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Egypt has several beaches, as well as the Nile River and a few lakes; therefore,
it could compensate for the lack of protein in red meat with fish. Fish, however,
may become a source of heavy metal exposure in humans. The current study was
to assess the level of five toxic metals, lead (Pb), cadmium (Cd), mercury (Hg),
arsenic (As), and aluminum (Al), in six species, namely, Oreochromis niloticus (O.

niloticus), Mugil cephalus (M. cephalus), Lates niloticus (L. niloticus), Plectropomus

leopardus (P. leopardus), Epinephelus tauvina (E. tauvina), and Lethrinus nebulosus

(L. nebulosus), collected from the El-Obour fish market in Egypt. The residual
concentrations of the tested toxicmetals in the examinedO. niloticus,M. cephalus,
L. niloticus, E. tauvina, P. leopardus, and L. nebulosus species were found to be
higher than the European Commission’s maximum permissible limits (MPL) for Pb
and Cd by 10 and 20%, 15 and 65%, 75 and 15%, 20 and 65%, 15 and 40%, and 25
and 5%. In contrast, 30% of L. niloticus exceeded the MPL for Hg. It was shown
that the average estimated daily intake (EDI) and the target hazard quotient (THQ)
in fish samples are below safety levels for human consumption and hazard index
(HI<1). From the human health point of view, this study showed that there was no
possible health risk to people due to the intake of any studied species under the
current consumption rate in the country.

KEYWORDS

lead, cadmium, mercury, arsenic, fish, daily intakes, risk assessment index, Egypt

Introduction

Fish gives customers animal protein with a high biological impact while simultaneously
overcoming the challenge of red meat scarcity. Fish is one of the most significant protein
sources in Egypt (1). In addition, seafood is endorsed as part of a fit diet in the
majority of dietary guidelines (2). The potential toxicity of pollutants, including mercury,
lead, cadmium, and arsenic, which may be present in fish and seafood products, has
recently caused public health concerns. Heavy metals cannot be biodegraded; instead,
bioaccumulation can increase their concentration (3, 4). Both natural and manmade sources
release these metals into the environment (5). Heavy metals may therefore accumulate in
the food chain and endanger the health of consumers (6). It is suggested that variations
in the absorption and depuration times of specific metals are the primary cause of metal
bioaccumulation in fish. Many factors, including the time of year, the physical and chemical
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properties of the water, industrial development, fertilizers, livestock
manure, air pollution, mining, and excessive pesticide use, can
lead to metal accumulation in different fish tissues (7). There are
a number of harmful effects that heavy metals have on human
health. Lead is considered one of the toxic metals, for instance,
that has been related to multiple instances of child mortality,
including those in China and Zambia (8, 9). Additionally, the
effects of Pb on mental health and intelligence are harmful. Heavy
metal cadmium (Cd) has no known physiological purpose. Itai-Itai
disease, which has been linked to heavy fish consumption in Japan,
is primarily caused by cadmium. Such a condition is characterized
by osteomalacia and kidney dysfunction (10). Additionally, Cd is
regarded as a group B1 carcinogen (11). Another heavy metal,
arsenic, has also been connected to numerous organ damage,
unidentified processes of carcinogenesis, and skin irritation (12).
The third most common element in the crust of the Earth
is aluminum (Al), which is widely distributed throughout the
ecosystem and, in particular, in the food chain and is regarded as
a non-essential metal that causes urological problems as well (13).
For the sake of human health, it is crucial to assess the chemical
quality of aquatic species, particularly the number of heavy metals
in fish (14). Because Egypt has large beaches, as well as weak poultry
and red meat production, owing to its reliance on yellow grain
supplied by Ukraine, consuming fish is one of the alternatives
available to customers. Consequently, the present study aimed to
detect the concentrations of some metals (As, Cd, Pb, Hg, and Al)
in the examinedO. niloticus,M. cephalus, L. niloticus, E. tauvina, P.
leopardus, and L. nebulosus species. In addition, a non-carcinogenic
health risk assessment was carried out on the Egyptian population.

