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The yaks that inhabit the Tibetan plateau are a rare breed that is closely related to

local economic development and human civilization. This ancient breedmay have

evolved a unique gut microbiota due to the hypoxic high-altitude environment.

The gut microbiota is susceptible to external factors, but research regarding the

e�ects of di�erent feeding models on the gut fungal community in yaks remains

scarce. In this study, we compared and analyzed the composition and variability of

the gut fungal community among wild yaks (WYG), house-feeding domestic yaks

(HFG), and grazing domestic yaks (GYG). The results revealed that Basidiomycota

and Ascomycota were the most preponderant phyla in the gut fungal community,

regardless of feeding models. Although the types of dominant fungal phyla did

not change, their abundances did. Intergroup analysis of fungal diversity showed

that the Shannon and Simpson indices of WYG and GYG were significantly

higher than those of HFG. Fungal taxonomic analysis showed that there were

20 genera (Sclerostagonospora and Didymella) that were significantly di�erent

between WYG and GYG, and 16 genera (Thelebolus and Cystobasidium) that were

significantly di�erent between the WYG and HFG. Furthermore, the proportions

of 14 genera (Claussenomyces and Papiliotrema) significantly decreased, whereas

the proportions of eight genera (Stropharia and Lichtheimia) significantly increased

in HFG as compared to GYG. Taken together, this study indicated that the

gut fungal composition and structure di�er significantly between yaks raised in

di�erent breeding groups.
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Introduction

It is widely known that the gut microbiota is a complex micro-ecosystem

involving a large number of different types of microorganisms, including bacteria,

fungi, and viruses (1–3). Studies have shown that the gut microbiota can provide

the host with nutrients and beneficial metabolites, such as amino acids, vitamins, and

short-chain fatty acids, by fermenting sugars and carbohydrates (4–6). These metabolites

play important roles in host health, immunity, intestinal homeostasis, and intestinal
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barrier (7, 8). Similar to the gut bacterial community, the gut

fungal community is also an important component of the gut

microbiota, which plays vital roles in host health by improving

gut functions (9–12). Early investigations indicated that the gut

fungal community could induce significant shifts in the gut

bacterial structure and shape the gut microbiota during early life

(13). The gut fungal community may also play a role in the

maturation of the host immune system by interacting with the gut

bacterial community to produce strong local and systemic immune

responses (13, 14). Furthermore, some fungi are considered to

be intestinal probiotics due to their potential role in alleviating

inflammation, inhibiting pathogenic bacteria, degrading cellulose,

and regulating digestion (15–17). For instance, administration of

Candida kefyr has been demonstrated to alleviate gastrointestinal

inflammation by changing the gut microbiota (18). Additionally,

some fungi can synthesize and release neurotransmitters such as

norepinephrine and histamine (19, 20). However, gut microbial

homeostasis is easily affected by external factors such as age,

sex, diet, and disease (21, 22). Moreover, recent studies have

indicated that feeding methods, altitude, and habitat environment

are also important driving forces for the development of gut

microbiota (23, 24).

Yak is a rare species of cattle of the Tibetan plateau (above

3,000m), which is characterized by adapting to high, cold, and

oxygen-deficient environments (25). Statistically, approximately

90% of the world’s yaks live in the Sichuan, Qinghai, Tibet,

and Gansu provinces of China (26, 27). Yaks are also an

important source of milk and meat products for local herdsmen

and play an important role in economic development. Given

the importance of yaks on the Tibetan plateau, any factors

that threaten the health and development of this breed may

lead to enormous economic losses. Previous studies indicated

that cold and hypoxic environments could cause changes in

the gut microbial structure (28–31). Therefore, the altitude

hypoxia environments of the Tibetan Plateau may induce the

accumulation of special gut microbiota in yaks compared with

animals living in plains. Indeed, several studies have reported

the unique composition and diversity of the gut microbiota in

yaks (32, 33).

In the past, yaks were mainly raised in the open and were easily

affected by the external environment. For instance, changeable

weather and nutritional deficiencies can cause low production

efficiency and a high disease rate of yaks (34, 35). To improve

the productivity of yaks, a combination of free grazing and

barn feeding is also implemented in some areas. Furthermore,

there are still some wild yaks in the same area of the Tibetan

Plateau. Although these yaks are the same species, they may

have evolved specific microbial communities to adapt to different

farming methods. A previous study has demonstrated significant

differences in the gut bacterial community of yaks under different

feeding models (36, 37). However, until now, little research has

been conducted on the gut fungal community of yaks. Therefore,

the aim of our study was to evaluate the composition and

variability of the gut fungal community of yaks under different

feeding models.

