

myristic acid, and ultimately increase milk fat production
(37, 38)

Bacteroidetes

Bacteroidota
Metabolic regulation and 

immune regulation

Regulation of gluconeogenesis to facilitate the milk fat 

synthesis
(39, 40)

Bacteroides

Conjugated linoleic acid can be synthesized to participate in 

lipid metabolism and immune regulation; inducing the 

differentiation of Treg cells

(41, 42)

Bacteroides intestinalis
The primary bile acid can be conjugated to the secondary bile 

acid to facilitate the milk fat synthesis
(41)

Proteobacteria Proteobacteria Metabolic regulation
Producing choline and involving in phospholipid formation 

and unsaturated fatty acid transport in the host
(43, 44)

Atopobium Actinomycetota

Metabolic regulation and 

immune regulation

Causing rumen acidosis; causing mastitis through breakdown 

of the blood-milk barrier
(45–50)

Desulfocurvus Pseudomonadota

Lactobacillus

FirmicutesRuminococcus

Clostridium

Segmented filamentous 

bacteria
/ Immune regulation Inducing Th17 cells (51, 52)

Bifidobacterium Actinomycetota Immune regulation Regulating mastitis through the gut-stomach axis and the 

gut-blood axis
(53)

Peptostreptococcaceae Firmicutes Immune regulation

Enterococcu Enterococcu Immune regulation
Inducing mastitis (54)

Sterptococcus Firmicutes Immune regulation

Lactobacillus rhamnosus Firmicutes Immune regulation
Reducing the risk of oxalate stones forming in the kidneys 

through the gut-kidney axis
(55, 56)

Bifidobacterium Actinomycetota
Metabolic regulation and 

immune regulation

Improving blood sugar control, lower lipid levels through the 

gut-stomach axis, and reducing the risk of oxalate stones 

forming in the kidneys gut- kidney axis

(56–58)

Bacteroides 

thetaiotaomicron
Bacteroidota Immune regulation

Promoting the repair of damaged epithelial cells and maintain 

the desmosomal structure of intestinal villi
(59, 60)

Lactobacillus rhamnosus 

GG
Firmicutes Immune regulation

Preventing the apoptosis of intestinal epithelial cells induced 

by cytokines
(61)
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enabling communication between the microbiota and host cells (63). 
Studies have found that rumen microorganisms can synthesize fatty 
acids, particularly polyunsaturated fatty acids. These polyunsaturated 
fatty acids enter the small intestine in the form of phospholipids, 
forming microbial phospholipids. By increasing the proportion of 
microbial phospholipids in the small intestine, the content of 
unsaturated fatty acids in milk can be significantly improved, thereby 
addressing the lower unsaturated fatty acid content in some milk 
samples (64). Prevotella and Succinimonas amilolytica in the rumen can 
influence the concentrations of substances such as glutathione, 
phenylalanine, and lactose, thereby affecting the concentrations of 
metabolites such as glycine, serine, and threonine in cow serum, 
ultimately regulating milk fat synthesis (24). Certain genera of short-
chain bacteria in the rumen can produce methionine, which promotes 
Acetobacter and Saccharofermentans to produce more alpha-
ketoglutarate, ultimately facilitating milk fat synthesis (36). Enterococcus 
faecalis can effectively reduce the activity of Methanogenium in the 
rumen by producing cinnamic acid, resulting in decreased energy 
conversion to methane gas, improved feed conversion efficiency, and 
increased milk fat production (38). Similar findings have been observed 
in other ruminant animals, where rumen bacteria can regulate 
gluconeogenesis by modulating bile acid metabolism. They can also 
promote cholesterol excretion by metabolizing bile salts, thereby 
regulating the concentration of triglycerides in the blood (39, 40). 
Consequently, an increasing number of studies are attempting to 
identify specific microorganisms or their metabolites in the rumen of 
dairy cows to significantly improve production traits. Additionally, 
feeding specific diets and additives to enhance the abundance of 
beneficial microorganisms in the rumen is also being explored.