Materials and methods

Sample collection

In total, 120 freshwater and marine water fish were obtained
from El-Obour city fish market, Egypt. Fish samples were
chosen from apparently freshwater fish that showed no signs of
deterioration. From February to August 2022, six fish species (20 of
each) were collected including: Three fresh water fish (O. niloticus,
M. cephalus, L. niloticus) and three marine water fish (E. tauvina, P.
leopardus, L. nebulosus). The schematic cartoon of the experimental
design is represented in Figure 1.

Sample preparation

Determination of different metals was made as recommended
by the previous report (15). Fish samples were chosen from
apparently freshwater fish that showed no signs of deterioration.
Fish samples were thawed, headed, and eviscerated with stainless
steel scalpels, the flesh (edible part) was ground and then
homogenized in a domestic food blender, 1 gram of the
sample mixture was placed in a 5-mL digestion solution
composed of 3:2 parts of nitric acid (65%) and perchloric
acid (70%), respectively, for 12 h, and the homogenate was
left at room temperature. In a water bath, the mixture was

then heated for 3 h at 70◦C with stirring every 30min. The
digested mixture was diluted with 20mL DDW, brought to
room temperature, and then filtered through a filter paper. Up
until the measurement of heavy metals, the filtrate was left
at 20◦C.

Analytical procedures

Pb, Cd, and Al were measured using a graphite furnace atomic
absorption spectrophotometer (PerkinElmer

R©
PinAAcleTM 900T

Atomic Absorption Spectrophotometer; Shelton, CT, USA).

Quality assurance and quality control

For ensuring the accuracy of the analytical processes,
the National Research Council of Canada’s DORM-3 Fish
Protein reference material was used. The detection limits
(µg/g) for Pb, Cd, As, Hg, and Al were 0.01, 0.005, 0.02,
0.01, and 0.10, respectively. The measured amounts for
the metals under test were expressed in microgram/gram
wet weight.

Estimated daily intake

According to the U.S. Environmental Protection Agency
(US EPA) (16), the EDI values of the heavy metals that the
Egyptian population consumed through the consumption of
canned meat and chicken products were determined using the
following equation:

EDI (µg/kg/day) = Cm X FIR/BW, where FIR is the rate at
which Egyptians consume fish, and Cm is the concentration of the
analyzed metal (g/g wet weight). FIR was set at 48.57 g of flesh per
day (17), while BW was set at 70 kg for Egyptian adults.

Health risk assessment

The hazard quotient (HQ) of the evaluated heavy metals was
determined according to US EPA (16) using the following formula:

HQ = EDI/RFD X 10−3. Meanwhile, for lead, we used risk
index (RI)= EDI x SF.

RfD is the oral reference dose; the RfD values for Pb, Cd, As,
Hg, and Al were 0.004, 0.001, 0.0003, 0.0005, and 1 mg/kg/day,
respectively (18, 19). The oral slope factor (SF) for lead was 0.0085
mg/kg/day (20).

The risk of combined metals was calculated using a hazard
index (HI). HI was derived from the equation as follows: HI =
THQ (Pb) + THQ (Cd) + THQ (As) + THQ (Hg) + THQ (Al).
When HQ or HI value is >1, it means human exposure to risk
(16). In addition, the RI was considered insignificant if the RI was
<10−6; the RI was considered allowable or tolerable if RI was 10−6

< RI < 10−4; and the RI was considered significant if the RI was
>10−4 (21).
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FIGURE 1

The schematic cartoon of the experimental strategy—designed by BioRender.com.

FIGURE 2

Lead (Pb) residues (mg/kg wet weight) in fresh water and marine water fish. a,b,cColumns bearing di�erent small letters were statistically significant at
a P-value of <0.05.

Statistical analysis

ANOVA, the post-hoc test, and the Turkey–Kramer HSD
difference test (JMP) were used to evaluate the statistical analysis
(SAS Institute, Cary, NC, USA). A P-value of 0.05 was regarded as
significant. The means and standard deviation were used to express
the values (SD) (22).

