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Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic

inflammatory bowel disease (IBD) characterized by granulomatous inflammation

that consists of neutrophil infiltration and goblet cell hyperplasia in the colon.

Recently, we identified five MD-associated single-nucleotide polymorphisms

(SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome

sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is

associated with the ICRP pathology. We found that the frequency of the T/T

SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments

showed that TG expression in non-immune cells was increased by inducing

the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG

suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the

activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and

a target of the IL-6 amplifier. We also found that TG expression together with two

NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs

with the T/T risk allele compared to those with the C/C non-risk allele, but serum

TG was not increased. Cumulatively, these results suggest that the T/T SNP is an

expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG

expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6

amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and

TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target

for ICRP.
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miniature dachshund, canine, inflammatory colorectal polyps, SNP, thyroglobulin,
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1. Introduction

Inflammatory colorectal polyp (ICRP) in miniature

dachshunds (MDs) is a chronic inflammatory disease confined

to the colorectal region of dogs. It is characterized by multiple

polypoid lesions or a single pedunculated granulomatous

lesion growing from the colorectal mucosa, which has been

reported only in Japan (1). Histopathologically, ICRP has

been differentiated from other types of polyps by its traits

of granulomatous inflammation with neovascularization, the

infiltration of neutrophils, lymphocytes, and/or macrophages,

goblet cell hyperplasia, exaggerated mucus production, and crypt

dilation. Clinical signs of hematochezia, tenesmus, and mucoid

feces have also been reported (1–3). ICRP responds well to

immunosuppressive treatments such as leflunomide, prednisolone,

and cyclosporine (4, 5). However, recurrences are common

despite these treatments (2, 3), and further study of the ICRP

pathogenesis is needed to develop a better cure. The inflammatory

mechanism of ICRP has been reported to include the dysregulation

of innate immunity, the upregulation of toll-like receptors (TLRs),

and the overexpression of pro-inflammatory cytokines (6–10).

Notably, MDs have a much higher tendency to develop ICRP,

with an odds ratio of 24.63, compared to other dog breeds (1),

signifying the importance of the genetic basis of this disease. The

single-nucleotide polymorphisms (SNPs) of nucleotide-binding

oligomerization domain 2 (NOD2) gene were investigated in the

pathogenesis of ICRP but no major effect was found (11), leaving

the detailed molecular mechanism of the inflammation unknown.

Using whole-exome sequencing (WES), we found several genes

related to inflammatory responses are MD-associated SNPs in

ICRP (12).

Pioneer studies in chronic inflammation have shown that pro-

inflammatory cytokine stimulation including IL-6 can enhance the

expressions of inflammatory mediators in non-immune cells in the

development of inflammatory diseases (13, 14). The simultaneous

activation of NF-κB and STAT3 in non-immune cells has been

shown to be the key molecular mechanism that enhances the

activation of NF-κB. Although IL-6 is one of very few stimulators

of STAT3, there are multiple stimulators of NF-κB, including TNF-

α, IL-17A, growth factors, noradrenaline, and TLR ligands, during

inflammation development (13–25). The combined effects of IL-6

and NF-κB on NF-κB activation were named the “IL-6 amplifier”

(13). The IL-6 amplifier’s role in the pathogenesis of inflammatory

diseases has been well described in both mouse disease models and

clinical samples of human patients (15, 17, 19, 26–38).

A genome-wide screening of the IL-6 amplifier identified

approximately 500 target genes and 1,200 positive regulators (39).

Recently, we used WES and found that some of these positive

regulators, PLG, TCOF1, TG, COL9A2, and COL4A4, are MD-

associated SNPs in ICRP (12). In this study, we verified that

TG (thyroglobulin) is associated with the pathogenesis of ICRP.

We found that MDs have a higher frequency of the TG risk

allele T/T, which in turn increases TG expression in the colon,

resulting in the activation of the IL-6 amplifier and chronic

local inflammation. Furthermore, we found that TG deficiency

suppressed and recombinant TG treatment enhanced the IL-6

amplifier activation in non-immune cells in vitro. Along with TG,

the expression of other NF-κB targets, such as IL6 and CCL2, was

concurrently increased in the colons of MDs with the risk allele

T/T, strengthening the conclusion that TG is a potential therapeutic

target for ICRP. These data uncover a new function of TG related

to chronic inflammation and the breed specificity of ICRP in MDs.

