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The sex of the animals is of paramount importance in many animal production 
systems. This is particularly evident in the production of milk or in breeding 
programs focused on the production of female animals. In some cases, slaughter 
or euthanasia of animals of the unwanted sex becomes the only solution, 
highlighting ethical and economic concerns. As global demand for food continues 
to rise, the importance of addressing these issues becomes more evident. 
Reproductive technologies, such as sperm sexing techniques, may hold the key 
to addressing both animal welfare and the sustainability of animal production. 
The use of semen enriched with sperm capable of producing offspring of the 
desired sex can serve as a valuable tool for producers to exert greater control over 
production outcomes, not only helping to mitigate welfare issues related to the 
unnecessary premature death of unwanted offspring but also providing a possible 
ally in the face of stricter animal welfare guidelines. In addition, sexed semen can 
also contribute to financial gains and reduce greenhouse gas emissions and food 
waste associated with the less profitable part of the herd. This paper explores the 
positive impacts that sperm sexing can have on animal welfare, economy, and 
environment. It also discusses currently available options and strategies for more 
successful implementation of sexed semen. Partnerships between companies 
and scientists will be essential to find innovative ways to adapt current production 
systems and develop sperm sexing technologies that apply to most livestock 
industries.
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FIGURE 1

Total population estimates, between 1950 and 2020, in the world and by region (Africa, Americas, Asia, Europe, and Oceania), according to the United 
Nations database for World Population Prospects, accessed 2022-04-05 (14).

1 Introduction

The global food market is growing, as well as the demand for 
sustainable and animal welfare-focused production systems. The 
animal production sector has been associated with numerous 
scenarios that might compromise animal welfare and is commonly 
considered a relevant source of greenhouse gas (GHG) emissions 
despite this being a controversial topic, with opinions and statistics 
varying greatly among authors (1–3). These problems challenge both 
the animal production sector and scientists in the search for innovative 
ways of adapting the current animal protein supply systems.

The use of reproductive technologies, such as artificial 
insemination (AI), has aided animal production for high efficiency 
(4). In productions with a preference for one sex over the other, the 
implementation of sexed semen would allow for pre-selection of the 
offspring sex and, consequently, redirect production and increase 
efficiency and profitability (5, 6). However, this technology is 
predominantly established in cattle. Sexed semen sorted by flow 
cytometry or gender ablation with an accuracy greater than 90% and 
with fertilization rates similar to those of unsexed semen is already 
available for sale (7, 8). For other species, the utilization of semen 
sorted by flow cytometry remains unviable or generally unprofitable 
(5). The quantity of spermatozoa per straw is lower compared to what 
is considered an ideal insemination dose and the sperm quality is 
negatively affected, which may impair fertility (9). Therefore, these 
disadvantages limit its applicability to a broader range of species. In 
certain cases, the use of sexed semen has only been successful when 
large inseminating doses were used, or, in the case of small doses, 
when AI was performed by laparoscopy, which requires a greater 
financial investment in equipment and specialized technicians (10, 
11). Nevertheless, in the last decade, some solutions have begun to 
emerge in the market for species such as goats, sheep, pigs, horses, and 
dogs, and further research is warranted develop more affordable 

sexing technologies aiming at obtaining good quality semen doses 
(12, 13).

In this review, we will discuss the positive impacts that sperm 
sexing can have on animal welfare, economy, and environment, along 
with its limitations. We will also explore currently available sperm 
sexing techniques and strategies aimed at a broader implementation 
of AI with sexed semen.

2 Demand for protein of animal origin: 
what is the future?

Although the world population growth rate peaked in 1962–1963 
(2.2%) and has been declining since then, the world population is still 
growing rapidly (Figure 1) (15). A new significant population peak 
was reached in November 2022. There are currently about 8.0 billion 
people living on Earth and estimates are that there will be 10.4 billion 
by the 2080s (15, 16).

With the world population steadily growing and consumption 
rates on the rise, the necessity of ensuring a greater food supply, 
especially from protein sources, becomes increasingly evident. 
According to calculated data based on the latest estimation of the 
Food and Agriculture Organization of the United Nations (FAO) 
(Supplementary material S1), the average protein supply in the world 
increased by 10% (the equivalent of 7.5 g/capita/day) between 2000 
and 2018 (17). In some regions like Africa or Asia, this increase was 
even more striking, reaching 13 and 15%, respectively (17).

Animal-source foods provide proteins containing all amino acids 
in adequate quantities for human consumption and a wide variety of 
minerals, improving human nutrition and health (18). For example, 
deficiencies in some micronutrients present in meat were already 
linked to brain-related disorders. Some vegetables contain iron, zinc, 
and omega-3 fatty acids, but at lower amounts compared to animal 
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sources [reviewed in (19)]. This may be one of the reasons why protein 
of animal origin accounts for a sizable share of overall protein 
consumption. Animal-source foods have already been linked to better 
cognitive performance (20). Between 2000 and 2018, about 
38.5 ± 0.8%/capita/day of the protein supply in the world was of animal 
origin, with regions like the Americas, Europe, and Oceania 
registering about 47.8 ± 5.6%, 56.1 ± 0.4%, and 64.5 ± 0.7%, respectively 
(calculated based on FAO data (17); Supplementary material S2). An 
overview of the supply of animal-derived protein from 2000 to 2018 
is provided in Figure 2.

Meat is still one of the most popular high-quality protein sources, 
alongside milk, eggs, and fish (21). Every year, millions of animals are 
slaughtered for meat around the world (Figure  3; 
Supplementary material S3). Among some of the main species for 
meat consumption, such as cattle, goats, pigs, sheep, chicken, and 
turkey, chickens stand out massively, with about 70.8 billion 
slaughtered for meat in 2020, according to FAO (Figure 3A) (22). Pigs 
come next (~1.5 billion), followed by rabbits (~639.8 million) 
(Figure 3A). When it comes to meat consumption in tonnes, between 
2000 and 2020, pigs and chickens once again stood out, followed by 
cattle (Figure 3B) (22).

Meat consumption in most European nations is currently ranging 
between 70 and 90 kg per capita. Some countries consume more than 
100 Kg of meat per capita, such as Australia or the United States of 
America (USA) which has a considerable per capita intake of 120 Kg 
(23). Meat consumption by country appears to be positively associated 
with their economic growth throughout time. In only 22 years, the 
global consumption of beef and veal, pig, poultry, and sheep per year 
climbed by 107 million tonnes in the World, growing from 227 million 
tonnes in 2000 to 334 million tonnes in 2022 (24). Overall, the trend 
is to increase in the coming years (21). According to FAO estimates, 
global meat consumption is expected to reach an average of 455 
million tonnes by 2050 (25). However, several concerns arise with it.

Animal welfare, pollution, land and water use, and inherent 
biodiversity loss are just a few of the aspects that our current 
governments and society are concerned about, when it comes to 
intensive livestock production (1). When it comes to GHG emissions, 
it can be  challenging to determine the exact levels attributed to 
livestock, and, therefore, the numbers remain the subject of ongoing 
debate and controversy in the scientific literature. The discrepancy in 
values can be  attributed to various factors, including geographic 
location, the scope and subsections considered as part of livestock 
emissions, and the models used for predictions, with studies that 
account for all aspects of livestock production at a global level and 
others that are more centered in national emission statistics (26). For 
that reason, there is a wide range of values reported in the literature, 
with some authors pointing to higher emissions associated with the 
livestock production sector (27, 28), while others suggest that 
livestock contributes less than 3% of total anthropogenic GHG in the 
USA (26).

