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Introduction: Degenerative myelopathy (DM) is a neurodegenerative spinal cord
disease with upper motor neurons, with progressive and chronic clinical signs,
similar to amyotrophic lateral sclerosis (ALS). DM has a complex etiology mainly
associated with SOD1 gene mutation and its toxic role, with no specific treatment.
Daily intensive rehabilitation showed survival time near 8months but most animals
are euthanized 6–12 months after clinical signs onset.

Methods: This prospective controlled blinded cohort clinical study aims to
evaluate the neural regeneration response ability of DM dogs subjected to
an intensive neurorehabilitation protocol with mesenchymal stem cells (MSCs)
transplantation. In total, 13 non-ambulatory (OFS 6 or 8) dogs with homozygous
genotype DM/DM and diagnosed by exclusion were included. All were allocated
to the intensive neurorehabilitation with MSCs protocol (INSCP) group (n= 8) or to
the ambulatory rehabilitation protocol (ARP) group (n = 5), which di�er in regard
to training intensity, modalities frequency, and MSCs transplantation. The INSCP
group was hospitalized for 1 month (T0 to T1), followed by MSCs transplantation
(T1) and a second month (T2), whereas the ARP group was under ambulatory
treatment for the same 2 months.

Results: Survival mean time of total populationwas 375 days, with 438 days for the
INSCP group and 274 for the ARP group, with a marked di�erence on the Kaplan–
Meier survival analysis. When comparing the literature’s results, there was also a
clear di�erence in the one-sample t-test (p = 0.013) with an increase in time of
approximately 70%. OFS classifications between groups at each time point were
significantly di�erent (p = 0.008) by the one-way ANOVA and the independent
sample t-test.

Discussion: This INSCP showed to be safe, feasible, and a possibility for a long
progression of DM dogs with quality of life and functional improvement. This study
should be continued.

KEYWORDS

mesenchymal stem cells, intensive neurorehabilitation, dogs, degenerative myelopathy,

locomotor training, electrical stimulation

Frontiers in Veterinary Science 01 frontiersin.org

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2023.1192744
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2023.1192744&domain=pdf&date_stamp=2023-07-13
mailto:acmauricio@icbas.up.pt
mailto:ana.colette@hotmail.com
https://doi.org/10.3389/fvets.2023.1192744
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2023.1192744/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gouveia et al. 10.3389/fvets.2023.1192744

1. Introduction

Degenerative myelopathy (DM) is a neurodegenerative spinal
cord disease characterized by the progressive and chronic onset
of clinical signs in large-breed dogs (1, 2). These signs are mainly
of T3-L3 neuro-localization and include proprioceptive ataxia and
spastic paraparesis (3, 4), similar to those presented in human
patients with amyotrophic lateral sclerosis (ALS) (5).

Most dogs are between 5 and 14 years of age (6) and clinical
signs are presented on average in 9 years old (3, 7), regardless of
gender and other diseases (3, 8).

This disease has a prevalence of 0.19% in dogs (1, 7) but a
specific prevalence of 2.01% in the German shepherd (1), which is
the first described breed with DM (9). However, different authors
have already described histological confirmation of the disease
in other breeds, such as Siberian Husky (10), Miniature Poodle
(11), Boxer (12–14), Pembroke Welsh Corgi (1, 15–17), Rhodesian
ridgeback (12), Chesapeake Bay Retriever (12), Bernese Bouvier,
Kerry Blue terrier, Golden Retriever, Pug (3) and also mixed
breed dogs (9). There are also other described breeds but without
histological confirmation (6).

Degenerative myelopathy has a complex and unknown etiology
(7), but recent studies have been developed demonstrating the
SOD1 gene mutation as one of the main causes (18). This gene
presents as a homodimer that converts superoxide radicals into
hydrogen and oxygen peroxide (5). Thus, superoxide dismutase
(SOD), an enzyme involved in the dismutase of superoxide radicals,
has three SOD isoforms: cytoplasmic (SOD1), mitochondrial
(SOD2), and secreted outside the cell (SOD3). Also, some research
inDMhas highlighted two SOD1mutant proteins (E40K and T18S)
as insoluble and capable of inducing a toxic role associated with
these isoforms (19–21).

There are several differential diagnoses related to geriatric dogs
and T3-L3 spinal cord lesions (e.g., intervertebral disc disease
(IVDD) Hansen type II, neoplasia, and meningoencephalomyelitis)
(4). Therefore, antemortem diagnosis depends on the clinical
history (the onset and progression of neurological signs), upper
motor neurons (UMNs) clinical signs compatible with T3-L3
myelopathy, absence of spinal cord compressive lesion, and
inflammatory changes on the cerebrospinal fluid (CSF). The gold
standard complementary exam is magnetic resonance imaging
(MRI) but computed tomography/CT is also performed to exclude
disc disease, discospondylitis, and neoplasia (4, 22).

Thus, for the final diagnosis of DM, it is necessary to have
compatible history and clinical signs (9), the presence of SOD1 gene
mutation (5), and the exclusion of other spinal cord diseases (4, 7).
Nevertheless, DM may coexist with other diseases of the nervous
system, resulting in the need for an accurate diagnosis in the
future, for example, through specific biomarkers (23). According
to a study carried out in 2017, a suitable biomarker would be
the neurofilament heavy chain (pNFH) that is released into the
interstitial fluid during axonal injury and neurodegeneration (24).