2. Materials and methods

2.1. Animals

The genotyping of selected SNPs (Table 1) was performed

by Sanger sequencing on 155 MDs diagnosed with ICRP, 90

age-controlled MDs without ICRP, 36 juvenile MDs aged <1

year, and 40 dogs of other breeds. The details of the animals

recruited and the samples used in this study are summarized in

Supplementary Table 1. A DNA Blood & Tissue Kit (QIAGEN,

Hilden, Germany) was used to derive genomic DNA (gDNA) from

EDTA-archived blood, fresh colon tissue samples, or formalin-

fixed paraffin-embedded colon tissue samples of the recruited

dogs. Blood was collected by a veterinarian or a veterinary

student supervised by a licensed veterinarian through a jugular

venipuncture as part of routine blood workup for screening or

diagnosis purposes. A signed consent form was obtained from

the owners of all dogs for the tissue sample collection and use in

this study.

2.2. Tissue sample collection

Endoscopic examinations were performed under general

anesthesia for all dogs to retrieve the colon tissues. Each dog

was administrated with midazolam (0.1 mg/kg) and butorphanol

tartrate (0.2 mg/kg) intravenously as pre-medication and then with

propofol (4 to 6 mg/kg) using the same route. Anesthesia was then

maintained through the inhalation of isoflurane with oxygen, where

additional butorphanol was administrated when necessary. Pulse

oximetry readings, electrocardiograph, capnograph, arterial blood

pressure, and rectal temperature were monitored throughout the

anesthesia to ensure a smooth endoscopic procedure. Endoscopic

procedures were completed within 2 h in all dogs, and all dogs

recovered uneventfully. In MDs with ICRP, samples were collected

as part of the diagnostic procedure, where polyp lesions deemed

inflammatory on gross appearance were collected endoscopically

with forceps or through electrosurgical snare polypectomy.

Normal colorectal mucosae were collected endoscopically from

the colorectal region adjacent to the diseased area based on gross

appearance. At least six tissue samples were collected from both

the polyp lesion site and normal colorectal mucosal region in

MDs with ICRP. All biopsy specimens were assessed by a board-

certified veterinary pathologist (YK) according to histopathological

standards established by the World Small Animal Veterinary

Association Gastrointestinal Standardization Group (40). The

severity of ICRP inflammation in each case was staged according

to a previous report (3). The information on the medication and

histopathology for each group is shown in Supplementary Table 2.

Each tissue sample was stored at −80◦C for protein analysis or
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TABLE 2 Primer sequences used for qPCR in H4 cells.

Gene Forward primer (5′-3′) Reverse
primer (5′-3′)

Human IL6 GGTACATCCTCGACGGCATCT GTGCCTCTT

TGCTGCTTTCAC

Human

GAPDH

GAGTCAACGGATTTGGTCGT CGCTCCTGGA

AGATGGTG

Human TG CCAGTGGCTTCTCTTCCTGACT CCTTGGAGGAAGC

GGATGGTTT

RNALater RNA Stabilization Solution (Ambion Inc., Austin, TX,

USA) for 24 h at 4◦C to allow penetration and stabilization and then

at −80◦C for prolonged storage. Five specimens were collected for

the qPCR analysis to perform a definitive diagnosis of ICRP.

2.3. Targeted genotyping

Polymerase chain reactions (PCRs) and Sanger sequencing

were utilized to validate the genotype variants selected from WES

data (12). The WES data have been deposited with links to

BioProject accession number PRJDB16014 in the DDBJ BioProject

database. Primer pairs used for the variant validation were

designed using Primer3Plus software (http://www.bioinformatics.

nl/cgi-bin/primer3plus/primer3plus.cgi; Table 1). Amplicons post-

PCR were purified using a commercial clean-up reagent, ExoSAP-

IT Express (Thermo Fisher Scientific, Waltham, MA, USA), and

sequencing was performed using the Sanger method utilizing

BigDye Terminator v3.1 (Thermo Fisher Scientific) and ABI

PRISM 3100 Genetic Analyzer (Applied Biosystems, Waltham,

MA, USA). FinchTV (https://digitalworldbiology.com/FinchTV)

was used to interrogate the reads generated, and the allele frequency

was compared between groups using Fisher’s exact test.

