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Introduction: Myxomatous mitral valve disease (MMVD) is the most common 
cause of heart failure in dogs, and assessing the risk of heart failure in dogs with 
MMVD is often challenging. Machine learning applied to electronic health records 
(EHRs) is an effective tool for predicting prognosis in the medical field. This study 
aimed to develop machine learning-based heart failure risk prediction models for 
dogs with MMVD using a dataset of EHRs.

Methods: A total of 143 dogs with MMVD between May 2018 and May 2022. 
Complete medical records were reviewed for all patients. Demographic data, 
radiographic measurements, echocardiographic values, and laboratory results 
were obtained from the clinical database. Four machine-learning algorithms 
(random forest, K-nearest neighbors, naïve Bayes, support vector machine) were 
used to develop risk prediction models. Model performance was represented by 
plotting the receiver operating characteristic (ROC) curve and calculating the area 
under the curve (AUC). The best-performing model was chosen for the feature-
ranking process.

Results: The random forest model showed superior performance to the other 
models (AUC  =  0.88), while the performance of the K-nearest neighbors model 
showed the lowest performance (AUC  =  0.69). The top three models showed 
excellent performance (AUC  ≥  0.8). According to the random forest algorithm’s 
feature ranking, echocardiographic and radiographic variables had the highest 
predictive values for heart failure, followed by packed cell volume (PCV) and 
respiratory rates. Among the electrolyte variables, chloride had the highest 
predictive value for heart failure.

Discussion: These machine-learning models will enable clinicians to support 
decision-making in estimating the prognosis of patients with MMVD.
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1. Introduction

Myxomatous mitral valve disease (MMVD) is the most common 
cardiovascular disease, accounting for approximately 75% of all canine 
heart diseases. Moreover, MMVD is the most common cause of heart 
failure (HF) in small-breed dogs (1–3). The progression of MMVD 
depends on several risk factors; therefore, the prognosis differs 
significantly between patients (4). Although there are many preclinical 
MMVD patients, few develop congestive HF, while others develop 
various forms of HF or even cardiac death. Furthermore, cardiogenic 
pulmonary edema due to HF is one of the leading causes of cardiac 
death in dogs (1).

Given the importance of the disease, predicting HF in patients 
with MMVD has become a priority. However, this requires a 
comprehensive interpretation of various clinical data, which is too 
complex to predict at the right time. Several studies have been 
conducted to identify key risk factors contributing to the development 
of HF in dogs with MMVD; however, there are still limitations in 
predicting the risk of HF (2). Therefore, new methods to support the 
assessment and prediction of the risk of HF in patients with MMVD 
are warranted.

In human medicine, many studies have attempted to use advanced 
technologies to assess and predict the risk and onset of HF and 
prognosis in cardiovascular diseases (5–8). Electronic health records 
(EHRs) are considered useful data sources to reveal correlations with 
clinical data (9). Machine learning, a branch of artificial intelligence 
applied to medical records, is an effective tool for prognostic 
prediction and medical decision-making.

In light of advances in machine-learning technologies, machine 
learning-based models have outperformed conventional risk 
prediction models owing to their capability to process large volumes 
and various data types (9, 10). Several recent medical studies have 
attempted to develop machine learning-based models and have 
improved the performance of classifiers from simple infectious 
diseases to complex heterogeneous diseases by using various machine-
learning algorithms in human and veterinary medicine (11–15).

This study aimed to develop machine learning-based risk 
prediction models for HF in dogs with MMVD using a dataset of 
EHRs. Additionally, four machine-learning algorithms were used, and 
significant HF predictive markers were identified through feature 
ranking of the best-performing algorithm.

2. Materials and methods

An illustrative scheme for conducting machine learning-based 
modeling of HF prediction and feature ranking is shown in Figure 1.