Results

Lead residues

Figure 2 shows the achieved results that Pb was detected in all
examined fish species. L. niloticus had the significantly highest Pb

content of 0.31 ± 0.04 mg/kg, followed by E. tauvina (0.17 ± 0.03
mg/kg),M. cephalus (0.11 ± 0.03 mg/kg), O. niloticus (0.09 ± 0.02
mg/kg), L. nebulosus (0.08± 0.01 mg/kg), and P. leopardus (0.06±
0.01 mg/kg).

Cadmium residues

Cadmium was found in all species of fish that were studied. L.
niloticus had significantly (P < 0.05) higher Cd content of 0.13 ±

0.02 mg/kg, followed by E. tauvina, M. cephalus, P. leopardus, O.
niloticus, and L. nebulosus with the mean Cd content of 0.11 ±

0.02, 0.08 ± 0.02, 0.07 ± 0.01, 0.04 ± 0.01, and 0.03 ± 0.01 mg/kg,
respectively (Figure 3).
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FIGURE 3

Cadmium (Cd) residues (mg/kg wet weight) in fresh water and marine water fish. a,b,cColumns bearing di�erent small letters are statistically
significant at a P-value of <0.05.

FIGURE 4

Arsenic (As) residues (mg/kg wet weight) in fresh water and marine water fish. a,b,cColumns bearing di�erent small letters are statistically significant at
a P-value of <0.05.

FIGURE 5

Mercury (Hg) residues (mg/kg wet weight) in fresh water and marine water fish. a,b,cColumns bearing di�erent small letters are statistically significant
at a P-value of <0.05.
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FIGURE 6

Aluminum (Al) residues (mg/kg wet weight) in fresh water and marine water fish. Data represent means ± SD (n = 20 for each species). a,b,cColumns
bearing di�erent small letters are statistically significant at a P-value of <0.05.

Arsenic residues

Arsenic residues were recorded in all fish species with the mean
values of 0.13 ± 0.01, 0.21 ± 0.02, 0.25 ± 0.04, 1.13 ± 0.06, 1.09
± 0.07, and 1.03 ± 0.04 mg/kg in the examined O. niloticus, M.

cephalus, L. niloticus, E. tauvina, P. leopardus, and L. nebulosus

species, respectively (Figure 4).

Mercury residues

The mean values of Hg were 0.07 ± 0.01, 0.27 ± 0.03, 0.42
± 0.05, 0.12 ± 0.01, 0.19 ± 0.03, and 0.13 ± 0.02 mg/kg in the
examined O. niloticus, M. cephalus, L. niloticus, E. tauvina, P.
leopardus, and L. nebulosus species, respectively (Figure 5).

Aluminum residues

The Al residues were obtained in 100% of examined species.
The mean values (mg/kg) were 2.62 ± 0.18, 2.95 ± 0.26, 3.35 ±

0.19, 2.11 ± 0.29, 1.53 ± 0.11, and 1.38 ± 0.12 mg/kg in examined
O. niloticus, M. cephalus, L. niloticus, E. tauvina, P. leopardus, and
L. nebulosus, respectively. L. niloticus had significantly (P < 0.05)
the higher Al values among the examined fish samples (Figure 6).

Public health risk assessment

Upon evaluating the acceptability of the investigated samples
in comparison with the stated maximum permissible limits for the
residual quantities of the heavy metals (MPL), it was clear that 2
(10%), 3 (15%), 5 (25%), 4 (20%), 3 (15%), and 5 (25%) fish samples
of the examined O. niloticus, M. cephalus, L. niloticus, E. tauvina,
P. leopardus, and L. nebulosus species, respectively, exceeded the
recommended MPL (0.3 mg/kg wet weight) of Pb in fish according
to European Commission (23), whereas 1 (5%), 8 (40%), 13 (65%),

15 (75%), 13 (65%), and 4 (20%) fish samples of the O. niloticus,
M. cephalus, L. niloticus, E. tauvina, P. leopardus, and L. nebulosus

species, respectively, exceeded the recommended MPL (0.05 mg/kg
wet weight) for Cd. Meanwhile, only 6 (30%) of the L. niloticus

samples exceeded the MPL 0.5 mg/kg wet weight recommended by
European Commission (23) (Table 1).