4.1.2. Intestine microorganisms
The microbial community in the cow’s intestinal tract, as a relatively 

independent component, primarily participates in host nutrient 
metabolism through heat production and metabolic functions. The 
digestion of food in the cow’s rumen forms chyme, which has a high 
water content and low mass transfer resistance. Due to the fast peristalsis 
frequency in the small intestine, chyme stays for a short time in the 
small intestine. However, when it reaches the large intestine, the 
emptying of food residue occurs at a slower rate compared to the small 
intestine, as the cross-sectional area of the large intestine is 
approximately four times larger. This provides enough time for 
fermentation and decomposition of the nutrients remaining in the 
chyme by the microbial community in the hindgut. Although chyme is 
primarily fermented and digested by the microbes in the rumen and 
small intestine, certain components such as indigestible cellulose require 
the action of hindgut microbes for digestion. Studies have shown that 
approximately 30% of fibrous, xylose and hemicellulose are fermented 
and decomposed in the hindgut, indicating that the fermentation 
processes in hindgut remain an essential energy source for cows (65). 
Studies have also found that the microbial community in the colon 
content or feces of ruminants can utilize the undigested food residues 
in the intestinal tract to produce approximately half of the energy 
needed by the host (30). Moreover, the number of metabolic enzymes 
produced by intestinal microbes is much greater than those produced 
by host tissues such as the liver. For example, bacteria from the phyla 
Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, can 
decompose semi-cellulose, which cannot be  digested by the cow’s 
rumen, and produce short-chain fatty acids that are absorbed by the 

intestinal mucosa and serve as substrates for energy metabolism. These 
short-chain fatty acids are then transported through the blood to 
various organs, providing energy (30). Additionally, these short-chain 
fatty acids can stimulate intestinal peptide secretion and participate in 
the regulation of energy metabolism (66). Bacteroidetes bacteria contain 
various glycosyltransferases, glycoside hydrolases, and polysaccharide 
lyases, which are essential enzymes for carbohydrate metabolism in 
cows (67). Furthermore, Bacteroidetes bacteria can synthesize 
conjugated linoleic acid, which participates in lipid metabolism and 
immune regulation. Bacteroides intestinalis can convert primary bile 
acids into secondary bile acids as they are reabsorbed and enter lipid 
metabolism pathways through chylomicrons (41). The proteases 
expressed by intestinal microbes can also work together with host 
proteases to regulate protein metabolism and conversion (68).

In addition, the intestinal microbiota can participate in host 
nutrient metabolism by producing a large number of small-molecule 
metabolites. For example, bacteria from the phyla Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria produce short-chain fatty 
acids, lipopolysaccharides, and peptidoglycans, which not only directly 
participate in host metabolism but also regulate food intake behavior 
through the gut-brain-adrenal axis, producing pancreatic glucagon, 
growth hormone, and ghrelin (30–33). Firmicutes bacteria can produce 
carnitine, which activates the formation of brown adipose tissue and 
beige adipose tissue in the host through the circulation, participating in 
lipid metabolism (37). Actinobacteria bacteria can produce choline, 
which participates in phospholipid formation and the transport of 
unsaturated fatty acids in the host (43). Relevant studies have also found 
that high levels of choline can increase the sensitivity of milk fat 
synthesis in cows (44). These nutritional metabolism functions of the 
gut microbiota play a dominant role, particularly in the developing 
rumen of young calves, highlighting the importance of the nutritional 
metabolism function of the cow’s intestinal microbiota alongside the 
rumen microbiota.

4.2. Immune regulatory function of the 
gastrointestinal microbiota in dairy cows

The mucosa of the cow’s gastrointestinal tract consists of the 
epithelial layer, lamina propria, and muscular layer. The gastrointestinal 
immune system includes gastrointestinal-associated lymphoid tissue, 
effector T cells, regulatory T cells, IgA-producing B cells, and intrinsic 
lymphocytes in the lamina propria. Among them, the lamina propria 
contains more immune cells such as B cells, T cells, plasma cells, and 
monocytes/macrophages than any other tissue, enabling them to 
respond to the invasion of billions of bacteria by the body (69). 
Particularly, the intestinal microbiota in the hindgut is directly related 
to the establishment and immune homeostasis of the host’s immune 
system, making the gastrointestinal tract one of the largest peripheral 
immune organs in the body and an important part of the overall 
immune system (70). The microbial community in the gastrointestinal 
tract, while participating in host nutrient metabolism, also plays a 
protective and defensive role by regulating host immunity and 
maintaining the intestinal barrier. For example, the microbiota in the 
cow’s rumen can produce volatile fatty acids through fermentation for 
host energy metabolism. However, feeding high-concentrate diets can 
increase the relative abundance of certain bacteria such as Atopobium, 
Desulfocurvus, and Lactobacillus, while also increasing the presence of 
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toxic compounds such as endotoxins, histamine, and ethyl acetate, 
leading to rumen acidosis. Furthermore, lactobacilli, rumenococci 
(Ruminococcus), and clostridia (Clostridium) in the rumen can express 
bile salt hydrolase and produce substances such as acetate salts and 
lipopolysaccharides. These substances can disrupt the blood-milk 
barrier and lead to mastitis, affecting the production traits of ruminant 
animals (45–47).

