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Intramammary infections (IMI) in animals reared for milk production can result 
in large economic losses and distress to the animals. Staphylococcus aureus is 
an important causative agent of IMI in dairy cows, but its prevalence in water 
buffaloes has not been determined. Therefore, the current study was conducted 
to investigate the prevalence of subclinical mastitis in water buffaloes and the 
antimicrobial susceptibility, virulence genes and biofilm formation abilities of  
Staphylococcus aureus isolates recovered from water buffaloes in Guangdong, 
China. Staphylococcus aureus strains were isolated from milk samples of water 
buffaloes with subclinical mastitis, and twofold microdilution, PCR and crystal 
violet staining methods were used to determine antimicrobial susceptibility, 
distributions of virulence and antimicrobial resistance genes and biofilm formation 
ability, respectively. Our results indicated that 29.44% of water buffaloes were 
diagnosed with subclinical mastitis, and the most prevalent pathogens were 
Escherichia coli (96.17%), coagulase-negative staphylococci (CoNS) (67.60%) 
and S. aureus (28.57%). Most S. aureus isolates showed resistance to bacitracin, 
doxycycline, penicillin, florfenicol, and tetracycline but were susceptible to 
ciprofloxacin, ceftizoxime, cefoquinoxime, and ofloxacin. Moreover, 63.72% of S. 
aureus isolates were positive for tetM, and the prevalence of msrB, blaZ, mecA, 
fexA, and tetK ranged from 21.24 to 6.19%. All S. aureus isolates harbored clfB and 
icaA genes, and the virulence genes hla (93.8%), hld (91.15%), clfA (90.27%), fnbA 
(86.73%), and hlb (83.19%), and tsst, icaD, sec, see, fnbB, and sea showed a varied 
prevalence ranging from 3.5 to 65.49%. All S. aureus isolates possessed the ability 
to form biofilms, and 30.09% of isolates showed strong biofilm formation abilities, 
while 19.47% of isolates were weak biofilm producers. Our results indicated that 
subclinical mastitis is prevalent in water buffaloes in Guangdong, China, and S. 
aureus is prevalent in samples from water buffaloes with subclinical mastitis. Most 
S. aureus isolates were susceptible to cephalosporins and fluoroquinolones; thus, 
ceftizoxime and cefoquinoxime can be used to treat subclinical mastitis in water 
buffaloes.
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Introduction

Water buffalo (Bubalus bubalis) is of importance in the milk 
industry and contributes to approximately 15% of milk production 
(1). Many parts of the world have traditionally produced buffalo milk, 
including Asia, Egypt, and Europe. China produces approximately 5% 
of global buffalo milk, and Guangdong, Guangxi and Hunan are its 
primary producers (2). Italy is the main producer of buffalo milk in 
Europe because of the popularity of buffalo mozzarella cheese (3), 
which retails for twice the price of bovine milk cheese (4).

Mastitis is one of the most prevalent diseases among dairy 
animals, causing economic losses to milk producers due to a decrease 
in milk quality and production, an increase in veterinary and labor 
costs and an increased rate of culling (5). Bacteria are the primary 
causative agents of mastitis, although physical trauma and mechanical 
injury also contribute (1). The primary bacterial causes of mastitis in 
both dairy cows and water buffaloes are Staphylococcus aureus, 
Streptococcus agalactiae, Streptococcus dysgalactiae, and Escherichia 
coli. Staphylococcus aureus is one of the primary pathogens causing 
mastitis in dairy cows at a level of approximately 40% in China (6).

Among antimicrobial agents, antibiotics are normally used to treat 
infections caused by bacteria, including intramammary infections (IMI) 
in domestic animals. In dairy animals, mastitis and reproductive diseases 
often require prolonged use of antimicrobial agents (7). Unfortunately, 
the widespread use of antimicrobial agents has resulted in high levels of 
antimicrobial resistance, leading to clinical treatment failures. Therefore, 
monitoring systems for antimicrobial resistance of bacterial pathogens 
can provide essential information for the rational use of antimicrobial 
agents when treating infections (8). Knowledge regarding the prevalence 
of mastitis and the knowledge of pathogens causing mastitis is critical in 
preventing the occurrence of mastitis and can provide effective measures 
for control and appropriate therapeutic protocols (9).