The connection between DM and ALS is based on the genetic
similarities of both diseases, that is, the mutation in the SOD1
nucleotide (25). In ALS, approximately 20% of cases have the SOD1
mutation (26) transmitted as an autosomal dominant disease,
whereas DM is an autosomal recessive one (5). Furthermore, the

results of studies performed in dogs with DM may allow a better
understanding of the effectiveness of therapeutic interventions in
the treatment of ALS (3).

There is no specific treatment for DM (6, 27). The
medical pharmacological approach is based on non-steroidal anti-
inflammatory drugs or steroids, such as prednisolone, due to its
effect on the management of neurological signs, however with low
evidence with regard to disease progression (28).

Other therapeutic approaches include an initial protocol based
on active physical exercises and supplementation with Vitamin B,
Vitamin E, Aminocaproic acid, and N-acetylcysteine (8, 29).

Aminocaproic acid blocks inflammation pathways and reduces
fibrin degradation (29). On the other hand, N-acetylcysteine,
a glutathione precursor, scavenges free radicals, preventing the
activation of enzymes that cause tissue damage (30). Vitamin
supplementation can contribute to the improvement of DM dogs,
inhibiting the release of prostaglandins and cytokines that act on
the inflammation cascade (29).

Degenerative myelopathy dogs that are not on a multimodal
approach reach end-stage disease within 6 months of initial
diagnosis (29, 31). A study by Kathmann et al. (6) reported that
daily physiotherapy increased survival time in these dogs. In 22 DM
dogs, the ones that had intensive physiotherapy protocol showed
survival of nearly 8months, when compared to amoderate protocol
(∼4 months) or without any protocol (∼2 months). In another
study with dogs under a similar protocol, 15–20% did not show
worsening of neurological status, with some dogs surviving for
more than 4 years (31). Thus, the prognosis of DM remains to be
poor and, in most cases, dogs are euthanized between 6 and 12
months after the first clinical signs (1).

Regenerative medicine is the branch of medicine that promotes
tissue regeneration and consequent functional recovery through
the regrowth or replacement of injured cells, tissues, or organs.
Among the different therapeutic approaches considered in
Regenerative Medicine, cell-based therapies, namely those using
stem cells, are the most explored. In particular, the transplantation
of MSCs, which are multipotent cells isolated from mature tissues
with paracrine effects and the ability to differentiate into specific
lineages (32), has been studied to potentially regenerate damaged
tissues or organs (33, 34). This application has been described in
several human diseases with clear pro-regenerative effects, such
as diabetes mellitus (35), chronic myeloid leukemia (36), cirrhosis
(37), pulmonary fibrosis (38), Crohn’s disease s (39), heart failure
(40), and diseases of the nervous system, such as multiple sclerosis
(41), Parkinson’s disease (42), and other neurological diseases (43).
More recently, new methodologies have begun to be explored to
maximize the effectiveness of MSCs as a therapeutic component,
namely the use of their secretion products as a substitute for the
use of the cells themselves. The set of soluble factors secreted by
cells (secretome) includes growth factors, cytokines, chemokines,
and glycoproteins, and the vesicular factors include microvesicles
and exosomes. As a whole, the pro-regenerative efficacy of these
paracrine factors has been shown to be as effective or more effective
than the use of cells, without the disadvantages associated with
direct cellular administration in a living organism (44).

In addition, there are several transplantation studies using
MSCs applied in the dog as a clinical model, namely in spinal
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cord injury (45), chronic superficial keratitis (46), dermatitis (47),
osteoarthritis, and cartilage regeneration (48–50), as well as other
musculoskeletal diseases (51).

Transplantation of stem cells in ALS has been described
to decrease clinical symptoms, with reported signs of
neuroprotection, nervous tissue healing, and increased survival
time (52). Other studies showed that intrathecal administration
improved motor function, with less neuronal degenerescence (53),
and astrogliosis and microgliosis reduction, mainly due to its
anti-inflammatory effects (54).

The set of different modalities associated with active exercises
(6) and stem cell administration (54) can potentially increase DM
dogs’ wellbeing in the long term (55).

In regard to neurorehabilitation modalities, functional
electrical stimulation (FES) promotes neuromodulation with a
low current intensity allowing muscle contraction (56, 57), with
short electric pulses that stimulate motor neurons near the motor
point or through peripheral afferent stimulation (57, 58). Electrical
parameters are usually from 25 to 50Hz for 15–20min each
session (59).

Additionally, locomotor training based on task repetition
intends to achieve neuroplasticity (57), improving muscle mass and
oxidative ability (60). This may result in coordinated, consistent
(61), and symmetric ambulation (62). Underwater treadmill
trainingmay be a fundamental element in the rehabilitation of these
dogs, stimulating the neuromuscular system and increasing the
range of motion, even when compared to land treadmill training
(63, 64).