2.1. Case selection and data collection

This retrospective study was conducted at the Seoul National 
University Veterinary Medical Teaching Hospital. The EHRs of 396 
records with MMVD were collected between May 2018 and May 2022. 
All dogs underwent a physical examination, thoracic radiography, 
echocardiography, and blood analysis. Complete medical records were 
manually reviewed for all dogs. Demographic data (breed, sex, neuter 
status, age, and body condition score), radiographic measurements, 

echocardiographic values, and laboratory results were extracted from 
the clinical database.

Thoracic radiographic values indicating cardiac remodeling, such 
as the vertebral heart scale and vertebral left atrial score, were 
collected. Based on previous echocardiographic measurement studies 
on the severity and prognosis of MMVD in dogs, five 
echocardiographic variables were selected for machine learning 
modeling: the left atrium-to-aorta ratio (LA/Ao ratio), left ventricular 
end-diastolic diameter normalized for body weight (LVIDDn), left 
ventricular fractional shortening, E-wave transmitral peak velocity 
(E-vel), and ejection fraction (2, 16, 17).

As suggested by previous study indicating stable performance 
with a sample size of around 120, stringent selection criteria was 
adopted during the data selection process (18). The inclusion criteria 
were a confirmatory diagnosis of MMVD through radiographic and 
echocardiographic imaging, with every selected feature available 
within 1 month of administration or at the time of event. Consequently, 
out of the 396 initial cases, 165 cases were excluded with insufficient 
data in either echocardiography or blood test records. Additionally, 31 
cases were removed due to the absence of follow-up data, and 57 cases 
were excluded due to the presence of other cardiac diseases coexisting 
with MMVD or when the cause of heart failure was not MMVD. This 
rigorous selection process resulted in 143 high-quality cases being 
included in the final dataset, ensuring the reliability and robustness of 
our machine learning analysis.

The patients were divided into MMVD with HF (HF group) and 
MMVD without HF (non-HF group). Non-HF was defined as when 
the patients do not have an HF event more than once month. MMVD-
related HF was confirmed by cardiogenic pulmonary edema on 
thoracic radiographs in relation to patient history and clinical 
assessment. Moreover, patients with MMVD had previous HF 
episodes and cardiac death.

Cases with complete demographic data, physical examination 
data, laboratory results, and clinical imaging data were used for 
further analysis. Features with categorical data were assessed using 
counts and corresponding percentages, and continuous numerical 
data were summarized using the mean value.

FIGURE 1

Scheme for risk prediction model and feature ranking.
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2.2. Machine-learning model development

The data values were first transformed into appropriate data 
types for machine learning. Continuous variables were normalized 
using min-max normalization, while binary categorization was 
applied to neuter status, sex, anemia, and tachypnea. HF events 
were the target of this binary prediction model. Four frequently 
used machine-learning algorithms were trained to develop an 
optimized prediction model: random forest (RF), K-nearest 
neighbors (KNN), naïve Bayes (NB), and support vector 
machine (SVM).

RF is an ensemble learning method based on multiple decision 
trees. The decision trees are randomly built from the variable set. The 
prediction is made by majority vote across all decision trees (19). KNN 
is an instance-based model which is based on the characteristic of the 
K-nearest neighbor of a new point to classify it (20). NB is a 
probabilistic classifier based on the assumption of independence 
between the variables of the problem. The NB model performs a 
probabilistic classification of an unclassified sample to put it in the 
most likely class (21). SVM is a high-performance model for 
non-linear problems which discriminates between two classes by 
generating a hyperplane. SVM is not biased by outliers and is not 
sensitive to them (22).

The model training process was repeated 100 times to yield an 
average confusion matrix to tune the hyperparameters. The database 
was split randomly into a training and testing set for each of the 100 
executions to prevent model overfitting. In cases of hyperparameter 
optimization, the database was split into training, testing, and 
validation sets wherein the prediction results were measured using 
confusion matrix rates such as sensitivity, specificity, and accuracy. In 
addition, model performance was represented by plotting the receiver 
operating characteristic (ROC) curve and calculating the area under 
the curve (AUC) (23). The best-performing model was defined by 
having the highest AUC and was chosen for the feature-
ranking process.