There are two groups of virulence genes in S. aureus, including 
surface-localized structural components serving as virulence factors 
and secreted virulence factors involved in evading host defenses and 
colonizing mammary glands (10). Surface-localized structural 
components include membrane-bound factors (fibrinogen binding 
protein, collagen binding protein and elastin binding protein), cell 
wall-bound factors (lipoteichoic acid, peptidoglycan, protein A and 
protease) and cell surface-associated factors (capsule). Secretory 
factors include toxins (staphylococcal enterotoxins, leucocidin, toxic 
shock syndrome toxin, and hemolysins) and enzymes (staphylokinase, 
coagulase, lipase, DNase, and hyaluronidase). Moreover, biofilm 
formation also contributes to adhesion and invasion into mammary 
epithelial cells and thus provides an escape from the host immune 
system. Enterotoxins often lead to food poisoning and include 
staphylococcal enterotoxins A to F and G to Q (11). Enterotoxins G to 
Q are more prevalent in isolates from dairy cows with mastitis than in 
isolates from cows without mastitis; this has implicated these virulence 
factors in the occurrence of mastitis (12). However, the clear 
mechanisms of virulence in mastitis of dairy cows need further study.

In China, the number of water buffalo farms is increasing, and 
thus, mastitis is occurring more frequently in these animals. Mastitis 
can be divided into two forms: clinical and subclinical. In clinical 
mastitis, clots and flakes can be observed in milk, and the quarters 
become swollen with severe conditions leading to the formation of 
lacerations, necrosis and cord formation of the teat. While no clinical 
signs or symptoms can be  seen in subclinical mastitis, there is a 

reduction in milk production and deterioration of milk quality (13). 
Subclinical infection is 15–40 times more prevalent than clinical 
infection and can rapidly spread on a farm (14).

To reduce the prevalence of subclinical mastitis in water buffaloes, 
it is essential to have knowledge of prevalence data and understand 
the antimicrobial susceptibility profiles of subclinical mastitis caused 
by S. aureus. Therefore, this study was conducted to investigate the 
prevalence of subclinical mastitis in water buffaloes in Guangdong, 
China, and to determine the antimicrobial susceptibility of S. aureus 
isolates and their antimicrobial resistance and virulence determinants.

Materials and methods

Sample size

Ausvet epidemiological calculators1 were used to calculate the 
sample sizes according to the method from Charan and Biswas at a 
95% confidence level (15) as follows:
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where z1 2�� /  equals 2.58 with a 1% type error (p < 0.01). The 
expected proportion of water buffaloes in Guangdong Province is 
0.05, and the expected precision (d) is 0.01.

A total of 3,900 samples from 975 water buffaloes were included 
in this study from the following regions: Qingyuan (n = 884), 
Guangzhou (n = 1,076), Jiangmen (n = 992) and Zhaoqing (n = 948). 
The average sample number per farm was 342.9 (range 174 to 584).

Sample collection

The milking of animals on all farms was performed twice a day, and 
the sample collection procedure consisted of fore-stripping (3–5 squirts 
of milk) followed by teat disinfection with 0.25% iodine solution and 
drying with a clean towel. The milking clusters were then attached and 
removed automatically when finished, followed by postmilking teat 
disinfection with 0.5% iodine. Duplicate milk samples for each quarter 
were aseptically collected according to standard protocols of the National 
Mastitis Council (16). Briefly, milk samples (3 mL) were collected from all 
quarters of each animal after the first 3 streams of milk were discarded 
and placed in an ice box and transferred to the laboratory within 6 h. 
Presumptive evidence of subclinical mastitis (17) was determined using 
a commercial California Mastitis Test kit (CMT) (ImmuCell, Portland, 
ME, United States) following the recommendations of the manufacturer. 
Briefly, 2 mL of milk sample was mixed with an equal amount of CMT 
solution in the paddle and stirred for 30 s. Thickening indicated elevated 
somatic cell counts (SCC), and these samples were then used for bacterial 
isolation and identification.

1 https://ausvet.com.au/
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Bacterial isolation