Therefore, this prospective controlled blinded cohort clinical
study aims to evaluate the neural regeneration response ability of
DM dogs subjected to an intensive neurorehabilitation protocol
with MSCs transplantation. It is hypothesized that the association
of this protocol with stem cell transplantation may be a possibility
for a positive and longer progression of these dogs.

2. Materials and methods

This prospective controlled blinded cohort clinical
study was conducted at the Arrábida Animal Rehabilitation
Center (CRAA and CR2AL, Portugal) between March
2015 and March 2023, after approval from the Lusófona
Veterinary Medicine Faculty (Lisbon, Portugal) ethics
committee (No. 113-2021) and after signing an informed
consent by the owners. Our study has been submitted for
publishing on the AVMA Animal Health Studies (AAHSD)
website and has been assigned the following number: Study
#: AAHSD005642.

2.1. Population presentation

The present study included 13 dogs (n = 13) with non-
ambulatory paraparesis, classified with the open field score
(OFS) (65) as OFS 6 or OFS 8, without spinal hyperesthesia
and that presented UMN clinical signs compatible with T3-
L3 neuro-localization at the neurorehabilitation examination,

indicating some degree of chronicity and spasticity in
the hindlimbs.

In all dogs, the diagnosis of DM was made by exclusion of
immune-mediated myelopathies (e.g., babesiosis and ehrlichiosis);
parasitic myelopathies (e.g., leishmaniasis, neosporosis, and
toxoplasmosis); and viral myelopathy (e.g., distemper). All were
performed by serology of blood and CSF. Cytology of the CSF was
also performed to analyze the protein content. CT and/or MRI
was performed to exclude T3-L3 compressive myelopathies, such as
IVDD Hansen type I and type II; spinal arachnoid cysts; traumatic
injury; and vascular injury (fibrocartilaginous embolism).

Followed by the negative results of all aforementioned exams,
all dogs had to present a positive genetic test for the SOD1 gene
mutation exon 2 (homozygous genotype DM/DM) from the same
laboratory (Genevet R©).

Sample characterization of the population in regard to age, sex,
breed, etc., is described in Table 1.

2.2. Study design

After exclusion, 13 dogs remained in the study regardless of
age, weight, sex, breed, and clinical occurrences. All underwent
a neurorehabilitation consultation on admission and were
randomized by stratification according to the owners’ treatment
decisions. The study group included dogs whose owners accepted
intensive neurorehabilitation with stem cells protocol (INSCP)
(n = 8) and the control group included dogs subjected to an
ambulatory rehabilitation protocol (ARP) (n= 5).

Admission consultation and further evaluations throughout
the study were recorded (Canon EOS Rebel T6 1300 D
camera) and performed by a certified canine rehabilitation
practitioner (CCRP) examiner and instructor (Â.M.), who was
blinded to the randomization and protocol implemented. The
randomization process was completed by a CCRP student (D.G.)
who implemented the protocol and worked with the dogs with the
remaining rehabilitation team, one other CCRP (A.O.) and one
other CCRP student (C.C.). One-third blinded CCRP (A.C.) was
responsible for the evaluation of all movies (in regular and slow
motion), considering an interobserver disagreement <20%.

The neurorehabilitation consultation took place in a controlled
and calm environment, using a 12-cm Halsted mosquito forceps
and an 18-cm Taylor hammer, including gait assessment (6-meter
walk) and OFS classification; mental state; posture; palpation of
the spine; postural reactions; peripheral spinal reflexes (patellar,
withdrawal, cranial-tibial, cross-extensor, Babinsky, and cutaneous
trunci reflexes); superficial and deep perception of pain; muscle
tonus; and flexion/extension range of motion of all joints to assess
muscle rigidity and/or spasticity.

Dogs of both groups presented with OFS 6 or OFS 8, clonic
patellar and cranial-tibial reflexes, decreased withdrawal reflex in
some cases but in others positive for cross-extensor reflex, positive
cutaneous trunci reflex until L5, and positive pain perception. All
presented hypertonia of the hindlimbs extensor muscle group and
hypotonia of the hamstrings muscles, showing also some degree of
muscle weakness and atrophy. The representative study algorithm
is described in the Supplementary material.
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TABLE 1 Population sample characterization (n = 13).

Total (n = 13) Study group (n = 8) Control group (n = 5)

Age ≤9 years old: 38.5% (5/13) ≤9 years old: 25% (2/8) ≤9 years old: 60% (3/5)

>9 years old: 61.5 (8/13) >9 years old: 75% (6/8) >9 years old: 40% (2/5)

Mean: 9.69 years old Mean: 10.5 years old Mean: 8.4 years old

Weight ≤30 kg: 61.5% (8/13) ≤30 kg: 75% (6/8) ≤30 kg: 40% (2/5)

>30 kg: 38.5% (5/13) >30 kg: 25% (2/8) >30 kg: 60% (3/5)

Mean: 30.54 kg Mean: 29.38 kg Mean: 32.40 kg

Sex Male: 46.2% (6/13) Male: 50% (4/8) Male: 40% (2/5)

Female: 53.8% (7/13) Female: 50% (4/8) Female: 60% (3/5)

Breed Pure-breed: 84.6% (11/13) Pure-breed:75% (6/8) Pure-breed: 100% (5/5)

Mixed-breed: 15.4% (2/13) Mixed-breed:25% (2/8)

Clinical occurrences Absent: 61.5% (8/13) Absent:62.5% (5/8) Absent: 60% (3/5)

Present: 38.5% (5/13) Present: 37.5% (3/8) Present: 40% (2/5)

TABLE 2 Description of the protocol for the INSCP group and ARP group.