2.3. Feature ranking

The top-performing model, RF, was used for the feature-ranking 
process, wherein the Gini impurity-reduction feature-ranking 
technique was applied (24). Using a dataset, RF constructs multiple 
random decision trees and checks all binary outcomes across all 
decision trees. Additionally, RF chooses its final output through a 
majority vote. Feature ranking is based on the mean Gini decrease 
value of how much the Gini impurity decreases when a specific 
variable is removed. The algorithm then compares the Gini value with 
the other Gini values obtained by applying all other features and ranks 
the features according to their significance.

2.4. Statistical analysis

Statistical analyzes and machine learning were conducted using R 
version 4.2.0 (R software, R Core Team, Vienna, Austria) and various 
R packages (class, clusterSim, dplyr, e1071, formula.tools, gmodels, 
kernlab, pastecs, PRROC, randomForest, ROCR, ROSE, rpart), while 
Prism 9 (GraphPad Software, San Diego, CA) was used to create 

graphs. All codes and data used for this analysis are provided 
upon request.

3. Results

3.1. Patient characteristics

Among 143 patients, 90 (63%) were labeled as MMVD with HF 
and 53 (37%) as MMVD without HF. According to the American 
College of Veterinary Internal Medicine classification, the HF and 
non-HF groups were classified as stages B and C/D, respectively.

Although 25 variables were collected from the EHRs, only 24 were 
included in the dataset since the breed variable was removed due to 
dataset encoding complexity. Of the dogs in the HF group, 48 (53.33%) 
were male and 42 (46.67%) were female, with a mean age of 
11.78 years. Of the patients in the non-HF group, 30 (56.6%) were 
male and 23 (43.4%) were female, with a mean age of 11.45 years. 
Several breeds of dogs were included in this study. For the HF group, 
15 breeds were recorded, with Maltese being the most frequently 
observed (50%), followed by Shih Tzu (11%) and Pomeranian (10%); 
26 dogs were of 12 other breeds. Thirteen different breeds were 
included in the non-HF group, with Maltese (24%) being the most 
observed, followed by Poodle (7%), Shih Tzu (4%), and Chihuahua 
(4%). There were fewer anemia and tachypnea cases in the non-HF 
group, while there were more HF cases. The demographic and binary 
variables for each group are summarized in Table 1.

The mean thoracic radiographic and three echocardiographic 
values (LA/Ao ratio, LVIDDn, and E-vel) were higher in the HF 
group. In addition, the mean of each electrolyte feature was similar 
between groups, except for chloride. The quantitative characteristics 
of the datasets are presented in Table 2.

3.2. Machine-learning performance 
evaluation

For algorithms that required hyperparameter optimization, such 
as KNN and SVM, the dataset was randomly split into 60, 20, and 20% 
for the training, validation, and test sets, respectively. On the contrary, 
the other algorithms, RF and NB, split the dataset into 80% for the 
training set and 20% for the test set. The model prediction results were 
reported as accurate, sensitive, and specific. ROC plots were generated 
and AUCs were calculated to estimate model discrimination. The 
mean result scores of the four methods are demonstrated in Table 3. 
Figure  2 displays the ROC curves for the four machine-learning 
models. Of the four methods, RF showed superior performance to the 
other models in terms of accuracy (0.78), sensitivity (0.85), and AUC 
(0.88). NB showed the highest specificity (0.87) compared to RF 
(0.68). The top three models indicated very good performance 
(AUC ≥ 0.8) in the dataset, while the performance of KNN showed the 
lowest AUC (0.69).

3.3. Feature selection results

The RF algorithm, which was the top-performing model, was used 
for feature-ranking analysis. The mean Gini decrease value was used 
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to rank the significance of its variables and was listed in the order of 
importance. The most influential predictor was LVIDDn, followed by 
LA/Ao ratio and E-vel. Furthermore, both thoracic radiographic 
values were highly predictive of HF. Among the electrolyte features, 
chloride had the highest predictive value for HF. Respiratory rate and 
packed cell volume (PCV) were selected based on their relative 
influence compared to anemia and tachypnea. Neuter status and sex 
were last in the feature ranking. Figure 3 shows the feature ranking 
selected by RF.