Apart from CO2, methane (CH4), and nitrous oxide (N2O) are 
reported as the most relevant GHG from animal agriculture, with an 
estimated impact on global warming 28 and 265 times higher than 
CO2, respectively [reviewed in (2)]. Also, animals grown for meat 
production require feeding. Around 40% of the wheat and corn 
produced in the world is utilized for this purpose (23). Given the rise 
in meat consumption, it is anticipated that at least 1.45 million tonnes 
of cereals will be employed as animal feed in 2050, representing the 

yearly calorie need (1 million Kcal/person/year) for more than 3.5 
billion people (29). If these projections prove true, we will need in 
2050 1.52 to 1.59 times the amount of wheat and corn currently 
produced (23).

In fact, we should not have to choose between producing enough 
food for the whole population and protecting our planet’s future (30). 
This is what defends the recent European Union Farm to Fork strategy, 
which aims “to make food systems fair, healthy and environmentally-
friendly” (30). Among others, there are discussion of how the 
European Union’s promotion program may support carbon-efficient 
animal production systems and how to drive a transition to healthier 
diets while reducing meat consumption. Other strategies have been 
advocated, such as organic meat production, or more extreme 
approaches such as prioritizing vegetarianism and meat substitution 
with synthetic meat and meat analogs (31).

Nonetheless, the decision to restrict meat intake should be made 
with caution. This might not be the greatest global solution. Animal-
source foods are lacking in the diets of almost 800 million people and 
are critical not only to improving health but also to the world economy 
(1, 32). Therefore, it is in the interest of the animal production industry 
to discover new solutions to ensure that consuming meat remains a 
healthy, eco/animal-friendly, and viable option in the future. 
Reproductive technologies might be the key.

3 Animal production systems and the 
role of reproductive technologies

Currently, animal management and reproductive improvement 
are essential to face competitiveness between companies and ensure 
economic gains. In fact, animal production is almost inextricably 
linked to biotechnological and assisted reproductive technologies 
(ARTs) (4). AI and in vitro embryo production are common examples 
(33, 34). Another option is sex pre-selection, which is based on the use 
of sexed semen for insemination (widely used in cattle production) or 
on the pre-selection of the sex of in vitro-produced embryos prior to 
transfer (33).

These techniques reduce generation gaps, increase access to 
genetics from top-performing animals, minimize the spreading of 
infectious or contagious illnesses between animals, and enable the 
protection of endangered animal species (35). However, their 
application varies between species. Cattle, pigs, sheep, goats, and 
rabbits may be the species for which AI is most accepted. Among 
others, AI is also used on dogs and horses, but it attracts less attention 
[reviewed in (36, 37)]. In the horse industry, despite AI being used in 
sport horses to breed top performers, some breed associations only 
accept registering the horse if it was conceived by natural breeding 
[reviewed in (36)].

Despite all the mentioned advantages, animal welfare and the 
company’s earnings may yet be improved by using new or improved 
reproductive technologies related to sex pre-selection. In some cases, 
there is a preference for one sex over the other due to differences in 
meat quality or ability to produce milk, or simply for the fact that 
some productions are directed towards either males or females (5, 
38–41). Therefore, sexing technologies could significantly benefit 
animal production systems, particularly in the case of cattle, swine, 
rabbits, and poultry, given the high annual slaughter rates of these 
species for meat consumption (Figure 3).
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FIGURE 2

Percentage of the protein supply per capita per day that it is from animal origin (A) and the average protein supply of animal origin (measured in g per 
capita per day) (B) between 2000 and 2018 (3  years-average), and the protein supply quantity (measured in g per capita per day) (C) in terms of bovine, 
mutton, goat, pig, poultry, and other meat between 2010 and 2019, in the world and by region (Africa, Americas, Asia, Europe, and Oceania), according 
to the FAO database, accessed 2022-02-21 (17). It includes calculated data (Supplementary material S2).
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3.1 Sperm sexing: an innovative tool for 
more sustainable systems

The perfect scenario would be to have an efficient, simple, and 
inexpensive approach that would allow the dissemination of 
sustainable productions from an animal welfare point of view, while 
also ensuring economic returns. Among the several ARTs listed, 
sperm sexing combined with AI has great potential to meet all these 

requirements. Sperm sexing per se allows the separation of a semen 
sample into two fractions, one carrying a large majority of X 
chromosome-bearing spermatozoa (X-sperm) and the other holding 
a large majority of Y chromosome-bearing spermatozoa (Y-sperm) 
(42). As a result, by employing sexed semen samples in AI programs, 
it is feasible to pre-select the offspring sex. Implementing this 
approach could lead to streamlined herd management, potentially 
accelerated herd expansion and genetic progress, and maximized use 

FIGURE 3

Animals produced/slaughtered (measured in heads) (A) and meat production (measured in tonnes) (B) for meat consumption in the whole world, 
between 2000 and 2020, according to the FAO database, accessed 2023-02-18 (22). According to FAO, it may include official, semi-official, and 
estimated, or calculated data. Raw data is available in Supplementary material S3.
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of resources, all while reducing wastage, as it will be further discussed 
(6, 42, 43). Therefore, it might be valuable to apply it to species other 
than cattle (5, 33, 41).

The state of the art regarding sperm sexing attempts and 
technologies is widely reviewed (41, 44–46).

Currently, sperm sorting by flow cytometry is the most accepted 
methodology. Semen is sexed based on the difference in DNA content 
between the sex chromosomes since the X chromosome has more 
DNA content than the Y chromosome. For example, in cattle, the 
X-sperm has about 3.9% more DNA than the Y-sperm, varying 
slightly among breeds (47). The technique was patented in 1992, 
improved, and employed in the US and Europe, but only for beef and 
dairy breeds (48, 49). Semen straws with 2 million sexed spermatozoa 
are widely commercialized with over 85–95% accuracy, and straws 
with 4 million are also available under the trade name SexedULTRA 
4 M (49, 50). As a result of the development of extenders and the 
implementation of SexedULTRA™ procedures, caprine sexed-sorted 
semen has also been commercially available since 2015, with a female 
sex purity of approximately 93% (51). Similarly, in 2018, ovine sexed-
sorted semen doses became available, usually ranging from 2–6 
million spermatozoa with a female sex purity exceeding 90% (51, 52). 
However, this procedure requires expensive equipment and specialized 
technicians, and it is still considered time-consuming (50). The 
process also negatively impacts semen quality, mostly because the 
external labeling combined with the exposure to laser light can 
damage or even kill the sperm cells (53, 54). Consequently, the 
conception rate and the number of fetuses tend to be  negatively 
affected, especially if no further quality selection process is carried out 
(51, 52, 55).

Several attempts have been made to find other techniques for 
sexing semen, like albumin gradients, Percoll gradient, swim-up, and 
H-Y antigen, but they have several limitations (42). De Luca et al. 
suggested Raman spectroscopy for sperm sexing based on biochemical 
differences mainly at the nucleus level (53). Centrifugation or 
microfluidics coupled with UV-absorbance spectroscopy may 
be another solution, based on possible X- and Y-sperm differences 
regarding density, charge, and shape (56, 57). High-precision 
techniques used for nanoparticle separation, capable of picking up 
nanosized differences, such as flow field-flow fractionation (FIFFF), 
are also promising options (58). So far, they are not yet implemented 
and/ or are still expensive.