INSCP ARP

I T I T

Land treadmill 0.9–2.8 km/h 10–60min 0.8–1.8 km/h 15–30 min

Starting 5 times/day until 2 times/day on last week 2 times/day 4–5 days/week

Underwater Treadmill I T I T

1–3.5 km/h 5 min−1 h 0.8–1.8 km/h 10–40 min

1 time/day 5 days/week 1 time/day 4–5 days/week

Kinesiotherapy Up/down stairs and ramps Walking on different floor surfaces Cavaletti rails –

2–5 times/day 4–5 days/week 5–10 min

Electrical stimulation FES

40–60Hz 10–46mA Pulse duration 1:4 Ramp up 4 s Plateau 8 s Ramp down 2 s

2–3 times/day 5 days/week 1 time/day 4–5 days/week

I, intensity; T, time; FES, functional electrical stimulation; Hz, hertz; mA, milliamperes; min, minutes; km/h, kilometers per hour.

2.2.1. INSCP
The INSCP group included dogs that were under a

hospitalization regimen for 2 months and performed the
following training (Table 2).

2.2.1.1. Locomotor training
The locomotor training implemented was based on fast step-

cycle repetitions, always applied in a quiet environment, and
ideally with musical stimulation (66, 67). Due to the presentation
of clonic reflexes, bicycle movements were only necessary to
modulate the rhythm of the step cycle, rarely requiring tail and
perineal stimulation.

In these cyclic movements, stretching of the hindlimbs
should be avoided, but with vigorous cutaneous afferent receptors
stimulation on the treadmill surface (68). Early implementation
of the quadrupedal training is intended for complete
stimulation.

Land treadmill training was initiated with 0.9 km/h aiming to
achieve 2.8 km/h for 10min until a maximum of 60min, initially

with 5 repetitions a day in the first week, until 2 repetitions in the
last week (Figure 1A). Underwater treadmill training was initiated
at admission or the following day, always with water temperature
nearly 26◦C, beginning with 5min until reaching 1 h, 5 days/week,
and speeds of 1 km/h until 3.5 km/h (Figure 1B), with care for signs
of overtraining (67) (Table 2).

Kinesiotherapy exercises were also included in the protocol,
such as walking up/down stairs and ramps; on different floor
surfaces; and cavaletti rails. These circuits were done 2–5 times/day,
4–5 days/week for 5–10 min.

2.2.1.2. Electrical stimulation
Functional electrical stimulation consisted of nerve stimulation

with one electrode applied on L7-S1 anatomical region and the
other electrode on the hamstring’s muscle motor point. Parameters
were 40–60Hz, 10–36mA, pulse duration 1:4, ramp up 4 s, plateau
8 s, and ramp down 2 s. These were done 2–3 times/day, 5
days/week, according to neurological evolution.
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FIGURE 1

Locomotor training. (A) Land treadmill training. (B) Underwater treadmill training.

2.2.1.3. Mesenchymal stem cells preparation
The preparation of the cell-based therapies used in this clinical

study followed an adaptation of the protocol patented by the
University of Porto (WO2019175773—Compositions for use in
the treatment of musculoskeletal conditions and methods for
producing the same leveraging the synergistic activity of two
different types of mesenchymal stromal/stem cells (Regenera R©),
PCT/IB2019/052006) (69). Previously harvested, isolated, and
characterized (data not yet published) canine synovial membrane
MSCs (cSM-MSCs) were used in this study. All SM-MSCs used
in this study were obtained from the synovial membrane of a
healthy and young donor dog and collected using arthroscopy.
Before the harvest, the owners signed an informed consent,
and the animal underwent a complete medical and orthopedic
evaluation, as well as a screening for infectious and contagious
diseases. After harvesting the synovial membrane, cell isolation was
performed as previously described (70). The applied therapeutic
combination consisted of the administration of allogeneic cSM-
MSCs suspended in autologous serum. Total blood was previously
collected from the animals to be treated, in dry blood collection
tubes. After coagulation, the tubes were centrifuged at 2,300
rpm for 10min and their supernatant (serum) was isolated and
collected. Then, the serum was inactivated by immersion in
a water bath at 56◦C for 20min followed by cooling on ice.
Finally, the serum was centrifuged and filtered using a 0.22-
µm syringe filter and stored at −20◦C until further use. For
each administration, ∼5 × 106 cryopreserved low passage (P2)
allogeneic cSM-MSCs were thawed in a 37◦C water bath. After
thawing, the cell content was transferred to a sterile tube and
diluted in sterile and previously filtered DPBS. The mixture
was centrifuged at 1,600 rpm for 10min. After centrifugation,
the supernatant was eliminated with a single movement, and
the cell pellet was resuspended in ∼2ml of autologous serum
previously thawed in a 37◦C water bath. Cell counting and
viability were determined through the Trypan Blue exclusion dye
assay (InvitrogenTM) using an automatic counter (Countess II FL
Automated Cell Counter, Thermo Fisher Scientific R©). The cell
number was then adjusted to 5 × 106 cells/ml. Then, 2ml of
the solution of cSM-MSCs suspended in autologous serum was
transferred to a perforable capped vial and preserved on ice until
the time of administration.