2.4. Cell lines and stimulation conditions

The H4 human cancer cell line was purchased from ATCC

(Sumitomo Dainippon Pharma, Osaka, Japan). All cell lines were

cultured in DMEM (Thermo Fisher Scientific, Waltham, MA)

enriched with 10% fetal bovine serum (Thermo Fisher Scientific)

and treated with 1% penicillin and streptomycin at 37◦C under

5% CO2. For the cytokine stimulation, cells were seeded into 96-

well plates (1 × 104 cells/well) and stimulated with human IL-

6 (30 ng/ml; Toray Industries, Tokyo, Japan) plus human soluble

IL-6 receptor (30 ng/ml; R&D Systems, Minneapolis, MN) and/or

TNF- α (10 ng/ml; PeproTech, Tokyo, Japan) for 3 h after 2 h

of serum starvation in Opti-MEM (Thermo Fisher Scientific,

Waltham, MA). For the TG stimulation, the cytokine stimulation

was modified to include cells stimulated with a 5x dilution of

the cytokine with the serial addition of recombinant human

TG (1µg/ml, 5µg/ml, and 10µg/mL) as per the manufacturer’s

recommendation (Cloud-Clone Corp., USA). After stimulation, the

cells were lysed, and the total RNA was retrieved for real-time PCR.
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2.5. Quantitative real-time PCR in H4 cells

The Bio-Rad CFX96 real-time PCR system (Bio-Rad

Laboratories, Hercules, CA, USA) and THUNDERBIRD

SYBR quantitative PCR (qPCR) Mix (TOYOBO Co. Ltd.,

Osaka, Japan) were used to quantify the levels of target mRNA

and internal control mRNA (glyceraldehyde-3-phosphate

dehydrogenase, GAPDH). Total RNA was prepared from

cells using a SuperPrep Cell Lysis Kit for qPCR (TOYOBO).

The conditions for real-time qPCR were 40 cycles at 94◦C

for 15 s followed by 40 cycles at 60◦C for 60 s. Relative IL6

mRNA expressions were normalized to the level of GAPDH

mRNA expression. Primers and their sequences for the qPCR

are described in Table 2. For the in vitro experiments, all the

experiments were performed in triplicate but also performed twice

to ensure replication.

2.6. Human small-interfering RNAs

Human small-interfering RNAs (siRNA) were transfected

into H4 cells using Lipofectamine RNAiMAX (Thermo Fisher

Scientific). The sequences for the sense oligonucleotides of

the knockdown constructs were human si-TG (1: CCU

UAUGAGUUCUCACGGAtt and 2: GCUGCUACAUGG

UAUUACUtt; Ambion Silencer Select siRNA, Thermo

Fisher Scientific), human si-p65 (Ambion Silencer Select

RELA siRNA, Thermo Fisher Scientific), and human siRNA

negative control (Ambion Negative Control #1 siRNA, Thermo

Fisher Scientific).

2.7. Enzyme-linked immunosorbent assay
(ELISA) detection of serum TG levels

Serum samples from 22 MD-ICRP, 22 MD-Control, and 36

juvenile MDs were enrolled in this study. For the 44 adult MDs,

blood samples were collected from April 2017 to April 2021

by a licensed veterinarian or a supervised veterinary student

by venipuncture during the dogs’ first visits to the Hokkaido

University Veterinary Teaching Hospital (HUVTH) for routine

diagnostics with written informed consent obtained from the

owners. For the juvenile MDs, blood samples were collected

by a licensed veterinarian (YBT) using a venipuncture. The

juvenile MDs were owned by a small and medium enterprise

pet store in Hokkaido, Japan; written informed consent was

obtained from the enterprise’s owner and veterinarian on duty,

and sample collection was performed from November 2021 to

February 2022. Serum samples separated after centrifugation

were stored at −80◦C until the TG analysis. Serum TG

concentrations were measured as per protocol provided by

the manufacturer using the Canine Thyroglobulin ELISA Kit

(MyBioSource, San Diego, CA, USA, Catalog No: MBS2608140).