4. Discussion

In this study, four supervised machine-learning models were 
developed to predict the risk of HF in dogs with MMVD using EHRs. 
Several machine-learning algorithms can be used to analyze diseases, 
each with advantages and disadvantages. This study considered 
algorithms most frequently used to achieve the best performance. 
Other studies also showed that RF had superior performance 

compared to other methods (25–27). The feature-ranking method 
used RF because of its high evaluation results and efficiency for 
identifying novel risk predictors and complex interplay between 
variables (28–30).

The input data quality can strongly influence the performance of 
a machine-learning model (10). Overall, all classifiers performed well 
in this study. The RF model outperformed all other methods with the 
highest AUC; the KNN model demonstrated a decline in performance 
but was still acceptable. This finding indicates that the dataset is ideal 
for developing a risk assessment model for canine MMVD, thus 
suggesting that machine learning is effective in assessing the 
preclinical risk of MMVD patients developing HF and death due to 
underlying cardiac disease.

The degree of disease progression often differs between patients 
because of heterogeneous features and MMVD manifestations. 
Moreover, the high burden of comorbidities and unpredictable, 
complex interactions makes it challenging to assess and establish 
treatment strategies. Improved identification of patients with HF 
could provide opportunities to detect patients early on and provide 
appropriate monitoring strategies. Therefore, the classification of 
whether there is a risk of HF itself can help significantly in the 
management of patients.

According to the demographic characteristics, the disease pattern 
is similar to that of other studies, demonstrating a higher percentage 
of male and smaller (<20 kg) breeds (3). In this study, the number of 
male dogs was slightly higher than that of female dogs in both groups. 
Age is also considered a contributing factor to disease development in 
dogs. Several studies have shown a high prevalence of MMVD 
associated with aging (2, 4). Similarly, in this study, both groups had 
a mean age of approximately 11 years, indicating they belonged to a 
senior population. However, while the data showed a certain extent of 
older age, other factors are considered to have more predictive power 
than age in this model. Echocardiographic and radiographic variables 
had the highest predictive value for HF. The features with the most 
significant influence on the model were LVIDDn, LA/Ao ratio, and 
E-vel, which are echocardiographic features that have been proposed 
as contributing factors to the severity of MMVD (16, 31). The 
prognostic value of these echocardiographic features was higher than 
that of thoracic radiographic measurements, which means that the 
algorithm provided more value when assessing HF risk.

Numeric features (PCV and respiratory rates) showed a higher 
mean Gini decrease value than binary features (anemia and 
tachypnea). The criteria for a binary diagnosis of anemia or tachypnea 
focus on normal patients. Therefore, the risk level can generally 
be judged only by existing criteria. However, there may be considerable 
risk in the case of a patient who is more sensitive to a specific stress, 
even if it falls within the normal range according to existing criteria. 
Therefore, it is necessary to reconsider the diagnostic criteria for 
anemia and tachypnea in patients with MMVD. Considering the 
multifactorial nature of the disease, this implies that careful assessment 
of the numeric value is required when the clinical examination results 
are on the borderline of the normal reference range rather than 
whether the patients have anemia and tachypnea.

Among the electrolyte variables, chloride showed the highest 
mean Gini decrease value. Electrolyte abnormalities, including 
hyponatremia and hypochloremia, can be observed in patients with 
congestive HF. A recent retrospective study reported that 
hypochloremia was considered a negative prognostic marker in dogs 

TABLE 1 Summary of patient demographics and binary features of dogs 
in the dataset.