The results in Table 2 showed that the EDI of various metals
from fish consumption was less than the TDI µg/kg body weight
for all metals.

Based on the anticipated daily intakes, the average THQ for all
metals tested was <1, with the exception of total As. Furthermore,
with the exception of O. niloticus, the calculated hazard index on
a total As basis was >1. Meanwhile, all evaluated species, show no
risk to public health (hazard index < 1), when 10% total arsenic
(inorganic arsenic only) is used as the basis for calculation. The
average RI was 0.000806 due to lead exposure via fish ingestion
(Table 3).

Discussion

Lead, Cd, As, Hg, and Al are examples of metals that have no
known physiological functions. Owing to the nature of thesemetals’
bioaccumulation and biomagnification, repeated ingestion of them,
even at low concentrations, may have a number of toxicological
effects and cause organ damage (25).

Lead residues

Lead residues detected in fish worldwide were 0.11–1.15 mg/kg
among Mediterranean sea fish species (26), 0.33–0.93 mg/kg in
fish samples collected from Türkiye (27), 0.01–0.15 mg/kg in fish
samples from Portugal (28), 0.11–0.89 mg/kg in fish samples from
Türkiye (29), and 0.10–0.12 mg/kg in fish collected from Italian
Coasts (30). The consumption of fish contributes to 2.66% of TDIs
of Pb for adults (Table 2).
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TABLE 1 Acceptability of the examined fish samples according to their content of heavy metal in comparison with the European Commission Regulation.

Fresh water fish Marine water fish

O. niloticus M. cephalus L. niloticus E. tauvina P. leopardus L. nebulosus

Pb (0.30)a Within 18 (90%) 17 (85%) 15 (75%) 16 (80%) 17 (85%) 15 (75%)

Exceed 2 (10%) 3 (15%) 5 (25%) 4 (20%) 3 (15%) 5 (25%)

Cd (0.05)a Within 16 (80%) 7 (35%) 5 (25%) 7 (35%) 12 (60%) 19 (95%)

Exceed 4 (20%) 13 (65%) 15 (75%) 13 (65%) 8 (40%) 1 (5%)

Hg (0.50)a Within 20 (100%) 20 (100%) 14 (70%) 20 (100%) 20 (100%) 20 (100%)

Exceed - - 6 (30%) - - -

aEuropean Commission (23) No 1881/2006.

Cadmium residues

The cadmium values were comparable to those of 0.006–0.024
mg/kg that were previously obtained in fish from Lake Manzala,
Egypt (31), 0.003 to 0.021 µg/g i that were previously obtained n
fish from Taihu Lake of China (32), and 0.07–0.10 mg/kg that were
previously obtained in fish collected from Italian Coasts (30). The
consumption of fish contributes to 5.20% of TDIs of Cd for adults
(Table 2).

Arsenic residues

The As residual concentration in marine fish was similar to
EFSA (33) data, which reported a mean value of 1.45 mg/kg after
examination of 3,505 different species. In addition, 0.78± 0.26 and
0.94 ± 0.31 mg/kg of salmon and trout were collected from the
Norwegian fish market (34). However, As content in the current
study was much higher than 0.59–0.69 mg/kg in fish collected
from Italian Coasts (30). The obtained results for As freshwater
fish in these study comparable to 0.22 ± 0.15 mg/kg obtained
in Mexico freshwater (Ictalurus punctatus) (35). The As values in
marine fish were significantly higher (P< 0.05) compared with the
freshwater fish, which is attributed to the arsenic concentration
being higher in seawater than in the freshwater environment (36).
Another aspect thatmust be considered is the fact that the analytical
method used in the current study only investigated total arsenic
levels, although the concentration of inorganic arsenic, the most
dangerous form, is of greater significance from the standpoint
of food safety. However, fish and other seafood typically contain
negligible amounts of inorganic arsenic (24). Arsenobetaine and
arsenocholine, which are quickly and unmetabolized excreted in
human urine and are regarded as being of no toxicological concern,
are the main chemical forms of arsenic in seafood (37). The
consumption of fish contributes to 18.66% of the TDIs of As for
adults (Table 2).