The intra-assay coefficient of variability between sample

replicates was <20%. The information on the regional/systemic

TABLE 3 Primer sequences used for qPCR in canine colonic mucosa.

Gene Forward primer
(5′-3′)

Reverse primer
(5′-3′)

IL6 TTAAGTACATCCT

CGGCAAAATCT

CAGTGCCTCTTTG

CTGTCTTCA

SDHA GCCTTGGATCTC

TTGATGGA

TTCTTGGCTCTTA

TGCGATG

CCL2 GAGTCACCAGCA

GCAAGTGT

TGGGTTTGGCTTT

TCTTGTC

inflammation and medication (e.g., corticosteroids) is given in

Supplementary Table 3.

2.8. Real-time quantitative PCR (qPCR) in
canine colonic mucosa samples

For qPCR using canine colonic mucosa samples, seven MD-

ICRP (three with T/T allele and four with C/C allele), which

visited HUVTH between April 2017 and April 2021, were included;

total RNA was extracted using an RNeasy Mini Kit (Qiagen,

Valencia, CA, USA); and genomic DNA was removed using

an RNase-free DNase Set (Qiagen) following the manufacturer’s

instructions. cDNA synthesis was then performed using oligo

(dT) and M-MLV reverse transcriptase (Promega, Madison,

Wisconsin, USA) from 1 µg total RNA as per the manufacturer’s

recommendation. Real-time TaqMan qPCR was performed using

a commercially available set of a pre-designed probe and primers

(Applied Biosystems) for TG (product no: Cf02701382_m1) with

an endogenous control for colonic samples using SDHA (product

no: Cf02664981_m1) confirmed by a previous study (41). Real-

time qPCR was performed using TaqMan PCR probe master

mix (KAPA Biosystems) and at the following cycle conditions:

40 cycles at 94◦C for 3 s and 40 cycles at 60◦C for 30 s.

The relative TG mRNA expression levels were normalized to

the level of SDHA mRNA expression. THUNDERBIRD SYBR

qPCR Mix (TOYOBO Co. Ltd., Osaka, Japan) was used to

quantify the levels of the target mRNA (IL6, CCL2) and

internal control mRNA (succinate dehydrogenase complex, subunit

A; SDHA). The condition for real-time qPCR was 40 cycles

at 94◦C for 15 s followed by 40 cycles at 60◦C for 60 s.

Relative IL6 and CCL2 mRNA expressions were normalized to

the level of SDHA mRNA expression. The primers and their

sequences for the qPCR are described in Table 3 and reported

previously (42, 43). For the qPCR using these samples, all the

experiments were performed in duplicates and performed twice to

ensure replication.

2.9. Statistical analysis

Two-tailed Student’s t-test and Fisher’s exact

test were used to analyze differences between
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FIGURE 1

TG SNP is associated with ICRP in MDs. (A) The frequency of variant TG c.4567C>T (p.R1523W) was significantly higher in MDs (n = 281) when

compared to other breeds (n = 40). p < 0.0001. (B) Among MDs, age-matched, case–controls showed that the same variant was significantly higher

in MD-ICRP (n = 155) than MD-Control (n = 90). p < 0.0001.

the two groups. Values of P < 0.05 were

considered significant.