2.2.1.4. Mesenchymal stem cells transplantation
The stem cells transplantation was performed on day 30

(T1) by the head of the neurology department of the Veterinary
Medicine Faculty—Lisbon University (A.F.) and his team, as
follows: vascular access and fluid therapy during the procedure;
induction with propofol (2 mg/kg); endotracheal intubation and
anesthetic maintenance with isoflurane; trichotomy of the dorsal
cervical region and asepsis; intrathecal transplantation based on the
landmarks of the occipital prominence and the spinous process of
C2, with a 22-gauge pencil-point needle inserted cranially to the
atlas wings edge, penetrating the subarachnoid space; extraction of
1ml of CSF for a sterile tube; administration of 1ml of stem cells;
and vertical positioning of the dog for 10 min.

2.2.2. Ambulatory rehabilitation protocol
The ambulatory rehabilitation protocol group was under

an ambulatory regimen, 4–5 times a week. This protocol was
based on locomotor training and electrical stimulation with few
alterations (Table 2). Moreover, there was no MSCs administration
in these dogs.

2.2.2.1. Locomotor training
The main difference in locomotor training was the frequency.

Dogs of the ARP group only performed two repetitions for 15–
30min of land treadmill training for the session. Regarding the
underwater treadmill, it was performed once for 10–40min. Both
training had speeds of 0.8–1.8 km/h, according to each dog’s
tolerance, and sessions were done 4–5 days/week.

2.2.2.2. Electrical stimulation
As for the functional electrical stimulation, the protocol was

the same for both groups; however, the ARP group only had one
repetition each session, 4–5 days/week.

2.3. Outcomes and monitorization

Dogs of both groups were admitted (T0) and evaluated
according to their neurological status and classified with the OFS.
The INSCP dogs were hospitalized in the rehabilitation center and
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FIGURE 2

Outcomes and monitorization algorithm (n = 13). INSCP, intensive neurorehabilitation stem cell protocol; ARP, ambulatory rehabilitation protocol;
MR, medical release; FU, follow-up.

after the first month of intensive rehabilitation (T1), they were
subjected to stem cell transplantation at day 30 (T1), followed by the
second month of rehabilitation (T2) and medical release at the end.
The ARP dogs were under ambulatory sessions of rehabilitation
during the same 2 months.

Dogs of both groups were evaluated at the end of day 30 (T1)
and day 60 (T2). Follow-ups were performed and recorded 1month
after medical release (1FU) and the last follow-up was according to
each dog, as presented in Figure 2.

2.4. Statistical analysis

Records were documented using Microsoft Office Excel
365 R© (Microsoft Corporation, Redmond, WA, USA) and
processed in IBM SPSS Statistics 25 R© (International Business
Machines Corporation, Armonk, NY, USA) software. Shapiro–
Wilk normality test, arithmetic means, minimum, maximum,
standard deviation (SD), and standard error of the mean
(SEM) were recorded for continuous variables age and weight.
Descriptive statistics with frequency analysis was performed
for all categorical nominal variables. Chi-square tests were also
performed to verify relevant analogies proven by a p-value
of <0.05. One sample t-test was used for comparison with
previously published studies. The estimated marginal means
for comparison at each time point regarding the OFS scores
and survival time were performed using Analysis of Variance
(One-Way ANOVA) for repeated measures and the post-Tukey
HSD test. In addition, the Kaplan–Meier survival analysis
was performed.

3. Results

In this prospective controlled blinded cohort clinical study,
from the 13 homozygotic DM dogs, the binominal qualitative
variable sex presented 53.8% (7/13) of female and 46.2% (6/13)
of male dogs. For the binominal variable breed, it was observed
that 15.4% (2/13) were mixed-breed dogs and 84.6% (11/13) were

pure-breed dogs, including German Shepherds (n= 7) as the most
prevalent, followed by the Collie (n = 1), Alaskan Malamute (n =

1), Weimaraner (n= 1), and Setter (n= 1).
Descriptive analysis of the continuous quantitative variables for

age and weight is reported in the Supplementary material, with a
mean of 9.69 years and 30.54 kg, and a verified normal distribution
by the Shapiro–Wilk Normality Test (n < 50) for age (p = 0.684)
and weight (p= 0.233).

Clinical occurrences were absent in 61.5% (8/13) and present in
38.5% (5/13), of which three belonged to the study group and two
to the control group.

The OFS outcomes were documented for both INSCP and ARP
groups, at each time point (T0, T1, T2, 1FU, and Last FU), and
ambulation was considered when OFS ≥ 11, as shown in Figure 3.
Regarding the OFS classification, inter-observer disagreement
was 11%.