Some other technologies have shown up in the market recently. In 
2017, ABS Global company launched Sexcel sexed genetics™, a 
gender ablation technology marketed for X-sorted semen of Holstein, 
Jersey, Norwegian Red, Angus, Red Angus, Brangus, Hereford, 
Simmental, Gyr, and Nelore cattle breeds (7, 59). It stains DNA with 
Hoechst 33342 to differentiate the X- and Y-sperm, and a laser 
destroys the Y-sperm (accuracy of around 85%) (36, 43, 60). Contrarily 
to flow cytometry, it does not divide cells into droplets and does not 
require cell steering, hence an electric field is not required (43). 
Additionally, the remaining cell debris does not appear to affect the 
conception rate (61). In 2020, gender-ablated semen performed at 
78% of unsexed semen in a field trial with beef heifers and cows. 
We should take into account that the gender-ablated semen straws had 
1.25 million normal progressive sperm post-thaw and the unsexed 
semen straws had approximately 9.17 million (60). The company 
advertises even better results, stating that compared to unsexed 
semen, Sexcel™ achieves a 90% relative conception rate to 

conventional semen (62). They also refer relative conception rates 3% 
(heifers) to 3.3% (cows) higher than those obtained with other sexed 
semen, based on more than 840.000 (>600 farms) and 280.000 (>450 
farms) inseminations, respectively (43).

Another novelty is the sperm sexing kits from Nuri Science Inc. 
(12). These kits are based on a patented additive containing an 
antibody that binds to a protein on the cell membrane of the head of 
Y-sperm, promoting their agglutination (63). Since Y-sperm 
agglutinates, X-sperm can fertilize more rapidly, thereby increasing 
the probability of a female pregnancy. Nuri Science Inc. offers 
commercially available WholeMom kits for bovine, equine, caprine, 
ovine, canine, and porcine species. The accuracy of these kits for 
predicting female gestations varies from 70% (in sows) to 90% (in 
heifers), depending on the species. They also offer a WholeMan kit 
designed to promote male gestations with an accuracy of over 90%, 
specifically for use in bulls, where the addition of a specific additive 
enhances the motility of Y-sperm over that of X-sperm. The company 
describes simple procedures, such as mixing the semen sample with 
the commercial vial and carrying out AI, in the case of the WholeMan 
kit, or mixing, incubating for 20–30 min, and then conducting AI, if 
using the WholeMom kit intended for heifers. Some variations are 
employed, such as an overnight incubation when using the 
WholeMom kit for sows (12, 64).

Aligning with this option, EMLAB Genetics kits have emerged, 
providing the flexibility to sex both genders and allowing sperm 
sexing of fresh and frozen-thawed samples for the same species as the 
WholeMom kits (13). In this case, the company offers several additives 
that can enhance the fertility and motility of X-sperm while ‘slowing 
down’ the Y-sperm, and vice versa. However, not much information 
is shared regarding the scientific basis of this process. Therefore, when 
the enriched sperm doses are used, spermatozoa are ‘sorted’ in the 
reproductive tract and more ova are fertilized by spermatozoa of the 
sex of interest. Regardless of the species, it is only necessary to 
incubate the semen sample with the additive for 10 to 30 min, at 
32–38.6°C, depending on the protocol, being then ready for 
insemination (13). According to EMLAB’s data, sperm sexing 
accuracy for female gestations for bovine is 75–90% if using fresh 
semen and 70–75% if using post-thaw semen; for equine is 65–85% if 
using fresh/cooled semen and 75% or 90% (depending on the product) 
if using post-thaw semen; for caprine is 75–90% if using fresh semen 
and 80–85% if using post-thaw semen; for ovine is 75–90% for both 
fresh and post-thaw semen; for canine is 75–85% either using fresh, 
cooled, or post-thaw semen; and for porcine is 80–90% for both fresh 
semen and post-thaw semen (13). Regarding the average sperm sexing 
accuracy for male gestations, for bovine is 75–90% if using fresh 
semen and 75% if using post-thaw semen; for equine is 65–85% either 
using fresh, cooled, or post-thaw semen; for caprine and ovine is 75% 
if using post-thaw semen; for canine is 75–85% either using fresh, 
cooled, or post-thaw semen; and for porcine is 80–90% for both fresh 
semen and post-thaw semen (13). The company also claims fertility is 
boosted by 5–25% when using their product, depending on the 
species (13).

Sexing technologies are also of interest to poultry producers since 
there are sex-related issues in egg production (65). Male layer chicks 
do not produce eggs and are not suitable for meat production due to 
their slow growth compared to broilers (65, 66). Therefore, culling at 
1 day old by maceration or gasification and use of the carcass for 
animal feed production is also the unique outcome for the majority 
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(67). Around 330 million day-old male chicks are being killed in 
hatcheries every year solely in the European Union (67). However, in 
contrast to mammals, male birds are homogametic, meaning that they 
possess two Z chromosomes, while females are heterogametic, with Z 
and W chromosomes [reviewed in (38)]. Therefore, since the sex of 
the offspring is determined by the female, sperm sexing technologies 
are not currently an option. Highly sensitive in-ovo sexing 
technologies are being considered, such as the use of visible near-
infrared point spectroscopy and two-wavelength fluorescence 
spectroscopy, or even the control of the environmental conditions of 
incubators to induce male-to-female conversion (68–70). Other 
techniques are reviewed by Gautron et al. (38).

While several sperm sexing options for various species have been 
discussed, the practical implementation of these techniques on a large 
scale in most farms may be limited by certain constraints. For example, 
the first practical limitation may be related to the few commercially 
available options and their respective accuracy in sorting X- and 
Y-sperm (summarized in Table 1), which implementation may or may 
not compensate depending on the profit potential associated with each 
animal. Rabbits currently lack commercially available options, and for 
species such as ovine, the availability of sex-sorted semen is limited 
due to a shortage of commercial sorting facilities worldwide (51, 52). 

Between 2018 and 2020, laboratories were established in the USA, 
United Kingdom/Europe, South Africa, and Australia/New Zealand 
for ram sperm sexing. Nevertheless, it is necessary to transport rams 
to the sorting facility for semen collection, and the AI procedure 
should take place at a location where the collected semen can 
be delivered within about 12 h after processing (52).

Also, the success of fertilization per se using sexed semen can 
be influenced by several factors. Although sexed insemination doses 
contain significantly fewer spermatozoa compared to unsexed 
semen doses, the success of the insemination may be  primarily 
determined by the quality and total number of viable spermatozoa 
per insemination dose (51, 71, 72). The timing of insemination 
should also be  considered since sex-sorted spermatozoa have a 
shorter lifespan than unsexed semen and complete the capacitation 
process sooner due to the semen-sorting process that partially 
induces capacitation-like changes [reviewed in (8)]. Other factors, 
such as the age and reproductive history of the animal, the type of 
ART used, synchronization protocols, estrus presence or absence, 
preovulatory follicle size (POFs) in the case of cattle, hormone-like 
substance administration, and even the technicians and heat stress 
may further impact fertility and pregnancy rates (9, 60, 73–77). 
These factors may also underlie the variations in success observed 

TABLE 1 Commercialized sperm sexing options for various species and their accuracy.

Technique Technique principle Target specie Cellular type Accuracy (%)

Flow cytometry X-sperm has more DNA content 

than Y-sperm, allowing them to 

be sorted

Bovine X-sperm 75% and 85–95%

Y-sperm 75% and 85–95%

Caprine X-sperm 93%

Ovine >90%

Sexcel sexed 

genetics™

Gender ablation Bovine X-sperm 85%

WholeMom kit 

(Nuri Science Inc.)

An antibody promotes the 

agglutination of the Y-sperm, 

slowing them down

Bovine X-sperm 90% (heifers)

Equine Not specified

Caprine Not specified

Ovine Not specified

Canine Not specified

Porcine 70% (sows)

WholeMan kit 

(Nuri Science Inc.)