Materials and methods

Sample acquisition

In this study, fecal samples of grazing domestic yaks (GYG) and

wild yaks (WYG)were obtained from ShuanghuCounty andChang

Tang Nature Reserve, China. The average altitude of this area

exceeds 5,000 meters and is characterized by high temperatures,

low precipitation, and strong wind speed in July and August.

Moreover, the zonal vegetation includes Austrostipa pubescens as

the dominant vegetation. We also collected fecal samples from

house-fed domestic yaks (HFG), which were mainly fed green hay,

to explore the changes in the gut fungal community under different

feeding models. All samples were collected in July 2022, and each

group contained five animals. Fecal samples from yaks of different

feeding models were collected using dung samplers. Freshly rectal

feces were selected and sub-sampled (approximately 100 g) from

the central portion to minimize contamination from bedding and

flooring. Subsequently, fecal samples from yaks of different feeding

models were labeled (GYG: GYG1, GYG2, GYG3, GYG4, and

GYG5; WYG: WYG1, WYG2, WYG3, WYG4, and WYG5; HFG:

HFG1, HFG2, HFG3, HFG4, and HFG5) and placed at −80◦C for

further analysis.

DNA extraction and high-throughput
sequencing

Fungal DNA was extracted from homogenized intestinal

contents using a QIAamp DNA Mini Kit (QIAGEN,

Hilden, Germany), based on the manufacturer’s protocol.

Subsequently, we amplified the ITS2 regions using primers

(ITS5F: GGAAG TAAAAGTCGTAACAAGG and ITS2R:

GCTGCGTTCTTCATCGA TGC) and synthesized them as per

conserved regions. PCR amplification procedures were determined

according to previous research (38–40). After purification

and fluorescence quantification of the amplified products, the

sequencing library was constructed using the TruSeq Nano

DNA LT Library Prep Kit (Illumina, CA, USA). The initial

libraries were subjected to sequence end repair, enrichment, and

purification to improve their quality. The final libraries that

passed the quality assessment were used to perform paired-end

sequencing using a MiSeq sequencing machine. Raw data from the

amplicon sequencing were further processed and modified using

QIIME software (Qiime1.9.1) due to the presence of questionable

sequences such as unqualified, short, mismatched, and chimera

sequences. After quality inspection and filtering, the effective reads

were applied for OTU clustering based on 97% similarity. Fungal

OTU representative sequences were taxonomically classified

using RDP Classifier v.2.2 based on the UNITE database (39, 41).

Meanwhile, the Venn diagram was also generated to observe

the common and unique OTUs among the groups. To study the

variation in gut microbial diversity and abundance, we calculated

multiple alpha diversity indices based on the number of OTUs

in each sample using QIIME software (Qiime1.9.1). Moreover,
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FIGURE 1

Sequencing data analysis and OTU distribution. Each colored curve in the rarefaction and rank abundance curves represents one sample. (A) The

number of OTUs is indicated by di�erent colored areas, and the middle area indicates the number of shared OTUs. (B) Rarefaction curve. (C) Rank

abundance curve.

PCoA plots reflecting beta diversity were also generated using

QIIME software (Qiime1.9.1) to further compare and analyze

the differences in gut microbial principal components. Statistical

analysis of the data was conducted using R (v3.0.3) and GraphPad

Prism (version 8.0c). LEfSe and meta-statistics analyses were

employed to detect differential fungal taxa. The p-values (means ±

SD) of <0.05 were considered statistically significant.

Results

Sequencing data analysis

In this research, high-throughput sequencing generated

576,964 (WYG = 182,234, HFG = 193,448, and GYG = 201,282)

valid sequences from the three groups with an average of 38,464

(ranging from 30,248 to 45,539) reads per sample (Appendix A).

The high-quality sequences were clustered, and a total of 1,098

OTUs were identified, ranging from 500 to 552 OTUs per group

(Figure 1A). Additionally, the numbers of unique OTUs in the

WYG, HFG, and GYG were 255, 223, and 280, respectively.