Category 
feature

Heart failure 
(n =  90)

Non-heart failure 
(n =  53)

# % # %

Sex

  Male 48 53.33 30 56.6

  Female 42 46.67 23 43.4

Neuter status

  Entire 12 13.33 2 3.77

  Neutered 78 86.67 51 96.23

Anemia

  Anemia 22 24.44 1 1.89

  Normal 68 75.56 52 98.11

Tachypnea

  Tachypnea 65 72.22 20 62.26

  Normal 25 27.78 33 37.74

Breed

  Maltese 45 50 24 45.28

  Shih-Tzu 10 11.11 4 7.54

  Poodle 3 3.33 7 13.2

  Pomeranian 9 10 2 3.77

  Chihuahua 3 3.33 4 7.54

  Yorkshire Terrier 2 2.22 2 3.77

  Pekinese 3 3.33 1 1.88

  Cocker Spaniel 2 2.22 0 0

  Spitz 2 2.22 2 3.77

  Bichon Frise 1 1.11 1 1.88

  Schnauzer 1 1.11 1 1.88

  Mixed 6 6.66 2 3.77

  Others 3 3.33 3 5.66
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with HF (32). Concurrent renal impairment and HF, defined as a 
cardiorenal syndrome, has a negative prognostic impact on patients 
(33, 34). Similarly, serum creatinine has a moderate predictive value 
in this study. Since dog sizes vary depending on breed and weight, this 
study used body condition scores to reflect the overall body condition 
of individual dogs; however, these scores had a relatively lower 
predictive value in the feature-ranking results.

This study has some limitations. First, due to the imbalance of the 
dataset, most models obtained better performance in terms of 
sensitivity than specificity. These results occurred since algorithms 
were exposed to more HF patient components than those of non-HF 
patients during training; hence, they are more equipped to recognize 
HF patient profiles during testing. Second, treatment was not 
considered, which may have resulted in underestimating certain 
clinical values, thereby influencing the results. Further investigation 

on additional external datasets with the same variables from a different 
cohort of dogs would improve prediction performance.

The most common cardiovascular disease among small-breed 
dogs is MMVD, and small-breed dogs tend to be prone to developing 
MMVD (1). Given that most breeds presented in this dataset are small-
breed patients (weight ≤ 15 kg), our results are consistent with the 
prevalence of MMVD documented in previous studies (1, 4). 
Therefore, the model outputs are optimized for small-breed dogs rather 
than large-breed dogs. Moreover, the prevalence of heart disease is 
different in large-breed dogs (e.g., canine dilated cardiomyopathy). 
Further access to different heart diseases in large-breed patients would 
enable the development of other risk stratification models.

Patient EHRs are stored with each admission, and diagnostic 
variables may change over time. Since time-varying values have more 
evidence for the determination of HF, advanced machine-learning 

TABLE 2 Statistical quantitative description of the numeric features of dogs in the dataset.

Numeric Feature Heart failure (n =  90) Non-heart failure (n =  53) Statistics

Median Mean Range Median Mean Range p-value 
(JB)

p-value 
(ST)

p-value 
(MW)