Mercury residues

Themercury residues in the current studywere nearly similar to
those (0.11± 0.22–0.19± 0.09 mg/kg) in fish collected from Italian
Coasts (30). Meanwhile, lower Hg values were obtained at 0.014 ±

TABLE 2 Estimated daily intake (EDI) µg/kg body weight/day of di�erent

metals in comparison with the tolerable daily intakes (TDIs) µg/kg body

weight.

EDI (Pb) EDI (Cd) EDI (As) EDI (Hg) EDI (Al)

O. niloticus 0.062 0.028 0.090 0.049 1.817

M. cephalus 0.076 0.056 0.187 0.187 2.046

L. niloticus 0.215 0.090 0.305 0.291 2.250

E. tauvina 0.118 0.076 0.784 0.083 1.460

P. leopardus 0.042 0.042 0.618 0.132 1.060

L. nebulosus 0.056 0.021 0.368 0.090 0.950

Average EDI 0.095 0.052 0.392 0.139 1.600

TDIs 3.570 1.000 2.100 0.228 142.860

EDI/TDI% 2.66% 5.20% 18.66% 60.96% 1.11%

0.007 mg/kg in the Italian study (38) and 0.017 ± 0.004 and 0.020
± 0.005 mg/kg in salmon and trout, respectively, in the Norwegian
study (34). Because MeHg is harmful to the development of the
brain, pregnant women and young children should be especially
cautious about exposure to mercury (39). Additionally, a cautious
methodology was used in this study, presuming that all mercury
was present in the seafood samples as MeHg, which is significantly
more poisonous than inorganic Hg, the form of mercury that is
most commonly found in seafood. This strategy is consistent with
research done by the EFSA (40). A panel on Contaminants in the
Food Chain (CONTAM) found that MeHg typically accounts for
80–100% of the total mercury in fish muscle.

Aluminum residues

One of the most prevalent metals in the environment and
consequently in food is aluminum. However, anthropogenic
activities and the acidification of the soil have caused Al levels
to rise over time. Al is a well-known neurotoxic substance
because it tends to build up in the brain. Numerous studies have
shown a link between Al levels and various diseases, including
Alzheimer’s disease. Additionally, some important metals may
be hampered by aluminum (41). The obtained Al values in
these studies were consistent with the findings in Spain from

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2023.1185395
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hussein et al. 10.3389/fvets.2023.1185395

TABLE 3 Target hazard quotient (THQ) and hazard index (HI) of di�erent metals from fish consumption and risk index (RI) of lead.

THQ
(Pb)

THQ
(Cd)

THQ(As)
total

THQ(As)
inorganic

THQ
(Hg)

THQ
(Al)

HI (As)
total

HI (As)
inorganic

RI
(Pb)

O. niloticus 0.016 0.028 0.301 0.030 0.097 0.0018 0.444 0.173 0.0005

M. cephalus 0.019 0.056 0.624 0.056 0.375 0.002 1.076 0.508 0.0006

L. niloticus 0.054 0.090 1.018 0.101 0.583 0.002 1.747 0.830 0.0018

E. tauvina 0.029 0.076 2.614 0.261 0.167 0.001 2.887 0.534 0.0010

P. leopardus 0.010 0.042 2.058 0.205 0.264 0.001 2.375 0.522 0.0004

L. nebulosus 0.014 0.021 1.226 0.122 0.180 0.001 1.442 0.338 0.0005

Average 0.024 0.052 1.307 0.13 0.278 0.002 1.662 0.486 0.0008

HI (As) total: Hazard index calculated depending on the obtained values of total arsenic. HI (As) inorganic: Hazard index calculated depending on the 10% of total arsenic, only inorganic, in

fish (24).