An additive enhances the motility 

of Y-sperm over that of X-sperm

Bovine Y-sperm 90%

EMLAB Genetics’ 

kits

An additive enhances the fertility 

and motility of X-sperm while 

slowing down the Y-sperm

Bovine X-sperm 75–90% (fresh semen) 70–75% (post-thaw semen)

Equine 65–85% (fresh and cooled semen) 70–75% (post-thaw semen)

Caprine 75–90% (fresh semen) 80–85% (post-thaw semen)

Ovine 75–90% (fresh or post-thaw semen)

Canine 75–85% (fresh, cooled, or post-thaw semen)

Porcine 80–90% (fresh or post-thaw semen)

An additive enhances the fertility 

and motility of Y-sperm while 

slowing down the X-sperm

Bovine Y-sperm 75–90% (fresh semen) 75% (post-thaw semen)

Equine 65–85% (fresh, cooled, or post-thaw semen)

Caprine 75% (post-thaw semen)

Ovine 75% (post-thaw semen)

Canine 75–80% (fresh, cooled, or post-thaw semen)

Porcine 80–90% (fresh or post-thaw semen)
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across studies and species when employing sexed semen for 
animal reproduction.

In summary, despite recent advancements, research on new or 
improved sperm sexing methods and other reproductive technologies 
must be a priority in the field in the upcoming years, moved by the 
potential of this technology to improve animal production.

4 Implications of sperm sexing 
technologies in animal welfare, 
economy, and sustainability

The widespread implementation of sperm sexing technologies in 
the animal production sector would contribute to meeting goal 
number 9 (build resilient infrastructure, promote including and 
sustainable industrialization, and foster innovation) and goal number 
12 (ensure sustainable consumption and production patterns) of the 
United Nations’ 2030 Agenda for Sustainable Development (78). The 
potential for a significant and favorable impact of sperm sexing on 
animal welfare, on the economy of the companies, and even on the 
environment will be explored further below.

4.1 Animal welfare

It is undeniable that animal welfare is an important aspect of 
animal production, and its definition does not differ greatly across the 
population, at least in Europe. According to a survey carried out in 
2015 among 27,672 citizens of 28 members of the European Union, 
46% of the participants defined animal welfare as the need to respect 
all animals and 40% as the way farmed animals are treated in an 
attempt to provide them with a better life (79). Based on the same 
survey, evidence suggests that the animal production sector should 
take animal welfare more seriously in their management policies. A 
significant majority of 94% of respondents expressed the belief that 
safeguarding the welfare of farmed animals is essential. Additionally, 
82% of the participants agreed that animal welfare should be better 
protected than it is in the present state and 62% strongly agree that 
imported products from outside the European Union should adhere 
to the same animal welfare standards as those within the European 
Union (79).

In fact, for many years, the well-being of farm animals was 
essentially perceived and evaluated in terms of their productive 
potential (80). However, despite awareness and technological 
improvements, numerous problems still constantly disturb the 
guarantees of welfare, such as housing conditions, separation of 
mothers and offspring, stress related to transport, and social isolation 
(80–82). A recent brief communication points out welfare issues per 
se in this industry after observing that, among 355 male dairy calves, 
20% arrived at auctions and calf-rearing facilities in North America 
with at least one health problem (83). According to the authors, calves 
in suboptimal conditions can be sold, for example, for 23 to 90% less 
than predicted depending on the breed and genetics, or even not sold 
at all (83).

Animal welfare can be threatened in other ways and literature 
reports several weaknesses where the use of sexed semen may benefit 
animal well-being. One of them is the birth of animals of less 
productive sex, such as male calves, goats, and buffaloes on dairy 

farms (40, 66). Nonetheless, the rearing costs coupled with the low or 
no economic value of the animals have already made euthanasia after 
birth an occasional outcome for male dairy calves (84–86). Several 
initiatives are now ongoing with the ambition of ending the euthanasia 
of calves by 2023 and promoting responsible breeding strategies to 
minimize the number of calves born without a market (85). 
Partnerships between dairy and beef productions are one of those 
initiatives, allowing the use of surplus male dairy calves for meat. 
Coupling this with the use of sexed semen is also a promising 
mitigation strategy (86). Also in the dairy goat industry, buck kids are 
either sent to fattening facilities, where they mix them with kids from 
various farms, increasing stress and disease risks, or they are fattened 
on the farm, which may result in suboptimal conditions for them due 
to space constraints. Proper care practices, such as colostrum 
provision and hygiene, are vital but may be overlooked because buck 
kids are not a significant source of income for farmers. The same may 
happen for surplus males of other species, impacting their welfare and 
health [reviewed in (87)].

In swine production, sperm sexing technologies can also 
be beneficial. Castration has traditionally been a common solution to 
address the aggressive sexual behavior of male pigs and the 
development of a pungent odor in their meat, known as boar taint 
(88). Nevertheless, castration is often performed without pain 
treatment or anesthesia, which poses associated risks and discomfort 
for the animals. This practice is currently under increased scrutiny 
(89). Even if it depends on each producer’s goals, by using sperm 
sexing technologies, producers would have the option to prioritize the 
production of female pigs, thereby minimizing both situations and 
contributing to improved welfare conditions in production 
systems (90).

The growing global demand for food also puts pressure on 
livestock to intensify production, which, in turn, threatens animal 
welfare (82, 83). In cuniculture, it is common to employsemi-intensive 
systems lasting 42 days, where does are inseminated or mated 11 days 
after parturition. However, certain studies have shown that extensive 
systems lasting 56 days (with a 25 days pause) offer advantages, such 
as better body energy balance (91), improved overall body condition 
(91, 92), increased fertility rates (93, 94), and reduced kitten mortality 
(95). Some also argue that this type of system, which involves the 
insemination of does only after weaning, may be more suitable for 
primiparous does than intensive systems (93). Nevertheless, if there is 
a preference for one of the sexes, the use of sexed semen of comparable 
quality to unsexed semen would be  a valuable tool, allowing for 
obtaining the usual number of desired animals in a shorter timeframe. 
This would be possible since every gestation would result in the birth 
of a large majority of animals of the intended sex, contrary to what 
happens when unsexed semen is used, where the odds are 50–50% (5). 
Furthermore, in polytocous species like rabbits, even sexed semen 
doses with lower accuracy rates can be  beneficial, as a lower but 
consistent deviation will still significantly increase the production of 
the desired sex (5). Therefore, the introduction of sexed semen of 
adequate quality in cuniculture might have the potential to reduce the 
number of females required for breeding per farm, while still achieving 
the desired number of animals of the intended sex per year..

Also, both heifers and cows commonly experience constraints 
such as dystocia, which refers to abnormally protracted or slow labor 
(96). Using sexed semen may provide a potential solution to mitigate 
this issue (97). Female calves are smaller than male calves. Hence, 
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these incidents could be  reduced with the use of X-sperm (98). 
According to some reports, the utilization of sexed semen reduced 
challenging births by 28% for heifers and 64% for cows, as compared 
to unsexed semen (97).