3. Results

3.1. TG c.4567c>t (p.1523r>w) allele is
increased in MDs with ICRP

The frequency of TG c.4567C>T (p.1523R>W) allele in MDs

(n = 281) was 69.04% (48 homozygous and 246 heterozygous),

which was significantly higher than in dogs of other breeds (22.5%;

one homozygous and eight heterozygous, n = 40) (P < 0.0001,

Figure 1A). Sequence chromatograms of the target variant are

shown in Supplementary Figure 1A. Furthermore, the frequency

of the T risk allele (84.52%) was significantly higher in MD-ICRP

(median age = 10 years old; 34 homozygous, 97 heterozygous,

n = 155) than in MD-controls (47.78%; median age = 12 years

old; 9 homozygous, 34 heterozygous, n = 90) (P < 0.0001,

Figure 1B). Thus, the TG c.4567C>T (p.1523R>W) allele was

increased in MDs with ICRP. Finally, we found that one amino

acid of the TG gene was conserved in dogs and other mammals

(Supplementary Figures 1B, C).

3.2. TG is a positive regulator and target of
the IL-6 amplifier activation

Because we found that TG is one positive regulator candidate

of the IL-6 amplifier (39) and showed that TG c.4567C>T

(p.1523R>W) allele is increased in MDs with ICRP, we

hypothesized that TG is functionally involved in ICRP development

via activation of the IL-6 amplifier. Consistently, we found that TG

expression was increased during the activation of the IL-6 amplifier

(Figures 2A, B), suggesting that TG is a target gene of the IL-6

amplifier. We then treated H4 cells, a human neuroglioma cell line,

with siRNA of TG to investigate cytokine-mediated IL-6 amplifier

(39) and found that IL-6 expression and TG expression were

reduced after cytokine stimulation (Figures 3A, B). Furthermore,

recombinant human TG enhanced IL-6 amplifier activation in H4

cells (Figure 3C). These results suggested that TG is both a positive

regulator and a target of the IL-6 amplifier.

3.3. TG is highly expressed and the IL-6
amplifier activation is enhanced in the
colon of MD-ICRP with risk allele

We hypothesized that the TG SNP functions to increase

TG expression either systematically or locally. To test this

hypothesis, we investigated the serum concentrations of TG but

found they were unchanged in MDs with or without ICRP and

with or without the risk T/T SNP (Figures 4A–C). In addition,

we found no difference in serum TG concentrations between

dogs receiving systemic anti-inflammatory medication or across

genotypes (Supplementary Figures 2A–C). We then investigated

the expression levels of TG in the non-inflammatory colonic

mucosa of MD-ICRP. We found that TG expression in samples

with the risk T/T SNP was significantly higher than those with the

non-risk C/C SNP (Figure 5A), suggesting that the TG SNP is an

expression quantitative trait locus (eQTL) in the colon of MDs. We

next investigated whether TG is induced by the IL-6 amplifier in

the colon. Because the IL-6 amplifier reflects the activation of NF-

κB in non-immune cells, we analyzed the expression of two NF-κB

targets, IL6 and CCL2, in the same colon samples. We found that
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FIGURE 2

TG is a potential target of the IL-6 amplifier in vitro. (A, B) H4 cells were stimulated with cytokines, and IL6 and TG levels were assessed. Means ±

standard deviations are shown. *p < 0.05, **p < 0.01, ****p < 0.0001.

FIGURE 3

TG is critical for IL-6 amplifier activation in vitro. (A, B) H4 cells were transfected with two di�erent siRNAs for all TG variants or a siRNA negative

control. IL6 levels and TG knockdown e�ciency were assessed. Means ± standard deviations are shown. *p < 0.05, **p < 0.01, ***p < 0.005. (C) H4

cells were stimulated with cytokines and recombinant human TG. IL6 levels were assessed. Means ± standard deviations are shown. *p < 0.05, **p <

0.01, ***p < 0.005.

IL6 and CCL2 were also enhanced in colon samples with the risk

T/T SNP (Figures 5B, C). These results indicate that the risk T/T

SNP of TG is an eQTL and enhances TG expression. They also

indicate that TG is involved in the activation of the IL-6 amplifier

in the colon of MD-ICRP. Therefore, the risk T/T SNP of TG may

be critical in the pathogenesis of ICRP through the activation of the

IL-6 amplifier.