Age 12 11.78 [3–18] 11 11.45 [6–19] 0.77 0.49 –

VHS 11.4 11.44 [9.2–14.7] 10.5 10.47 [9–12.4] 0.00 – 0.00

VLAS 2.8 2.79 [1.5–4.1] 2.4 2.39 [1.6–3.2] 0.18 0.00 –

Cl (mmol/L) 112 111.62 [91–127] 115.1 114.67 [104.1–123.5] 0.00 – 0.00

K (mmol/L) 4.31 4.33 [2.62–6.37] 4.5 4.57 [2.87–5.87] 0.11 0.04 –

Na (mmol/L) 144.7 145.54 [125–178] 145.6 145.53 [135.6–156] 0.00 – 0.25

LVIDDn 1.94 1.92 [0.73–2.64] 1.6 1.59 [1.11–2] 0.45 0.00 –

LA/Ao ratio 1.83 1.87 [1.1–3.58] 1.5 1.55 [1.18–2.4] 0.00 – 0.00

E-vel (m/s) 1.34 1.32 [0.39–2.72] 0.94 0.98 [0.46–1.74] 0.01 – 0.00

EF (%) 90.75 89.3 [64.5–99.4] 91.7 91.09 [74.9–98.5] 0.00 – 0.23

FS (%) 57.35 57.47 [33.9–81.4] 56.8 59.18 [42.6–88] 0.65 0.32 –

PCV (%) 41.5 41.21 [19.3–57.2] 45.7 45.53 [32.1–58.4] 0.41 0.00 –

BUN (mg/dL) 28.9 34,1 [3.86–115.5] 22 23.93 [1.43–58.4] 0.00 – 0.00

Serum Cr (mg/dL) 1.13 1.26 [0.5–5.57] 0.92 1.01 [0.33–2.08] 0.00 – 0.01

Systolic BP (mmHg) 120 125.02 [50–200] 135 136.3 [100–180] 0.63 0.01 –

Murmur 4 4.3 [3–6] 4 3.98 [0–6] 0.00 – 0.01

BCS 5 4.61 [2–8] 5 5.13 [2–8] 0.22 0.01 –

Respiratory rate 45 54.56 [18–120] 30 36.83 [12–100] 0.00 – 0.00

Platelet (10,000/μL) 45.9 49.81 [4.7–175.9] 43 45.91 [13.6–71.9] 0.00 – 0.38

Temperature (°C) 38.6 38.54 [36.8–40.3] 38.5 38.53 [37.1–39.6] 0.62 0.93 –

BCS, body condition score, BUN, blood urea nitrogen; PCV, packed cell volume; EF, ejection fraction; FS, fractional shortening; LA/Ao ratio, left atrium to aorta ratio; LVIDDn, left ventricular 
end-diastolic diameter normalized for body weight; E-vel, E-wave transmitral peak velocity; VHS, vertebral heart scale; VLAS, vertebral left atrial score; JB, Jarque-Bera test; ST, Student’s t-test; 
MW, Mann-Withney test.

TABLE 3 Performance of ML models predicting heart failure risk of MMVD dogs – mean of 100 executions.

Methods Accuracy Sensitivity Specificity AUC

Random Forest 0.784 0.855 0.689 0.887

Naïve Bayes 0.781 0.724 0.878 0.801

Support Vector Machine 0.764 0.82 0.69 0.87

K-nearest Neighbors 0.718 0.799 0.598 0.698

ML, machine learning; MMVD, myxomatous mitral valve disease.
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techniques such as recurrent neural networks may show better 
predictive power by reflecting all the periodic chart data (35). 
However, training a recurrent neural network with a complex dataset 
is very difficult and requires significant computing power for each 
patient, making it more difficult for use in real clinical practice. Even 
though our RF model was trained with only baseline data regardless 
of previous history records, it shows very good performance 
(AUC = 0.88). Our model requires much less computing power and is 
relatively easy to train for predicting patients at high risk of 

HF. Therefore, this platform can be  further applied to predict 
significant HF events during disease management.

The data used in this study were extracted from referral animal 
hospitals, which means that patients may have more complicated 
clinicopathologic characteristics and different tendencies than 
general MMVD patients; therefore, known prognostic factors may 
not be well applied. However, machine-learning algorithms consider 
correlations between large volumes of variables, and this process 
contributes to the increased ranking of other undervalued features in 
general MMVD patients. This can assist the drive toward personalized 
risk management and provide insight into the veterinarian’s decision-
making for patients with MMVD.

In summary, this study obtained significant results in predicting 
HF events in patients with MMVD. Although further testing and 
validation are needed for incorporation into clinical practice, this 
study highlights the potential of machine learning in heart disease 
management and can encourage future approaches to apply machine 
learning in veterinary medicine. Simultaneously, a more 
comprehensive application of machine learning may improve 
diagnosis and treatment decisions for diseases and risk prediction.
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FIGURE 2

ROC curves for the risk prediction models for MMVD dogs. 
(A) Random forest (AUC 0.887). (B) Support vector machine (AUC 
0.870). (C) Naïve bayes (AUC 0.801). (D) K-nearest neighbors (AUC 
0.698). AUC, area under the curve; MMVD, myxomatous mitral valve 
disease; ROC, receiver operator characteristic.

FIGURE 3

Random-forest feature-ranking selection through mean Gini 
decrease value.
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