4.2 Economy

Despite the use of sexed semen being more expensive than 
unsexed semen, in many cases it tends to be economically justified 
(42, 99). One of the major advantages lies in the potential utilization 
of such technology in breeding farms that specialize in selling 
replacement females or males, or in markets that may have a 
preference for one gender, such as dairy production and breeders of 
certain horse and dog breeds (5, 41, 56, 76, 90). For those, the ability 
to choose the sex of the animal would be  a tremendous asset in 
directing production exclusively towards the desired offspring, thereby 
improving efficiency and providing a competitive advantage and 
potentially higher profits for producers (5, 41). In dairy farms, female 
dairy calves are more valuable than male dairy calves. As an unwanted 
by-product of breeding with conventional semen, the surplus male 
animals can be  exported for veal production or reared for meat 
production, but producers have low monetary returns with them (6, 
86). Furthermore, in cases where producers opt to euthanize male 
dairy calves, their carcasses are usually simply destroyed (66). Events 
like this represent relevant economic losses for producers, considering 
the production and feeding costs they have with the mothers. In the 
case of rabbits, females intended for reproduction are also significantly 
more valuable than the males born in their respective litters. 
Additionally, these males lack the ideal characteristics for meat 
production, resulting in little to no profit for producers (5, 41). When 
it comes to horse breeding, the choice of gender preference may vary 
by discipline. In the context of Polo sports, Quarter horse racing, and 
cutting horses, mares are typically preferred over stallions, whereas for 
Thoroughbred racing, dressage, reining horses, and show jumping, 
males are generally preferred over mares. Consequently, the same 
benefits apply in these cases [reviewed in (76)]. Some dog breeders 
also have a preference for one of the sexes, and, as such, combining 
sperm sexing with their polytocous nature, would offer the potential 
for market improvement through the production of larger same-sex 
litters (56). Nonetheless, it is noteworthy that research exploring sexed 
semen application in dogs remains particularly scarce (56, 100). 
Therefore, overall, the possibility to pre-select the preferred sex has the 
potential to improve the efficiency of these farming systems (42, 97). 
Other critical aspects that highlight how farm economies can benefit 
from this reproductive technology will be explored, as well as the 
challenges encountered.

4.2.1 Cattle
Economic benefits of using sexed semen in dairy productions also 

include the added value of cross-bred calves not used as substitutes, 
enhanced herd turnover rates leading to cost savings, reduced 
expenses associated with dystocia management, and increased genetic 
progress rate (101–103). The possibility of selecting the sex of the 
animals may be, therefore, decisive for farm profitability in beef and 
dairy cattle (42, 104) and may help to mitigate the challenges that 
we have already addressed (6, 83).

According to our experience, the cost of bovine sexed semen 
above unsexed semen can be easily about 20€ per dose (Table 2), 
which discourages many producers from implementing it. A recent 
pilot survey also demonstrated that farmers were not up to date on the 
advantages and current advances in sperm sexing technologies (86).

Several studies, primarily developed in cattle, have compared the 
tangible economic benefits of using ARTs, such as AI, with sexed and 
unsexed semen, emphasizing the advantages of preselecting the sex of 
offspring (99, 102, 105). A model-based study in 2007 calculated the 
expected net present value of AI with (un)sexed semen in dairy heifers 
(106). They considered three different scenarios, where the conception 
rates when using sexed semen would be 53, 75, and 90% of those 
achieved when using unsexed semen (106). They concluded that the 
net present value of sexed semen would only compensate when 
conception rates were 90% of those achieved with unsexed semen 
(106). Conception rates of this order for sexed semen are rather 
optimistic, although already described in an unpublished field trial 
that compared fresh sexed semen with frozen unsexed semen 
(Livestock Improvement Corporation (LIC) 2012, as cited by Butler 
(107)). However, other possible biosecurity and animal welfare-related 
benefits of its use that were not taken into account in those models 
must be weighed when evaluating the pros and cons of sexed semen 
implementation (106). Furthermore, according to Osada and 
colleagues, the utilization of sexed semen in a dairy farm holds the 
potential for significant benefits. It has been shown to improve the 
birth rate of heifers, thus enabling a more refined selection process for 
replacement females based on their genetic potential for milk 
production (102). Also, in their study, using sexed semen provided a 
more profitable price per female calf than using unsexed semen, as the 
higher female production rate offset the decreased conception rates. 
Nevertheless, according to the authors, special attention should 
be paid to maintaining the standards of cattle rearing when using 
frozen-thawed X-bearing semen, so that the pregnancy rate does not 
decrease (102). A previous study on Holstein heifers also revealed 
better results when using sexed semen compared to unsexed semen 
(105). Although the conception rate was slightly lower when sexed 
semen was used (31.6% vs. 39.6%), it allowed a yield of 86% heifers 
instead of only 48% obtained for unsexed semen. Abortion rates (6.1% 

TABLE 2 The average price ranges for bovine unsexed and sexed semen doses with different sperm number and accuracy, according to our experience 
and business partners.

Production purpose

Average price ranges per dose of semen

Unsexed (8  M)
Sexed X (2  M; 

A.75%)
Sexed X (2  M; 

A.90%)
Sexed X (4  M; 

A.90%)
Sexed Y (2  M; 

A.90%)

Milk 9–30€ 12–14€ 23–42€ 41–55€ NA*

Meat** 5–6€ NA* NA* NA* 26–36€

Semen straws can have 2 million (2 M), 4 million (4 M), or 8 million (8 M) spermatozoa, and be sorted with an average accuracy of 75% (A.75%) or 90% (A.90%). *NA, not available and 
**Common breeds: Aberdeen-Angus and Limousine.
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vs. 6.5%) were similar (105). Still, this was a retrospective study where 
the same conditions were not always used and, therefore, the impact 
on the conception rates and others cannot be attributed exclusively to 
the type of semen used for insemination. Another recent study on 
Holstein heifers showed an even better conception rate when using 
sexed semen (47.3%), despite still slightly inferior to when using 
unsexed semen (56.9%) (108).

Given that several factors may influence the performance of sexed 
semen, ensuring profitability entails careful consideration of strategies 
for successful implementation with favorable financial returns. Since 
the application of sexed semen is of interest across various species, 
studies that explored methods to enhance the implementation of 
sexed semen in cattle farming were reviewed. These studies, whether 
based on field tests or predictive models, are discussed below, and 
some major findings are synthesized in Table 3.

Researchers have investigated how the reproductive performance 
and proportion of females of the overall herd inseminated with sexed 
semen can determine the extent of financial returns. As reported by 
Norman and collaborators (2010), the conception rate and 
performance of sexed semen may differ between heifers and cows 
(97). Although the number of inseminations per group varied, as well 
as other factors since this was a retrospective study, when using sexed 
semen the mean conception rate for heifers and cows was 39 and 25%, 
respectively (97). Moreover, Kawano and collaborators (2014) 
recommended that producers should use sexed semen on at least half 
of the inseminations and must carefully choose the females to ensure 
a conception rate of at least 45% [(114) as cited by (102)].

Therefore, the phased implementation of sexed semen, combined 
with other breeding tools, can enhance the net income and genetic 
level of the herd. Sexed semen can be used first to inseminate heifers 
of genetic interest, while conventional semen is used for the others 
(99, 107, 115). Then, over time, sexed semen can be introduced to 
manage the overproduction of animals of unwanted sex. Simulation 
models have been used to predict economic returns in several 
scenarios. Based on the combination of two stochastic simulation 
models that take into consideration operational (SimHerd) and 
genetic (ADAM) returns, net returns can increase if using sexed 
semen in 75% genetically superior heifers and beef semen in 70% 
genetically inferior cows (99). However, those gains showed to 
be herd-specific and only attainable in herds with high management 
for reproductive performance. In herds with average management 
levels, net returns decreased. Furthermore, none of the scenarios were 
viable when the value of the increased genetic level was not taken into 
account (99). In a more recent study, the possible outcomes in terms 
of the total economic return in dairy farms were studied. This study 
focused on the interaction of sexed semen with three additional tools: 
terminal crossbreeding, genomic testing, and semen of beef breeds 
(109). The authors concluded that the highest economic return was 
achieved by combining both genomic testing and crossbreeding, with 
90% sexed semen used in heifers and 45% in first-parity cows for 
Swedish Holstein, or with 90% sexed semen used in heifers for 
Swedish Red. Moreover, although compensated by the operational 
return, terminal crossbreeding resulted in lower genetic returns 
compared to pure-breeding scenarios (109).