0.92 ± 0.71 to 3.48 ± 3.96 mg/kg (42) and in Türkiye from
0.831 to 2.228 mg/kg (43). Meanwhile, lower Al values were
obtained in fish samples in the United States at 0.40 mg/kg
(44). The freshwater fish samples contained significantly higher
Al than marine water fish (P< 0.05); this may have been
attributed to the higher acidity in marine water fish then the
freshwater fish, which enhances the solubility of Al (45). The
results demonstrate the inter-species differences in Pb, Cd, and Hg
accumulation. For example, L. niloticus had the highest residual
contents of the various metals, whereas O. niloticus had the
lowest concentrations. The situation of the fish in the food chain
may have an impact on the residual contents, as predatory fish
such as L. niloticus fish build up higher levels of heavy metals
(46). Furthermore, metal contamination of fish muscle varies by
geographic region (47).

Public health risk assessment

Regulation (EC) No. 1881/2006 (23) establishes the maximum
levels of contaminants in fish as 0.5, 0.3, and 0.05 mg/kg wet
weight for mercury, lead, and cadmium, respectively (Table 1).
Meanwhile, there were no available regulations for As and Al
worldwide adopted for fish. As a result, this study was augmented
to calculate the EDI, HQ, and HI to determine the potential health
risks associated with the consumption of such fish species. The
obtained values of EDI (µg/kg/day) for Pb, Cd, As, Hg, and Al were
0.095, 0.052, 0.392, 0.139, and 1.60 µg/kg/day, respectively, due
to fish consumption (Table 2). In addition, fish contributes 2.66,
5.2, 18.66, 60.96, and 1.11% of TDIs from Pb, Cd, As, Hg, and
AL, respectively, for adults (Table 2). The readings were within the
tentatively acceptable daily intakes by World Health Organization
(48). The obtained THQ for Pb, Cd, Hg, and Al is below 1,
suggesting that fish consumption would not carriage any health
hazards due to these toxic metals. Nearly similar harmless THQ
were obtained due to the consumption of fish from Italian coasts,
Black Sea, and traditional fish farms in Bangladesh (30, 49, 50).
However, THQ values for As greater than one are not significant
for human health because the toxicological profile only refers to
inorganic chemical forms of As because organic forms of arsenic
are comparatively non-toxic to human health (51). According to
the worst-case scenario established, 10% of the As were assumed to

be inorganic (52). In the Risk Assessment Information System, the
slope factor value has been given for Pb and its compounds only. If
RI is >10−4 for all examined fish species, it indicates that lead from
fish flesh constitutes a hazard to human health.

Conclusion

The toxic metals could bioaccumulate in fish species; these
elements are very harmful because they are not biodegradable and
thus concentrate large amounts of them in their tissues. Therefore,
the estimation of the possible health risks associated with the
consumption of freshwater and marine fish is of great importance.
The high values for Al and As are recorded in freshwater and
marine water fish, respectively. The level of toxicmetals in some fish
samples exceeds the permissible limits set for these toxic metals by
the European Commission Regulation. The estimated daily intakes
(EDIs) of the metals were estimated as the means of Pb, Cd, As, Hg,
and Al in all fish samples and the mean consumption of fish per day
for adults, and the results were lower than the tolerable daily intakes
(TDIs). The target hazard quotient (THQ) and hazard index (HI)
of the considered metals were below the value of 1. Therefore, toxic
metals in the examined fish samples do not pose health hazards to
the Egyptian population based on the inorganic form of arsenic,
accounting for 10% of total As. Furthermore, future studies are
required for the fractionation of metallic and organic arsenic in fish
and other sea foods.
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