Notably, we also found 152 core OTUs in the three groups, which

were not affected by the feeding models. To assess sequencing

depth and evenness, we also generated rarefaction and species rank

curves. The results indicated that the curves of all samples exhibited

a saturation trend, suggesting the adequacy and reliability of the

sequencing (Figures 1B, C).

Comparative analysis of the gut fungal
community in yaks with di�erent feeding
models

To explore the effects of different feeding models on the gut

fungal alpha diversity of yaks, we calculated four indices, including
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FIGURE 2

Comparative analysis of gut fungal diversity in yaks under di�erent feeding models. The four indices including Chao1, ACE, Shannon, and Simpson

were used to assess alpha diversity. (A) Chao1 index. (B) ACE index. (C) Shannon index. (D) Simpson index. (E, F) Gut fungal beta diversity was

assessed by PCoA plots. Data are presented as means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001.

Chao1, ACE, Simpson, and Shannon indices (Figures 2A–D). The

Chao1 and ACE indices of the gut fungal community, from high

to low, are WYG, HFG, and GYG. Moreover, the GYG had the

highest Simpson and Shannon indices, followed byWYG andHFG.

There were statistically distinct differences in Simpson (0.71± 0.11

vs. 0.38 ± 0.097, P < 0.01) and Shannon (3.17 ± 0.73 vs. 2.08 ±

0.64, P < 0.05) indices, whereas the Chao1 (233.69 ± 33.47 vs.

215.94 ± 62.69, P > 0.05) and ACE (224.71 ± 40.33 vs. 216.11 ±

57.06, P> 0.05) indices were not significantly different between the

WYG and HFG. Similarly, we also found that the Simpson (0.80

± 0.11 vs. 0.38 ± 0.097, P < 0.001) and Shannon (3.92 ± 1.33

vs. 2.08 ± 0.64, P < 0.05) indices of the GYG were significantly

higher than those of the HFG, while there was no difference in

the Chao1 (211.04 ± 32.59 vs. 215.94 ± 62.69, P > 0.05) and

ACE (210.71 ± 31.78 vs. 216.11 ± 57.06, P > 0.05) indices.

The comparative analysis between WYG and GYG indicated that

there were no significant differences in the four indices. These

results indicated that the gut fungal diversity in WYG and GYG

was significantly higher than that in HFG, while there was no

difference in the gut fungal abundance among WYG, HFG, and

GYG. The results of the beta analysis showed that the samples

of different groups were separated from each other, indicating

significant differences in the principal components of the gut fungal

community (Figures 2E, F).

Composition and di�erences of the gut
fungal community in yaks with di�erent
feeding models

The phyla Ascomycota (69.90, 92.02, and 90.18%) and

Basidiomycota (28.33, 5.47, and 5.86%) were abundant in the

WYG, HFG, and GYG, accounting for more than 95% of

the total fungal composition, respectively (Figure 3A). Moreover,

other phyla, such as Mucoromycota (0.058, 0.57, and 0.11%),

Rozellomycota (0.078%, 0.39%, and 0.19%), Mortierellomycota

(0.058, 0.26, and 0.21%), Anthophyta (0.011, 0.13, and 0.082%),

GS19 (0.14, 0.012, and 0.067%), Olpidiomycota (0.00, 0.086,

and 0.02%), Neocallimastigomycota (0.017, 0.0068, and 0.069%),

Cercozoa (0.012, 0.00, and 0.059%), Blastocladiomycota (0.00,

0.00, and 0.044%), and Rotifera (0.022, 0.0053, and 0.012%), were

detected in WYG, HFG, and GYG in low abundances. Thelebolus

(54.27%), Naganishia (25.43%), and Cutaneotrichosporon (1.29%)

were the most predominant genera in the WYG (Figure 3B).