Regarding technical factors, some studies have been performed to 
investigate which would be the optimal timing of insemination to 
achieve the best pregnancy rates when using sexed semen. Guner et al. 
inseminated Holstein dairy heifers 12–16 h, 16.1–20 h, or 20.1–24 h 

after estrus (110). As expected, heifers showed a 12% higher pregnancy 
rate when AI was performed closer to the ovulation time (20.1–24 h) 
(110). Previous research has shown results that also support that 
delaying AI to some extent when using sexed semen promotes higher 
pregnancy rates, mentioning several time points such as 16.1–24 h 
(virgin Jersey heifers) and 23–41 h (lactating Jersey cows) after oestrus, 
and 0–12 h before ovulation (Nelore cows) (111–113). On the other 
hand, the number of pregnancies per AI did not improve when Chebel 
et al. delayed the time of insemination with sexed semen by 12 h (71). 
The authors hypothesized that their results may have been affected by 
the broad differences between the initiation of estrus and AI among 
treatments (71).

It should be noted that estrus detection is a critical and not simple 
step influenced by inter-animal variation. Correct estrus identification 
may be challenging since it takes a high level of competence to identify 
estrus signals. Otherwise, this can be reflected in erroneous reports 
and, consequently, in establishing the wrong optimal period to 
perform AI. Alternative approaches for estrus detection are available, 
such as recording body temperature and vaginal mucus resistance 
changes [reviewed in (116)]. The number of steps also increases closer 
to estrus. Hence, pedometers can help in properly detecting the onset 
of estrus and predicting the time of ovulation, contributing to more 
successful inseminations (117).

On the other hand, the need to monitor and breed each cow 
individually results in a less streamlined and perhaps less efficient AI 
program, depending on available resources. Hence, other options, 
such as hormonal synchronization protocols coupled with a fixed-
time AI, are also commonly used and well-documented in both dairy 
and beef cattle. By synchronizing the estrus cycles of a group of cows, 
all cows can be  inseminated at the same time, allowing better 
management of insemination timing. It is even described that the total 
pregnancy rate per breeding season can be higher when synchronizing 
cows compared to non-synchronized systems (87.5% vs. 75%, 
respectively), due to the possibility of introducing an extra estrus cycle 
in a standard 42–44 days breeding season (118). According to a recent 
study that involved almost 900 heifers/cows from six different herds, 
synchronized with the 7 d CO-Synch plus CIDR protocol, the 
combination of Sexcel™ gender-ablated semen coupled to a fixed time 
AI can be used successfully if animals exhibit estrus (60). Diniz and 
collaborators (2021) compared pregnancy rates in Nelore cows 
inseminated with sexed semen or conventional semen, with the 
absence or expression of estrus while using PGF2α at the moment of 
AI in a progesterone(P4)/estradiol(E2)-based timed AI protocol. They 
found that cows that evidenced estrus at timed AI showed better 
fertility and that the use of PGF2α at the time of AI seemed to increase 
the pregnancy rate in animals that did not exhibit evident signs of 
estrus, regardless of the semen type. Nevertheless, conventional semen 
performed better than sexed semen (74). Another study showed that 
larger POFs were associated with earlier ovulation and demonstrated 
that the fixed-time AI protocols can therefore be  improved by 
adjusting the time of AI according to the diameter of the POF (75). 
Several studies are looking at the best protocol for fixed-time AI 
coupled to sexed semen that can easily be performed on farms, mainly 
because it does not depend on the accuracy of estrus detection, and 
treatments available have been previously reviewed (119–121).

The technicians’ experience was also found to influence the 
success of AI when employing sexed sperm and, therefore, they must 
be trained regularly (72, 110). Additionally, Oikawa and collaborators 
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TABLE 3 Strategies for cost-effective implementation of sexed semen in the cattle industry.

Aim Breed Evidence Estrus detection Strategy Reference

To achieve higher pregnancy 

rates based on the animal’s 

reproductive performance

Holstein (heifers and cows) Experiment N/A To prioritize the insemination of heifers instead of cows (97)

To increase the overall net 

return and genetic level 

through a phased 

implementation of sexed 

semen

Not specified Model-baseda N/A To have a herd with high management for reproductive 

performance and to inseminate 75% of the genetically superior 

heifers with sexed semen and 70% of the genetically inferior 

multiparous cows with beef semen. Changes in the genetic level 

have to be considered

(99)

To achieve the highest total 

economic return through 

dairy crossbreeding and 

genomic test

Swedish Holstein Model-basedb N/A Use 90% sexed semen in heifers and 45% sexed semen in first-

parity cows combined with genomic test and crossbreeding (+58€, 

33% crossbreds in the herd)*

(109)

Swedish Red N/A Use 90% sexed semen in heifers combined with genomic test and 

crossbreeding (+94€, 46% crossbreds in the herd)*

To increase the pregnancy 

rate based on the time of AI

Holstein (dairy heifers) Experiment An accelerometer system and a neck collar 

comprising an electronic identification tag

To inseminate 20.1-24 h after estrus detection, coupled with a 

temperature-humidity index at the time of artificial insemination 

below 65

(110)

Jersey (virgin heifers) Tail-head chalk (checked twice a day for removal) To inseminate 16.1–24 h after estrus detection (instead of 12–16 h) (111)

Jersey (lactating cows) Tail-head chalk (checked daily for removal of tail 

paint or standing estrus) and secondary signs 

evaluation (increased nervousness and activity, 

walking the fence line, and swelling and reddening 

of the vulva)

To inseminate 23–41 h after estrus detection (instead of ≤3 h, 

4–12 h, 13–22 h, and ≥42 h)

(112)

Jersey (dairy heifers) N/A To inseminate 60 h after the removal of the intravaginal 

progesterone device (instead of 54 h)

(113)

Nelore cows (suckled, 

multiparous)

N/A To inseminate 60 h after the removal of the intravaginal 

progesterone device (instead of 48 h or 36 h) OR To inseminate 

0–12 h before ovulation (compared to 12–24 h and >24 h)

*Compared with a pure-breeding scenario, without sexed semen and genomic test; AI, Artificial insemination; N/A, Not applicable. aCombination of two stochastic simulation models: SimHerd and ADAM.
bCombination of two stochastic simulation models: SimHerd Crossbred (operational returns) and ADAM (genetic returns).
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(2019) found that during the warmer months (June, July, and August) 
heifers inseminated with sexed semen had an especially lower 
conception rate than those inseminated with unsexed semen (108). 
Therefore, heat stress can be another point to consider for a more 
careful implementation of AI with sexed semen.

Additionally, some authors suggest the use of sexed semen in 
combination with in vitro embryo production, where oocytes are 
harvested from a donor female, fertilized in vitro, and then the 
embryos are transferred to recipients (122). The main advantages are 
that the producer can choose the female and male coupling based on 
their genetic traits and that fewer sexed spermatozoa are needed per 
oocyte for in vitro fertilization compared to regular AI. This allows for 
an increase in the number of offspring per female and contributes to 
accelerated genetic progression while redirecting production solely 
toward the desired sex (122, 123). Yet, its success also depends on 
several factors [reviewed in (122)]. The use of this methodology with 
transfer to beef recipients to obtain sex-specific offspring in cattle has 
already been described as a viable large-scale production system (122). 
In a 2016 study, it was observed that pregnancy rates were even better 
when using sexed semen in combination with fixed-time embryo 
transfer of in vitro-produced embryos in cattle than with fixed-time 
artificial insemination (124).