In the present study, a total mean survival time of 375 days was
obtained, with the INSCP group presenting a mean survival time
of 438 days compared to 274 days for the ARP group, as shown
in Table 3 and Figure 4A. The minimum days of survival time for
each group was 91 days, although the INSCP group presented a
maximum of 791 days compared with 396 days for the ARP group.
Comparing both groups according to survival time, differences
were also demonstrated by the survival analysis (Kaplan–Meier),
as shown in Figure 4B.

By the Chi-square tests, age [X 2
(1,n = 13) = 0.008, p = 0.928],

weight [X 2
(1,n = 13) = 1.593, p= 0.207], and sex [X 2

(1,n = 13) = 0.124,
p= 0.725] did not show any interference in the survival time.

Kathmann et al. (6) demonstrated a mean survival time of
255 days for nine dogs and 130 days for six dogs, considering
intensive and moderate physiotherapy, respectively. The present
study reported survival time (days) for each dog of both groups and
the OFS results at the last follow-up. This comparison is presented
in Figure 4C.

When comparing both intensive and moderate physiotherapy
of Kathmann et al. (6) (mean survival time 193 days) with the
present study (n = 13), significance in the one sample t-test [t(12)
= 2.932, p = 0.013] was shown. Although, when considering the
INSCP group (n = 8) with the intensive physiotherapy group (n =

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2023.1192744
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gouveia et al. 10.3389/fvets.2023.1192744

FIGURE 3

Open field score (OFS) reports from the study (blue) and control (orange) Groups during the di�erent time points. T0 (day 0); T1 (day 30); T2 (day 60);
1FU (day 90); Last FU (last follow-up). Y-axis: OFS; X-axis: Dogs 1 to 13; — OFS 11.

9) from Kathmann et al. (6), with a mean survival time of 255 days,
no significance was observed [t(7) = 2.009, p= 0.085].

Considering the OFS of the INSCP group and ARP group, a
significance [F(1,64) = 7.490, p = 0.008] between them by the One-
Way ANOVAwas detected, as well as a significance [t(63) =−2.737,
p= 0.008] by the independent sample t-test. That finding could also

be verified in the OFS estimated marginal means evolution chart
(Figure 5).

For the INSCP group, regarding the OFS evolution for each
time point, a significant difference [F(4,64) = 14.287, p ≤ 0.001]
was reported. The post-Tukey HSD test was performed between
time points and showed that from T0 until the first follow-up,
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TABLE 3 Descriptive analysis of survival time (days).

Total (n = 13) Study group (n = 8) Control group (n = 5)

Survival time (days) Mean 375 438 274

Median 335 517.5 304

Mode 91 548 91

Variance 49,933.897 66,133.411 13,473.5

SD 223.459 257.164 116.075

Minimum 91 91 91

Maximum 791 791 396

SEM 61.976 90.921 51.91

SD, standard deviation; SEM, standard error of mean.

FIGURE 4

Study’s population survival time. (A) Survival time (days) boxplot for INSCP (1) and ARP (0) groups; X-axis: groups (INSCP and ARP); Y-axis: survival
time (days). (B) Kaplan–Meier survival analysis; y-axis: cumulative (Cum) survival; X-axis: survival time (days) from INSCP group (green) and ARP group
(blue). (C) Survival time of the INSCP and ARP groups with open field score (OFS) for each dog on the last follow-up and comparison with Kathmann
et al. (6); Y-axis: days; X-axis: dogs from INSCP group (blue) and ARP group (orange).

significances were always demonstrated (p = 0.003 with T1; p ≤

0.001 with T2 and p= 0.001 with 1FU). Considering T1 until T2 (1
month after stem cell transplantation), results showed significance

(p = 0.039), and, also, from T2 until the last follow-up of each dog
(p ≤ 0.001), a consistent descending curve was observed, as shown
in Figure 5.
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FIGURE 5

Evolution of the open field score (OFS)—estimated marginal means in both the INSCP group (blue) and ARP group (orange). Y-axis: OFS; X-axis: T0
(day 0); T1 (day30); T2(day 60); 1FU (day 90); LFU, last follow-up.

4. Discussion

Distribution in regard to sex was higher for female dogs with
53.8% (7/13), agreeing with Coates et al. (1) who reported a total
of 21 dogs with five male and 16 female dogs. Also, a similar
prevalence was seen in a study by March et al. (15) with 18 dogs,
four male and 14 female dogs. However, many authors referred to
the absence of sexual predisposition in DM (3, 8).

As for breed predisposition, which is already stated in the
literature (3), the German shepherd had the higher prevalence with
53.8% (7/13), which agrees with most research on DM (9, 12, 71–
73). Although the histological diagnosis is described as a mere
0.19%, this percentage increases drastically to 2.01% in the German
shepherd (1). In 2018, Donner et al. (74) studied the frequency and
distribution of genetic diseases in dogs of mixed and pure breeds,
pointing to DM as the number one of the rankings. However, it
cannot be ignored the complex etiology of this disease, such as the
immunologic (75), metabolic, nutritional (76, 77), oxidative stress
(1), and excitotoxic effects (78).