Moreover, the dominant genera found in the HFG were Thelebolus

(84.52%), Naganishia (3.08%), Cutaneotrichosporon (1.11%), and

Lecanicillium (1.03%). The fungal genera with an abundance

of more than 1% in the GYG were Thelebolus (31.22%),

Naganishia (1.71%), Candida (1.65%), Acremonium (1.72%), and

Vishniacozyma (1.00%). Furthermore, the gut fungal compositions
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FIGURE 3

The abundance of dominant fungal phyla and genera in the gut fungal community of yaks under di�erent feeding models. (A) The abundance of

dominant fungal phyla. (B) The abundance of dominant fungal genera. The abundance of di�erent fungal phyla or genera is represented by di�erent

colors and the height of the histogram.
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FIGURE 4

Heatmap of the abundant fungal genera in the WYG, HFG, and GYG. The abundance of di�erent fungal genera is represented by di�erent colors.

and changes in WYG, HFG, and GYG could also be observed

through a visualized clustering heatmap (Figure 4).

We also conducted meta-statistics analysis to identify

differences in the gut fungal community at different taxonomic

levels. At the phyla level, the HFG indicated significantly higher

levels of Ascomycota andMucoromycota, while theWYG enriched

for Basidiomycota (Table 1). A comparison of the GYG and WYG

showed an obvious increase in the levels of Ascomycota and

Cercozoa and a distinct reduction in the level of Basidiomycota.

Additionally, the abundance of Cercozoa in GYG was significantly

more dominant than that in HFG, whereas that of Mucoromycota

was lower. Compared with the HFG, the fungal community in the

WYG displayed an obvious increase in the relative abundances of

Cystobasidium, Naganishia, Sclerostagonospora, Physalospora,

Neoascochyta, Recurvomyces, Schizonella, Orpinomyces,

Herpotrichia, Sphaerulina, and Podospora, while Thelebolus,

Cercophora, Stropharia, Lichtheimia, and Rhizopus decreased

dramatically. The GYG indicated dramatically higher proportions

of Didymella, Claussenomyces, Anthracoidea, Neoascochyta,

Papiliotrema, Mastigosporium, Dioszegia, Heyderia, Ramularia,
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TABLE 1 Statistical analysis of di�erential fungi between di�erent groups.

Taxa WYG (%) HFG (%) GYG (%)

Basidiomycota 28.61a 5.47b 5.86b

Ascomycota 69.90b 92.02a 90.18a

Mucoromycota 0.059b 0.58a 0.11b

Thelebolus 54.27b 84.52a 31.22ab

Cystobasidium 0.12ac 0.00080b 0.22a

Naganishia 25.43a 3.08b 1.71b

Cercophora 0.00b 0.14a 0.016ab

Stropharia 0.00b 0.014a 0.00b

Sclerostagonospora 0.095a 0.00b 0.00b

Lichtheimia 0.00b 0.065a 0.00b

Physalospora 0.077a 0.00c 0.015b

Neoascochyta 0.91a 0.00c 0.10b

Recurvomyces 0.077a 0.00b 0.071ab

Schizonella 0.019a 0.00b 0.0099ab

Rhizopus 0.019b 0.12a 0.032ab

Orpinomyces 0.021a 0.00b 0.059ab

Herpotrichia 0.0049a 0.00b 0.00b

Sphaerulina 0.0043a 0.00b 0.012a

Podospora 0.0098a 0.00b 0.055ab

Cercozoa 0.012b 0.00b 0.059a

Didymella 0.085b 0.14ab 0.25a

Claussenomyces 0.050b 0.046b 0.33a

Kurtzmanomyces 0.013a 0.022b 0.00b

Anthracoidea 0.074b 0.12b 0.37a

Papiliotrema 0.14b 0.056b 1.00a

Mastigosporium 0.00b 0.00b 0.022a

Dioszegia 0.0099b 0.00b 1.34a

Thermoascus 0.049a 0.039ab 0.0014b

Heyderia 0.00b 0.00b 0.041a

Ramularia 0.00b 0.00b 0.28a

Cladonia 0.00b 0.00b 0.024a

Urocystis 0.0075b 0.00b 0.11a

Panaeolus 0.0041a 0.00b 0.00b

Archaeorhizomyces 0.044a 0.10ab 0.00b

Parapenidiella 0.00b 0.00b 0.17a

Saitozyma 0.022ab 0.13a 0.00b

Mycosphaerella 0.20ab 0.00b 0.40a

Penicillium 0.073ab 0.11a 0.013b

Pyrenochaetopsis 0.056ab 0.058a 0.00b

Thermomyces 0.0038ab 0.094a 0.00b

Humicola 0.012ab 0.00b 0.19a

Knufia 0.0083ab 0.027a 0.00b

Melanocarpus 0.00b 0.044a 0.00b

Different letters in the same row indicate significant differences from each other.