The intestinal microbiota, as the largest and most complex microbial 
ecosystem in the host’s body, plays a crucial role in bridging the gap 
between diet and the host. It can regulate both the innate and adaptive 
immune responses of the host’s intestinal immune system. For example, 
compared to germ-free mice, specific pathogen-free (SPF) mice have 
more mature lymphoid tissues, as well as increased numbers of Th17 
cells in the small intestine, regulatory T cells (Treg) in the colon, and 
intraepithelial lymphocytes (IELs) with αβ T cell receptors. These 
immune cells contribute to immune tolerance (51). Transplantation of 
segmented filamentous bacteria (SFB) in mouse intestines can 
effectively induce activation of Th17 cells (52), while transplantation of 
Clostridium or Bacteroides can further induce differentiation of Treg 
cells in the colon (42). The intestinal microbiota can also promote the 
differentiation of B cells into plasma cells, leading to increased secretion 
of IgA. It stimulates intestinal epithelial cells to secrete antimicrobial 
peptides and induces goblet cells to release mucus, thus defending 
against the invasion of exogenous pathogenic microorganisms (71). 
Additionally, various innate lymphoid cells in the intestines can 
be  stimulated by the microbiota and its metabolites to produce 
interleukins. For example, short-chain fatty acids can induce the 
production of IL-18 by intestinal epithelial cells, promote tolerogenic 
dendritic cells to express IL-10, and further enhance the release of 
antimicrobial peptides by intestinal epithelial cells, thereby maintaining 
the balance of intestinal microbial communities and protecting against 
the invasion of exogenous pathogens (72, 73). After the “gut-mammary” 
hypothesis was proposed by Arroyo et  al., suggesting that 
microorganisms in the intestines could enter the mesenteric lymph 
nodes and be transferred to the mammary glands (74), an increasing 
amount of research has demonstrated the impact of the gut microbiota 
on various aspects of host health, metabolism, and diseases through 
axes such as the gut-brain axis, gut-stomach axis, gut-liver axis, and 
gut-pancreas axis (75–77). For example, Young et al. found a small 
number of operational taxonomic units (OTUs) belonging to rumen 
bacteria, Bifidobacterium, and Peptostreptococcaceae in the feces, milk 
cells, and blood leukocytes of cows (53). Ma et al. discovered that both 
the fecal microbiota and milk microbiota of cows with mastitis showed 
higher levels of Enterococcus, Streptococcus, and Staphylococcus and 
lower levels of Lactobacillus (54). When fecal microbiota from cows 
with mastitis was transplanted into germ-free mice, the mice also 
developed mastitis (48). On the other hand, acetates and butyrates 
produced by Firmicutes can reduce the severity of Staphylococcus 
aureus-induced mastitis by altering the blood-milk barrier (49). 
Lactobacillus rhamnosus can alleviate NLRP3 inflammasome activation 
induced by Escherichia coli and inhibit oxidative cluster-mediated cell 
apoptosis and inflammatory responses (55). Furthermore, Hu et al. 
found that the short-chain fatty acids produced by Firmicutes and 
Bacteroides in the cow’s gut can prevent lipopolysaccharides produced 
in the rumen from entering the bloodstream and mammary tissue, thus 
protecting mammary gland lactation function (50). Bifidobacterium can 
improve digestion, enhance blood glucose control, and lower lipid levels 
through the gut-stomach axis (57, 58). Factors secreted by intestinal 