The average age of onset of clinical signs was 9.69 years old,
similar to those reported in the literature (3, 7). In contrast, mean
weight had high variability between studies according to the most
represented breeds. For example, a study in PembrokeWelsh Corgi
reported an average of 11 kg (1, 17), much lower than the 30.54 kg of
this study. Other studies with larger breeds presented mean weights
>25 kg, such as Polizopolou et al. (31) and Johnston et al. (72).

The 13 dogs that were randomized for the INSCP group
and ARP group according to the owner’s decision of treatment
presented a normal distribution by the Shapiro–Wilk Normality
Test for age (p= 0.684) and weight (p= 0.233) and were compared
in the study. Of the total of these dogs, and in both groups, nearly
60% did not present any type of clinical occurrences, probably due
to the inclusion criteria (non-ambulatory paraparesis OFS 6 or 8).

Over the evaluation times (T0, T1, and T2) and first follow-
up, an increase of OFS ≥11 was observed in most dogs of the
INSCP group, indicating ambulation (79) and reported for each
time point with significance (p ≤ 0.001). This was also supported
by the post-Hukey test, with significances always present between
T0 and 1FU (p = 0.003 with T1; p ≤ 0.001 with T2 and p = 0.001

with 1FU). Although, all dogs in both groups appeared to have an
improvement regarding their sensorimotor status up to the first
follow-up (1FU).

This increase in neurological status between T0 and T1
was mainly due to the association between locomotor training
with electrical stimulation modalities, as expected and already
mentioned by Kathmann et al. (80) and Miller et al. (81). These
are neurorehabilitation concepts (82), which allow neural control
of movement after changing sensory inputs (83) by the work of
intrinsic ability to generate rhythmic movements (84).

The locomotor training helps in relearning stepping with
a coordinated and modulated ambulation pattern (57, 67)
based on a dynamic interaction between afferent inputs for all
functional receptors (e.g., proprioceptive and biomechanical)
(85, 86). This can be applied through bodyweight-supported
treadmill training (BWSTT), which helps reduce spasticity
by replacing abnormal hyperexcitable sensory firing with
functional signaling, decreasing muscle spasm/contraction
(87, 88), and improving coordination and ambulation (89),
essential for affected DM dogs with UMN signs, for example,
clonic reflexes.

One of the locomotor training strategies resides in the
stimulation of descending propriospinal neurons essential to
activate neural networks leading to stepping recovery (90, 91).

Furthermore, FES stimulates the unnatural recruitment of
muscle fibers by engaging large-diameter motor neurons that
have fast conduction velocity fibers, instead of recruiting small-
diameter motor neurons, which are slower and fatigue-resistant
(92). This modality has been reported to modulate neural circuitry
(93, 94) and allows repetitive cycles of inputs/outputs, suppressing
excessive afferent synaptogenesis and improving remaining neural
circuits (95).

DM dogs present changes in myofibers and connective tissues
that can alter the electrical properties, with progressive decrease
in myofiber size, and increase in fat and connective tissue that
may increase resistance (96). In the early stage of DM, dogs are
characterized by disuse atrophy (3, 97), but in late DM, lowermotor
neuron signs begin, such as neurogenic atrophy. This is always with
a caudodistal location associated with atrophy secondary to distal
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axonopathy (25, 96), with myelin profiles replaced by large areas of
astrogliosis (9, 13, 72, 98).

In Figures 3, 5, the higher OFS results were from T1 to
T2 mainly in the INSCP group, with a marked significance
between groups (p= 0.039). Thus, after intrathecal transplantation
(IT) of stem cells, which results in indirect cell distribution
through the central nervous system (CNS) by the CSF (99). This
technique intends to avoid the “first-pass” pulmonary effect and cell
entrapment, limiting their therapeutic effect (100, 101). In addition,
IT avoids the blood-brain barrier, allowing to focus the cells’ trophic
effects directly on the CNS (99, 102, 103).

The MSCs applied were synovial membrane-derived
mesenchymal cells. MSCs can promote cell survival and tissue
repair by increasing paracrine secretion of neurotrophic and
angiogenic factors (104–106), such as brain-derived neurotrophic
factor (BDNF), ciliary neurotrophic factor (CNTF) (107, 108),
neurotrophin-1 (NT-1), neurotrophin-3 (NT-3), nerve growth
factor (NGF), fibroblast growth factor (FGF), and glial cell-
derived neurotrophic factor (GDNF) (109–114). All these
support neurogenesis, axonal growth, re-myelinization, and cell
metabolism (114–119), contributing also to the ability to recruit
oligodendrocytes precursors (41). Recently, the therapeutic effects
and also the immunomodulatory potential of SM-MSCs were
demonstrated after application in dogs in Veterinary Medicine and
after a preliminary characterization of its secretome (70).

In this prospective controlled blinded cohort clinical study, the
mean survival time was 375 days in the total population, with the
INSCP group having 438 days compared to the ARP group with 274
days. In the INSCP group, there was a maximum survival of 791
days (Table 3), which can be observed in the survival time boxplot
(Figure 4A) and in the Kaplan–Meier survival analysis (Figure 4B).

Thus, the main difference may be linked to the MSCs
transplantation in the INSCP group, in addition to intensive
neurorehabilitation. MSCs potentiate aquaporin 1 and CXCR4
expression, two membrane proteins involved in cell migration,
which help in the “homing” mechanisms (114), potentiated by the
vertical position of the dog for 10min that was included after this
stem cells transplantation technique.