We will now discuss the existing literature on the economic 
benefits of having such technology for other species, beyond cattle, as 
well as some preliminary results of its use, when available.

4.2.2 Small ruminants
Sheep and goats continue to be among the most consumed species 

and meat production goes hand in hand with other management 
systems applicable to these species, including milk and wool 
production. The prospects are that their market will gradually expand 
in the upcoming years (51).

In sheep farms where artificial insemination is already a standard 
practice, in addition to the potential for streamlining flock 
management and increasing revenue through the sale of rams, 
adopting a cost-effective insemination protocol with sexed semen 
could result in reduced expenses related to progeny testing and 
enhanced genetic progress rates (125, 126). Moreover, woolgrowers 
would be able to concentrate their selection efforts on a specific ewe 
lineage (125).

The first attempts to inseminate ewes with sexed semen were not 
successful or profitable due to challenges related to impaired sperm 
transport, as well as the high selectivity of the ewe’s cervix [reviewed 
in (11)]. This was overcome with the development of new insemination 
technologies, such as laparoscopy where the inside of the abdomen is 
accessed (11). De Graaf and collaborators investigated the use of 
laparoscopy combined with sexed semen in Merino ewes that were 
synchronized with progestagen pessaries, PMSG, and GnRH 
treatments (11). The ewes were inseminated with varying doses of 
motile frozen spermatozoa, either sexed (S) or unsexed (U). The doses 
included 1 × 106 (S1/U1), 5 × 106 (S5/U5), and 15 × 106 (S15/U15) 
spermatozoa. A control group was included, where ewes were 
inseminated with 50 × 106 motile unsexed frozen spermatozoa (U50). 
Ewes’ lambing rate was similar for the U50 (63.2%), U15 (68.5%), S15 
(66.7%), S5 (66.1%), and S1 (61.5%) groups. However, the success rate 
was lower for the U5 (39.5%) and U1 (34.5%) groups. Additionally, 
the lower doses of sexed semen (S1 and S5) resulted in greater 
pregnancy rates than the respective unsexed doses (U1 and U5) (11). 

These findings, according to the authors, have also significant 
implications for the sexed sperm production industry in sheep. Part 
of these positive results may be attributed to the fact that the sexed 
samples were previously analyzed, and only motile spermatozoa were 
utilized. Additionally, laparoscopic insemination has proved to be of 
great value in consistently achieving satisfactory results when using 
sexed semen, especially with low insemination doses (11). However, 
the equipment is expensive and it requires surgical expertise to 
be performed [reviewed in (10)]. By reducing the effective number of 
spermatozoa, the cost of production per dose can be decreased.

The same author also conducted an interesting investigation into 
the fertilizing capacity of frozen sexed ram semen in superovulated 
ewes, as well as the quality and survivability of the collected embryos 
that were transferred immediately into the uterine lumen of 
synchronized recipients (77). The study involved inseminating ewes 
with motile sexed (15 × 106 spermatozoa) and unsexed semen (15 × 106 
and 30 × 106 spermatozoa) to evaluate the efficacy of the process. 
Donor animals were synchronized using an intravaginal progestagen 
pessary and GnRH protocol, and then superovulated with PMSG and 
FSH before insemination. The study revealed that 92.5% of the 
embryos were born of the predicted sex after AI with sexed semen. 
Furthermore, the number of transferable embryos, pregnancy rate, 
and embryo survival rate were very similar between the two groups of 
animals. This indicates that the flow cytometry procedure used in 
sexing the semen did not affect the in vivo fertilization capacity of the 
ram spermatozoa in superovulated ewes, nor did it negatively impact 
the survivability of the resulting embryos (77). Thus, the results 
obtained in these de Graaf studies may be  useful for the sheep 
industry’s sustainability and profitability (11).

As far as goats are concerned, in addition to the direct value for 
dairy farms, this technology also has the potential to expedite herd 
expansion and enhance its profitability, while maintaining a high level 
of biosecurity (51, 87). In 2013, it was demonstrated for the first time 
the successful sorting and cryopreservation of caprine semen, along 
with the birth of kids through laparoscopy (127). In this specific study, 
the use of freeze-thawed sexed semen resulted in lower fertility rates 
when compared to unsexed semen (38% vs. 50%, respectively). Yet, 
other studies have reported similar conception rates to those observed 
with unsexed semen, ranging from 36 to 57%. These rates depended 
on the specific study conditions, including the number of spermatozoa 
per dose and whether the semen was fresh or frozen [reviewed in 
(51)]. Nevertheless, it should be  mentioned that laparoscopy is 
restricted in certain countries due to concerns about potential 
increases in animal stress and, ultimately, pain [as cited by (87)].

Transcervical insemination is also considered, as goats are the 
most suitable among small ruminants for this procedure, although the 
level of difficulty may vary between breeds. However, it is not yet well 
defined whether this method yields similar pregnancy rates as the 
traditional higher doses of unsexed semen [reviewed in (51)].

The combination of AI with embryo transfer programs and estrus 
detection has also been a great ally for goat dairy farms, allowing for 
genetic improvement and reducing generation interval. Similar to 
what has been described for other species, integrating these programs 
with sexed semen may also contribute to the profitability of 
production (128).

Studies conducted in the context of improving the implementation 
of sexed semen for small ruminants were recently reviewed by 
González-Marín et al. (51). The authors emphasize that while the 
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small ruminant industries have begun testing the use of sexed semen 
in recent years, further research is required to determine the optimal 
synchronization protocols, timing of AI, and the ideal insemination 
dose (51).

4.2.3 Pigs and rabbits
Besides the advantages already discussed for swine and rabbit 

production, the utilization of sexed semen can also be beneficial for 
both species due to differences in the palatability of meat between 
females and males (5, 88, 90). Particularly in swine production, to 
prevent boar taint and ensure the consumption of male meat, 
producers routinely perform castration. However, because regular 
castration without anesthesia or analgesia is likely to be outlawed in 
the future and the sensory perception of eating quality is important, 
immunocastration and new ways of detecting boar taint, such as the 
detection at-line with laser diode thermal desorption tandem mass 
spectrometry, have arisen as a more animal-friendly option (88). Still, 
the need to adjust slaughter lines and the considerable investment 
required to implement this technique make the investment in female 
production a desirable economic and welfare option (88, 90). 
According to a recent study on crossbred pigs, if slaughtered with 105 
Kg or 117 Kg, females (gilts) allow for one of the highest gross margins 
per pig operation per year (GMppy; 74€ and 72€, respectively) 
compared to castrated males (barrows), entire males, and 
immunocastrated males. Only entire males of 117 Kg allow a higher 
GMppy (80€). The fact that weight contributes to production efficiency 
should not be overlooked, as slaughtering gilts that weigh 130 Kg can 
represent a 60% decrease in the GMppy (129). Also, Serrano and 
coworkers (2008) reported that intact female pigs were more profitable 
for intensive production of Iberian pigs than castrated males and 
castrated females. These results are supported by the fact that they eat 
less and have less carcass fat and more primal cuts yield. They also 
tend to have greater feed conversion (130).