Cladonia, Urocystis, and Parapenidiella, whereas the WYG

was dramatically enriched for Naganishia, Sclerostagonospora,

Kurtzmanomyces, Thermoascus, Physalospora, Herpotrichia,

Panaeolus, and Archaeorhizomyces. Moreover, the abundances

of Cystobasidium, Claussenomyces, Papiliotrema, Mycosphaerella,

Neoascochyta, Mastigosporium, Dioszegia, Urocystis, Humicola,

Physalospora, Heyderia, Sphaerulina, Ramularia, and Cladonia

in the GYG were significantly preponderant compared to

the HFG, while the abundances of Stropharia, Lichtheimia,

Saitozyma, Penicillium, Pyrenochaetopsis, Thermomyces, Knufia,

and Melanocarpus were lower. Given that this discriminant

analysis did not distinguish the predominant taxon, LEfSe was

used to generate a cladogram to identify the specific bacteria

associated with different feeding models (Figure 5). In addition

to the above-mentioned differential taxa, the GYG also showed

significantly higher abundances of Humicola, Vishniacozyma,

Rachicladosporium, and Alternaria as compared to the WYG

and HFG.

Discussion

The wild yak is an endangered breed that has been listed as a

first-class protected wild animal in China. Compared with WYG,

domestic yaks can be artificially intervened and raised. Currently,

there are two main feeding modes for domestic yaks: free range

and artificial breeding. Growing studies have indicated that the

gut fungal community plays a role in host health, metabolism, and

the immune system (7, 11, 42). Recent studies on the gut fungal

community have also revealed its important driving roles in the

development of diarrhea, inflammatory bowel disease, and liver

cirrhosis (3, 43). Currently, studies of the gut fungal community

have involved many species, such as mice, pigs, and dairy cattle,

and revealed their importance in host health and development (19,

39, 44). However, research on the characteristics and differences of

the gut fungal community in yaks under different feeding models

is still insufficient to date. Analyzing the gut microbiota of yaks

under different feeding models may contribute to revealing the

differences in various characteristics of these yaks. In this study,

we dissected the compositions and differences of the gut fungal

community among WYG, HFG, and GYG.

Microbes that inhabit the intestine can interact in symbiotic

or antagonistic relationships, which are an important basis for the

maintenance of gut microbial homeostasis (45, 46). Gut microbial

homeostasis is the precondition for maintaining host metabolism,

digestion, and absorption (47, 48). Inversely, the disruption of

gut microbial homeostasis may affect intestinal barrier function

and immune function, seriously threatening host health (49, 50).

Gut microbial homeostasis could be assessed by diversity indices

such as Chao1, ACE, Shannon, and Simpson. Typically, the

diversity index representing gut microbial homeostasis is in a

relatively stable state due to the plasticity of the gut microbiota

(51, 52). However, multiple factors, such as exercise, diet, age,

and environmental pollutants, can affect the composition and

structure of the gut microbiota, thereby affecting gut microbial

homeostasis (53–55). In this study, we observed that the gut

fungal Shannon and Simpson indices of WYG and GYG were

higher than those of HFG, indicating that WYG and GYG
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FIGURE 5

Detection of di�erentially abundant taxon using LEfSe and LDA scores. (A) Di�erential fungi and phylogenies are represented by a cladogram. (B)

Di�erential fungi of yaks under di�erent feeding models are represented by LDA scores.

have higher microbial diversity. Early surveys indicated that the

higher diversity represents stronger gut microbial plasticity, which

contributes to improving the gut microbiota’s response to external

stress, thereby maintaining gut microbial homeostasis (56, 57).

Furthermore, increased gut microbial diversity also contributes to

the maintenance and improvement of intestinal functions such as

energy utilization and nutrient intake (58, 59). Studies have shown

that primitive yaks existed in the Pleistocene more than 3 million

years ago and were widely distributed in northeast Eurasia. Later,

primitive yaks moved south to the Tibetan Plateau of China due

to crustal movement and climate change, adapted to the Alpine

climate, and continued to evolve into modern yaks. WYG inhabits

plateau meadows, shrubs, and deserts at an altitude of 4,000 to

5,000 meters, which have strong adaptability to the environmental

conditions of alpine grasslands. Environmental factors, such as

altitude hypoxia and low temperatures, are important players in the

evolution of gutmicrobiota (60, 61). Compared with domestic yaks,

WYGs inhabit higher altitudes and harsher living environments.