microbiota, such as GLP-1, ghrelin, and 5-HT, can regulate the 
metabolic balance of blood glucose in the host by influencing the α/β 
cell function of the pancreas, supporting the gut-pancreas axis theory 
(78). Intestinal bacteria such as Lactobacillus and Bifidobacterium can 
reduce the production of oxalate during carbohydrate fermentation and 
bacterial metabolism, thus lowering the risk of kidney oxalate stone 
formation, demonstrating the regulation of the gut-kidney axis (56). 
Additionally, the intestinal microbiota can exert immune effects by 
participating in the metabolism of other substances. For example, they 
can remove the glycosylated portion of polyphenols to produce active 
metabolites, which enter the bloodstream and reach distant tissues or 
organs to exert immunomodulatory effects (79).

4.3. Defense function of gastrointestinal 
microorganisms in cows

The gastrointestinal microbiota in dairy cows plays an important 
role in maintaining the integrity of the gastrointestinal structure and 
function, as well as the mucosal structure. Particularly, a large amount 
of mucus adheres to the gastrointestinal mucosa, which helps balance 
the relationship between the microbiota and the host. For example, an 
overabundance of Gram-negative bacteria in the rumen can lead to 
abnormal fermentation and excessive production of lactate. 
Additionally, the outer membrane of Gram-negative bacteria primarily 
consists of lipopolysaccharides (LPS). The accumulation of lactate and 
LPS can damage rumen epithelial cells, causing rumen acidosis, and also 
allow harmful substances to enter the bloodstream, leading to mastitis 
in dairy cows (11). Furthermore, a study by Zhong et al. comparing the 
rumen and hindgut microbiota of dairy cows under different udder 
health conditions found that the hindgut microbiota and metabolites 
were more closely associated with udder health than the rumen 
microbiota (21).

Research has shown that microbes in the hindgut can promote 
the secretion of mucin, increase the thickness of the mucus layer, and 
provide more adhesive sites for beneficial bacteria, thereby 
strengthening the barrier function that inhibits the invasion of 
various pathogenic bacteria. For instance, hindgut microbes can 
regulate the transcription of angiogenin-3 (Ang-3) gene to promote 
the development of intestinal mucosal structure (80). Bacteroides 
thetaiotaomicron can not only promote the expression of fucose on 
the surface of intestinal epithelial cells (59), which facilitates the 
repair of damaged epithelial cells, but also induce the expression of 
small proline-rich protein 2A (SPRR2A), rich in proline, in intestinal 
epithelial cells to maintain the structure of intestinal epithelial 
microvilli and desmosomes (60). Lactobacillus rhamnosus GG can 
produce soluble proteins that effectively inhibit cytokine-induced 
apoptosis of intestinal epithelial cells (61).

In addition, various amino acid transporters present on the cell wall 
of gastrointestinal bacteria can transport amino acids from the intestinal 
lumen into bacterial cells, where they are converted into signaling 
molecules and antimicrobial peptides to participate in the host’s 
gastrointestinal defense processes. For example, the histidine 
decarboxylase encoded by the hdcA gene in bacteria can convert 
L-histidine into histamine, which effectively inhibits the invasion of 
various pathogenic bacteria (81). Moreover, the enzymes expressed by 
the gut microbiota can not only metabolize carbohydrates, amino acids, 
and lipids, but also break down toxic substances. For instance, the gut 

https://doi.org/10.3389/fvets.2023.1206346
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu et al. 10.3389/fvets.2023.1206346

Frontiers in Veterinary Science 07 frontiersin.org

microbiota contains abundant soluble cytochrome P450 (CYP450), 
which plays a defensive role by metabolizing xenobiotics (82).

5. Feeding practices to modulate 
gastrointestinal microbiota and 
improve dairy cow production and 
health

Ruminant animals, including cows, primarily rely on fiber as their 
main source of feed. Therefore, providing cows with fiber-rich feed such 
as forage and high-fiber hay can supply the substrates and energy 
required by beneficial gastrointestinal bacteria, promoting the growth 
and reproduction of beneficial microorganisms. Feeding silage and 
acidic fermented feed, such as corn silage, acetic acid-treated corn, and 
fermented alfalfa, creates an acidic environment necessary for the 
growth of lactic acid bacteria and other beneficial microorganisms. 
However, it is important to note that high-fiber feed can also stimulate 
the production of methane-producing bacteria, resulting in decreased 
feed efficiency. Conversely, a diet higher in concentrate or acidity can 
lower the pH in the cow’s gastrointestinal tract, potentially causing 
subacute ruminal acidosis (SARA) (83).