Nonetheless, most female pigs are artificially inseminated with 
refrigerated semen (~1–3 billion spermatozoa/dose, depending on the 
AI procedure), since boar cryopreserved semen has limited efficiency. 
Therefore, the implementation of sex-sorted semen still presents some 
challenges, not only because sex-sorted semen is commonly 
cryopreserved, but also because a particularly high number of 
spermatozoa per insemination dose is required for AI in pigs 
[reviewed in (37, 131)]. Laparoscopic insemination, by allowing 
sperm deposition directly into the utero-tubal junction and/or the 
oviduct, has already been described as an option for successful 
inseminations using only 1–3 million liquid-stored sexed spermatozoa. 
Despite fertility rates of over 70% and convenient insemination doses, 
this method is very costly, requires skills, and needs to be applied 
shortly before ovulation for maximum fertility [reviewed in (10, 131)]. 
Thus, this may represent an opportunity for sperm sexing kits that can 
be applied to both fresh and cryopreserved semen, like the WholeMom 
kit for sows and the EMLAB Genetics’ PIGPLUS™ and BOARPLUS™ 
kits, mentioned previously, even though there is not much available 
data regarding their performance and success.

In the case of rabbits, male meat also tends to have a stronger odor 
than female meat, possibly explained by significantly different 
concentrations of volatile compounds and, therefore, certain 
individuals may prefer female rabbit meat (132, 133). In terms of meat 
quality, studies tend to show similar results when comparing meat 
from both sexes, but a recent study showed higher vitamin A content 

in female meat [reviewed in (134)]. The aroma flavor characteristics 
of cooked meat play one of the most important roles in acceptance and 
preference by consumers, and therefore, since the market position is 
accompanied by consumers’ preference (135), aroma desirability may 
bring a possible problem for rabbit production itself, if a preference 
for female meat prevails. This can also undermine the financial return 
that companies focused on selling does for breeding purposes could 
get from surplus males.

4.2.4 Horses
For instance, in horses, the artificial insemination procedure alone 

is more labor-intensive, with conventional in vitro fertilization yielding 
limited success, primarily due to the sperm’s inability to penetrate the 
oocyte, often because of incomplete capacitation (76). Nevertheless, 
in addition to the available immunological kits, it is possible to find 
few equine breeding centers around the world offering sperm sexing 
options, such as sexed fresh semen for mares residing on specific 
farms or sexed frozen semen for use in Intracytoplasmic Sperm 
Injection (ICSI) programs, with pricing packages starting at 
approximately 1,000€ (136).

ICSI offers the advantage of requiring only one selected 
spermatozoon that is injected directly into the oocyte, enabling the 
use of semen samples even if they contain a lower number of viable 
sperm. This may be particularly relevant with stallion frozen–thawed 
semen and sexed semen samples. Nonetheless, this type of selection 
bypasses natural processes, allowing for the possibility of choosing 
sperm with DNA damage or abnormal internal structure, which could 
potentially have adverse effects on embryo development [reviewed 
in (76)].

According to some other studies performed in mares, when 
inseminating them into the tip of the uterine horn ipsilateral to the 
preovulatory follicle with 25 million sexed or unsexed progressive 
motile spermatozoa pregnancy, rates of 30–50, and 57% were 
obtained, respectively (137). In another study that used the same 
method of insemination coupled with an insemination dose of 40 
million sexed spermatozoa (45–55% progressively motile), a 
pregnancy rate of 54% was obtained (138). In other studies, while 
employing hysteroscopic insemination, a similar pregnancy rate of 
around 40% was observed when using either 5 million sexed or 
unsexed motile spermatozoa (139), and a pregnancy rate of around 
72% was achieved when using 20 million refrigerated (15°C) sexed 
spermatozoa (140).

Therefore, based on these limitations and preliminary results, 
sperm sexing is still not widely applied in horses (12, 13).

As we  delve into the implementation of sexing technologies, 
independently of the species, we should be aware that it may represent 
an increase in the final cost for consumers. However, the implications 
on the final cost of products derived from welfare-friendly productions 
are not universally accepted, although the welfare status of animals is 
important for consumers. As shown in the 2015 European 
Commission survey, around 59% of participants are willing to pay 
more for these types of products. Nevertheless, 35% of them are only 
happy to pay up to 5% more than current prices, while a sizable 35% 
of European citizens do not want to have additional expenses (79). 
Therefore, to address the challenges associated with rising prices, 
farmers must have a close relationship with researchers so that 
technologies can be improved to the point where their application 
does not affect sales.
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4.3 Environment

Climate change, endangered species, and livestock production 
must go hand in hand since not only animal production can impact 
the environment but also animals can be affected by climate changes.

Therefore, climate change mitigation strategies must go through 
adaptation in animal production (33, 141). Part of the negative 
impact of livestock on the environment is related to animal feeding 
and the emission of GHG (142). Ruminant CH4 emissions and the 
impact of those enteric gases, for example, are a subject of public 
discussion (141). Those emissions and their increase are related to 
the amount of forage digested and high levels of performance (141, 
142). Although different types of production imply different levels 
of GHG, some mitigation measures were already mentioned in 
animal production, such as the reduction of livestock, efficient use 
of animal resources, and optimization of feed rationing (141). 
Inevitably, promoting the development of feed of better quality with 
optimized feed additives would help in this matter (3, 141). Also, 
genetic selection methods represent an opportunity to reduce GHG 
emissions, but other options are available (141). If we could enhance 
reproduction and replacement rates, as well as the performance of 
each animal, we  would need fewer animals per unit of output 
products (142). In the case of productions directed to one of the 
sexes, sexed semen would be an appropriate tool since it would 
contribute to the depletion of the less productive individuals of the 
herd and their inherent environmental impact (143). Therefore, 
improving production efficiency through reproduction can be one 
of the keys to reducing the environmental impact.

Moreover, sexed semen may play a role in the conservation and 
sustainability of endangered species by helping increase their 
populations and control gender balance, which is essential for 
biodiversity preservation and the long-term health of ecosystems. As 
a case in point, it is possible to consider the rare horse breed with less 
than 300 females globally, the Suffolk Punch. This underscores the 
critical significance of expediting the augmentation of female 
numbers. In a collaborative project between the conservation charity 
“The Rare Breed Survival Trust” and Nottingham Trent University in 
2020, the first filly foal was born after inseminating a Suffolk Punch 
mare with sexed X-sperm, and the team hopes it will serve as a model 
for future projects (144).

5 Future perspectives and conclusions

It is paramount to promote a sustainable animal industry and 
responsible consumption while assuring an adequate supply of 
animal-based protein for balanced nutrition. While we  cannot 
eradicate all animal welfare and environmental issues, we  can 
contribute to minimizing them.

The development of affordable and non-invasive sperm sexing 
technologies that have minimal impact on sperm quality will be of 
utmost importance. This would enable a cost-effective application of 
the technology to a wide range of species for which the pre-selection 
of offspring sex would benefit the production. Investing in the training 
and professional development of technicians, delaying AI when using 
sexed semen compared to when using conventional semen, and 
combining AI with sexed or conventional semen based on the physical 
and genetic traits of the females are strategies that can ensure a more 
successful implementation of sexed semen. Model-based studies can 

also be an excellent tool for predicting which conditions are required 
for a profitable employment of sexed semen.

Equally important is to set up collaborations between companies 
and academics. Communication is essential. The combination of the 
know-how of both worlds will enable the refinement of such 
technologies and the establishment of guidelines for a worthwhile 
implementation in different systems, revolutionizing breeding 
management. Partnerships should also go beyond that. Academics 
must guarantee that their scientific findings are disseminated not only 
among the scientific community but also to the business community, 
which may benefit from those scientific breakthroughs. On the other 
hand, producers should increasingly seek information from the 
scientific community, veterinarians, commercial partners, and other 
farmers to improve the way they operate.

Concurrently, a more widespread of sexed semen in farms would 
promote the incorporation of reduction and refinement principles in 
several animal production sectors, including beef and dairy cattle, 
ovine, caprine, swine, and rabbit productions, translating into more 
efficient, competitive, profitable, and animal-friendly industries.
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