4. Discussion

ICRP has been reported to be breed-associated (1, 44, 45). We

recently identified several disease-associated SNPs, such as PLG,

TCOF1, TG, COL9A2, and COL4A4, and found that PLG SNP is

associated with IL-6 amplifier activation in the colon (12). In this

study, we show that the risk SNP of TG is associated with the

pathogenesis of ICRP in MDs and that the increased expression of

TG is associated with the risk allele T/T in the non-inflammatory

colonic mucosa, showing that TG possesses a biological role in

the activation of NF-κB, which is a critical component of the

IL-6 amplifier.

TG is commonly known as the precursor protein to thyroid

hormones T3 and T4, which regulate multiple metabolic pathways

in the mammalian body (46). Recent advances have shown that TG

may function both inside and outside of the thyroid, which is no

surprise as TG expression was detected in multiple non-thyroidal
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FIGURE 4

The TG SNP does not a�ect systemic TG levels. (A) Serum TG concentration between age-controlled MD-Control and MD-ICRP groups. (B) Serum

TG concentration between genotypes in MD-Control and MD-ICRP groups. (C) Serum TG concentration between genotypes in MDs <1-year-old.

FIGURE 5

ICRP-MDs with risk alleles have a higher expression of TG and NF-κB-related chemokines in non-inflammatory colonic mucosa. (A) Relative TG, (B)

IL6, and (C) CCL2 mRNA expressions in canine non-inflammatory colonic mucosa adjacent to the ICRP lesion site and diagnosed as normal

histopathologically in MDs with wild-type (C/C) and risk (T/T) alleles. Means ± standard error of means is shown. *p < 0.05, **p < 0.005.

cells such as human and mouse kidney cells (47). Additionally, TG

mRNA is expressed in many organs including the testis, suprarenal

gland, appendix, lung, and thymus, as well as the hypophysis,

lymphocytes, and leukocytes (48–52). Here, we showed that TG

mRNA is expressed in the colon, especially in MDs with the risk

allele T/T of TG SNP. Considering that TG expression with the risk

alleles in the colon correlated with the development of ICRPs in

MDs, TG-mediated activation of the IL-6 amplifier in the intestine

may contribute to the high concurrent occurrence of thyroidal

disease and inflammatory bowel disease in human patients (53–56).

Because the local expression of TG was higher in the risk

allele T/T group compared with the wild-type allele C/C group,

we concluded that the function of the SNP is to induce a higher

local expression of TG in the colon (Figure 5A) but not in

the circulation. The localized increase in TG mRNA levels was

accompanied by localized increases in IL6 and CCL2 expression in

non-inflammatory colonic mucosa (Figures 5B, C), suggesting that

the IL-6 amplifier is activated in the colon of MDs with the risk

allele T/T. This result may explain why ICRP only occurs in the

colorectal region, although more studies of the expression of TG

and other NF-κB targets in other organs, including other regions of

the gastrointestinal tract, with or without the risk allele T/T of TG

SNP, are needed. Because we found that MDs without the risk allele

T/T (C/T or C/C) were affected with ICRP, we hypothesize that one

of the reasons is that ICRP in MDs is a polygenic disease and other

mechanisms may also be involved in its pathogenesis, although the

number of cases for the qPCR analysis in canine colonic mucosa

is too small to verify this conclusion. In addition, we are not able

to confidently state that there is no blood relationship between the

dogs because we do not have the pedigree of each dog used in

this study.

In summary, we found a novel SNP variant, TG c.4567C>T

(p.R1523W), which is involved in the pathogenesis of ICRP inMDs.

We also suggested that TG has a functional role in the development

of ICRP in MDs through the IL-6 amplifier in colon cells and

that the presence of the risk allele T/T correlates with a higher
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expression of TG locally compared to allele C/C. Our results also

suggest that the T/T SNP is an eQTL of TG mRNA in the colon

and the local TG expression triggered by this SNP increases the risk

of ICRP in MDs via activation of the IL-6 amplifier. Therefore, TG

c.4567C>T is a potential diagnostic target for ICRP in MDs and

TG-mediated IL-6 amplifier activation in the colon is a possible

therapeutic target for ICRP.
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strongly similar to other mammals but is highly conserved among other

mammals.
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drugs. (C) Serum TG concentration between genotypes of MDs that are

treated with or without anti-inflammatory drugs.
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