Therefore, an increasing number of studies have attempted to 
improve the growth and metabolic activity of beneficial bacteria in the 
gastrointestinal tract by adding probiotics such as Lactobacillus and 
Saccharomyces to the cow’s feed or drinking water. This promotes the 
interaction between probiotics and the gut microbiota, stimulating the 
growth and metabolic activity of beneficial bacteria (84, 85). 
Additionally, feed components rich in prebiotic fibers, such as inulin 
(86), fructo-oligosaccharides (87), and xylo-oligosaccharides (88), 
provide the necessary energy and substrates for beneficial 
microorganisms. Extracts from dandelion (89), honeysuckle (90), 
seaweed (91), and others have been found to possess antibacterial and 
anti-inflammatory properties, exerting a positive influence on the gut 
microbiota. Furthermore, the addition of inhibitors such as 
3-nitrooxypropanol (3-NOP) to the diet can suppress the production of 
greenhouse gasses, including methane, by inhibiting methyl-coenzyme 
M reductase (MCR) and improving feed efficiency (92). Another 
approach involves removing protozoa that coexist with methanogens, 
thereby disrupting interspecies hydrogen transfer and reducing the 
production of methane gas (86, 93). These measures not only do not 
affect milk production but can also enhance milk fat content (94). These 
observed results provide direct evidence for programming the rumen 
microbiota of cows through dietary interventions or gene selection.

6. Conclusion

With the continuous advancements in biotechnology and omics 
technologies, various factors regulating production traits of livestock 
and poultry have been widely studied (95–98), and the efficient 
modulation of gastrointestinal microbiota in dairy cows for production 
traits and immune health is unquestionable. This review summarizes 
the relationship between dairy cow gastrointestinal microbiota and host 
production traits and health. It is known that the quantity of 
gastrointestinal microbiota in dairy cows surpasses that of host cells and 
genes by several orders of magnitude. These microorganisms can 
metabolize various substances such as cellulose and polysaccharides, 
providing abundant enzymes to enhance the metabolic function of 

dairy cows. They also produce a variety of metabolites, including 
vitamins, to meet the nutritional and immune needs of cows, enabling 
them to convert low-quality feed into high-quality meat and dairy 
products. Furthermore, these microorganisms provide a balanced and 
coordinated buffering space in the complex gastrointestinal 
environment. This balance not only maintains the abundance and 
diversity of beneficial bacteria within appropriate ranges but also 
provides defensive functions such as decomposition of harmful 
substances and maintenance of gastrointestinal structure, preventing 
the overgrowth and invasion of pathogenic bacteria. Therefore, studying 
the dynamics of gastrointestinal microbiota and its interdependence 
with the host has become a hot topic in the fields of dairy cattle breeding, 
nutrition, and reproduction.

Although significant progress has been made in understanding the 
gastrointestinal microbiota of livestock and poultry, including dairy 
cows, in the past two decades (99–105), there is still a lack of evidence 
demonstrating strong causal relationships between gut microbiota and 
host production traits, especially in terms of the functionality of hindgut 
microbiota in ruminants, which is still in its early stages of research. 
Currently, studies on microbiota, whether based on the rumen or 
hindgut, often rely on correlation analyses after grouping based on 
differences in production performance or immune indicators. However, 
there is often a lack of clear biological relevance, making it difficult to 
establish causal relationships between these microorganisms and the 
differential traits. Additionally, despite our comprehensive search 
strategy, it is possible that some important studies, particularly those 
published after our review, may not have been included, resulting in 
limitations in our review. Therefore, in future in-depth research, apart 
from avoiding our limitations, it is necessary to shift the focus of 
studying the association between microorganisms and host traits 
toward investigating causal relationships and mechanisms, ultimately 
identifying microorganisms and microbial pathways that can positively 
regulate host production traits and immune performance.
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