Therefore, WYG may have evolved a more complex gut microbial

structure to adapt to complex environments. Compared with HFG,

WYG, and GYG will constantly migrate in search of food and

water supplies, which inevitably increases the amount of exercise

for yaks. Numerous studies have indicated that the frequency

of exercise is closely related to gut microbial composition and

structure (62, 63). For instance, physical exercise could significantly

alter the composition and diversity of the gut microbiota in

mice (54). Compared with HFG, WYG, and GYG have more

complicated and irregular diets. In addition, some plants in

the wild environment may be polluted or contain pathogenic

microorganisms, which also contribute to the evolution of a more

complex gut microbial community. Therefore, we speculated that

exercise, complex diet, and harsh environment may be some

of the reasons for the more diverse gut microbiota of WYG

and GYG.
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The gut fungal community, as a vital constituent of the gut

microbiota, is critical for host health (64, 65). The gut fungal

community has been shown to be involved in the development

of intestinal barrier function and intestinal inflammation (14, 66).

Furthermore, recent investigations of the gut fungal community

have also provided evidence that it is closely associated with

diarrhea (3, 34). However, the importance and role of the gut

fungal community in the host have long been overlooked because of

their low proportion in the gut microbiota. To further explore the

effects of different feeding models on the yaks, we also assessed the

composition and variability of the gut fungal community in these

populations. The results demonstrated that the phyla Ascomycota

and Basidiomycota were abundantly present in the wild yak,

HFG, and GYG, indicating that the different feeding models could

not affect the species of the main dominant phyla. Moreover,

Ascomycota and Basidiomycota have also been demonstrated

to be major dominant fungal phyla in other animals, such as

giraffes, sheep, and cows, suggesting their importance in the

ruminant fungal community and intestinal function (3). Notably,

although the species of the main dominant fungal phyla did not

change, their abundances did. For instance, the abundance of

Basidiomycota was significantly higher in WYG than in GYG

and HFG. Basidiomycota is the highest phylum of fungi with

more than 20,000 species, characterized by wide distribution, large

number, and variety (67). Among these three types of yaks, WYG

possessed the most complicated habitat environment and diet

structure, whichmay change the gut microbial composition of yaks.

Meanwhile, this may also be one of the reasons for the increase in

Basidiomycota in WYG. In this study, we also observed significant

changes in the abundance of some fungal genera between different

feeding models. Previous investigations showed that shifts in some

specific microbial communities could affect host phenotypes and

intestinal functions (34, 68). The ecological environment and

dietary structure are important driving factors for gut microbial

succession, and the gut microbiota will change appropriately under

various external stimuli to adapt to the habitat environment.

Conclusions

This research explores the dynamic changes of the gut fungal

community in yaks under different feeding models. The results

indicated that feeding models could significantly alter the gut

fungal composition and structure of yaks, including significant

changes in some dominant phyla (Ascomycota and Basidiomycota)

and fungal genera (Thelebolus, Naganishia, and Vishniacozyma).

Moreover, WYG and GYG had a higher gut fungal diversity

compared to HFG. This investigation elucidated the characteristics

of the gut fungal community in WYG, HFG, and GYG and filled

a gap in the effects of different feeding models on the gut fungal

community. Meanwhile, this research also indicated that different

feeding models are important drivers of changes in the gut fungal

community. However, this study has some limitations that need

to be acknowledged, such as the small sample size and lack of

information on age and dietary habits.
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Appendix

APPENDIX A Fungal sequence information for each sample.

Sample E�ective reads

WYG1 30,248.00

WYG2 31,083.00

WYG3 42,954.00

WYG4 35,967.00

WYG5 41,982.00

HFG1 38,727.00

HFG2 37,160.00

HFG3 41,853.00

HFG4 39,301.00

HFG5 36,407.00

GYG1 45,539.00

GYG2 42,840.00

GYG3 36,021.00

GYG4 32,081.00

GYG5 44,801.00
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