As previously explained and considering the study design, the
selection of both groups was according to the owners’ treatment
decision. Although there was no clear evidence of the sole role of
the MSCs given the differences of both protocols and even if the
intensive neurorehabilitation demonstrated to have always a slight
improvement compared to the ARP, an evident positive progression
was observed after transplantation (T1), with all dogs from the
INSCP achieving ambulation in this period (Figure 3). It is the
authors’ opinion that these results were not only due to the same
intensive training applied until discharge, suggesting that it was also
the combination of the neurorehabilitation intensive protocol with
the MSCs transplantation that allowed this evolution.

DM implies Wallerian degeneration that causes fragmentation
of damaged axons, generating debris and extracellular deposition
of myelin-related molecules with chondroitin sulfate proteoglycans
inhibiting neural regeneration and neuroplasticity in the long term.
To delay this degenerative progression of the disease, the role of
GDNF is reported (120), possibly contributing to the increase of
dendrites length, number of dendrites, or a combination of both.

Thus, aiming to achieve long-term potentiation due to reactivable
remaining tissue (95).

Comparison of the total population (n = 13) with previous
literature (6) considering dogs submitted to moderate or intensive
physiotherapy (n = 15), by the one-sample t-test, revealed a
significant difference (p = 0.013), as can be seen in Figure 4C with
only three dogs (two from the INSCP and one from the ARP)
achieving a survival rate lower than the 193 days reported by
Kathmann et al. (6).

The mean survival time is compared between the mentioned
study’s intensive physiotherapy group (255 days) and our INSCP
group (438 days). Although an increase of nearly 70% was visible,
there was no significance obtained. Therefore, the authors believe
that intensive rehabilitation is the minimum necessary that these
dogs need to increase their survival time as it has already been
proven, but stem cell transplantationmay delay the progression and
increase the survival time. However, there is not enough data, and
research must continue.

When comparing the OFS results between the INSCP and
ARP groups (one-way ANOVA and independent-samples t-test),
there was also a clear significant difference. Figure 5 demonstrates
this disparity in relation to the estimated marginal means at each
moment of the study. In the same figure, there is a significant
decrease from medical release to the last follow-up, justified by
the degenerative and progressive nature of the disease, where
glial cells play a critical role in the pathogenesis of this type of
neurodegenerative diseases, such as ALS (121–123). Few studies
also report the importance of increased glial cells and inflammatory
molecules, partially responsible for the disease progression (15, 124,
125).

In the near future, it would be of main interest to have a quick
and feasible test to assess the phosphorylated neurofilament heavy
subunit (pNF-H) protein, a major structural component of large
myelinated axons, which could be useful to measure axonal damage
(23, 126–128).

The major cause of death was euthanasia due to the progression
of DM with 69.2% (9/13). Euthanasia was perfromed after the last
follow-up of each dog only if they presented the following clinical
signs: thoracolumbar weakness; hindlimbs muscle mass atrophy;
decreased hindlimbs spinal reflexes and cutaneous trunci reflex;
decreased abdominal muscle tone; and decreased trunci balance.

The remaining 30.8% (4/13) died due to internal medical
causes, all belonging to the INSCP group. From these, three dogs
had cardiorenal syndrome secondary to dilated cardiomyopathy
(with a survival time of 244, 487, and 670 days) and one dog
was secondary to splenic neoplasia (with a survival time of
781 days). The one dog that died from dilated cardiomyopathy
had a positive histopathologic exam for degenerative myelopathy
(Necropsy Report N◦40/20).

For neurorehabilitation in DM dogs, it is important to the
notion of astrogliosis, which happens mainly in the dorsal horn
region, that it gives rise to the dorsal spinocerebellar tracts (72). In
this disease, the lesion will focus on the dorsal funiculus, including
ascending and descending tracts within the dorsal portion of
the lateral funiculus and the ascending pathways within the
dorsal funiculus (3, 25). These may explain the constant loss of
proprioception, leading to the need for locomotor training and
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association with kinesiotherapy exercises (e.g., alternating water
levels, backward treadmill, and home exercises). In this study after
T2, all dogs were only stimulated by home exercises 3 times/day,
such as leach walking (15min), cavaletti rails (2min), stairs (2min),
ramps (2min), and proprioceptive unbalance exercises (5 min).

Therefore, these results are in agreement with previous
literature and suggest that the combination of AD-MSCs
transplantation with intensive neurorehabilitation protocols may
provide a functional improvement (129) with no long-term related
side effects (130, 131). The same association was already applied in
ALS patients (120, 131), resulting in a safe and feasible approach
(132, 133).

It is possible to conclude that this INCSP may be an option
for a long progression of DM dogs with quality of life and without
suffering. In the author’s opinion, its implementation should be as
early as possible and not in the late stage of DM.

The limitations of this study were the small sample size and the
randomization process based on owner consent. In addition, there
was only one case with a definitive histological diagnosis, lack of
biomarkers, and the absence of intensive neurorehabilitation after
medical release.
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