Identification of S. aureus from milk samples was carried out as 
previously described (18). Briefly, a 0.1 mL milk sample was inoculated 
into 3 mL tryptic soy broth (TSB; AoBox, Beijing, China) containing 
10% NaCl and incubated at 37°C for 24 h. A loopful of enrichment 
broth culture was streaked onto a Baird-Parker agar plate (AoBox) and 
incubated at 37°C for 24 h. The suspected S. aureus colonies had a black 
and shiny appearance with a thin white border surrounded by a light 
area. The suspected colonies were streaked onto chromogenic S. aureus 
agar plates (CHROMagar, Paris, France). At least 3 positive colonies per 
sample were then confirmed as coagulase-positive S. aureus using 
commercial API STAPH test strips (bioMérieux, Marcy-l’Ѐtoile, 
France). Staphylococcus aureus isolates were stored at −80°C in 
cryogenic vials (Biologix, Shandong, China) containing 1 mL TSB and 
30% glycerin. Coagulase-negative staphylococci were isolated as 
previously described (19). In brief, milk samples were cultured on blood 
agar plates (AoBox) at 37°C for 48 h. Typical colonies were selected and 
identified using classical biochemical methods, including Gram staining 
and oxidase, catalase and DNase tests, and the ability to coagulate rabbit 
plasma using commercial kits (Sigma Chemical, Shanghai, China). If 
the suspected strains failed biochemical identification, molecular 
identification using PCR amplification and sequencing of the sodA gene 
was performed as previously described (19).

Escherichia coli isolation utilized a 0.1 mL milk sample inoculated 
in 3 mL Mueller-Hinton broth (MHB; Aobox), which was incubated 
at 37°C for 24 h. Samples were then streaked onto MacConkey Agar 
plates, and plates were kept at 37°C for 24 h. Presumptive identification 
of E. coli were pink colonies that were then subjected to matrix assisted 
laser desorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS) using a Microflex LT instrument (Bruker 
Daltonics, Bremen, Germany).

Streptococcus agalactiae and S. dysgalactiae were identified as 
previously described (20) using EN medium, and positive isolates were 
then transferred to Columbia Blood Agar Base Medium containing 5% 
sheep blood (Hope Bio-Technology, Qingdao, China) and incubated 
at 37°C for 24 h. Colonies with typical Streptococcus morphologies were 
then subjected to catalase and 6.5% NaCl tests. Isolates were further 
identified as S. agalactiae and S. dysgalactiae according to reactions 
using the sodium hippurate test, esculin hydrate, and CAMP tests.

Antimicrobial susceptibility testing

Antimicrobial resistance phenotypes of S. aureus isolates were 
determined using the microdilution method in MH broth 
according to the Clinical Laboratory and Standards Institute 
guidelines (CLSI) (21). A loopful of each S. aureus isolate preserved 
in glycerinated TSB was streaked on a Baird-Parker agar plate and 
incubated at 37°C for 24 h. The colonies were inoculated in MH 
broth, and the cultures were diluted in sterile normal saline and 
adjusted to a turbidity of 0.5 McFarland standard (105–106 colony-
forming units (CFU)/mL). The suspension was then swabbed on 
Muller-Hinton agar plates and incubated at 37°C for 24 h as 
previously described. Staphylococcus aureus ATCC 25923 was used 
as the reference strain. Each experiment was repeated at least three 
times. Breakpoints for different antimicrobial agents were based on 
CLSI guidelines (21).

Antimicrobial agents included ceftiofur (CTF) (0.02–16 μg/mL), 
cefoquinoxime (CFQ, 0.03–32 μg/mL), ceftizoxime (CFT, 0.03–32 μg/
mL), cefoxitin (CFX, 0.03–32 μg/mL), florfenicol (FLO, 0.125–128 μg/
mL), ciprofloxacin (CIP, 0.03–32 μg/mL), enrofloxacin (ENO, 
0.03–32 μg/mL), ofloxaxin (OFX, 0.06–64 μg/mL), erythromycin (ERY, 
0.125–128 μg/mL), azithromycin (ATM, 0.125–128 μg/mL), gentamycin 
(GEN, 0.125–128 μg/mL), penicillin (PEN, 0.03–32 μg/mL), ampicillin 
(AMP, 0.125–128 μg/mL), tetracycline (TET, 0.125–128 μg/mL), 
doxycycline (DXC, 0.03–32 μg/mL) and bacitracin (BTC, 4–1024 μg/mL).

Antimicrobial resistance and virulence 
gene detection

Strains used for testing were taken from frozen stocks, cultures 
were streaked onto TSA plates containing 5% sterile defibrinated 
sheep blood, and the plates were incubated at 37°C for 24 h. Single 
colonies were inoculated into 3 mL TSB and cultured with shaking 
at 37°C for 24 h. The cultures were centrifuged at 3000 × g, and cell 
pellets were suspended in phosphate buffered saline (PBS, pH 7.4; 
Solarbio, Beijing, China) containing 20 mg/mL lysostaphin 
(Meilunbio, Dalian, China). The mixture was kept at 37°C for 
30 min, genomic DNA was extracted using a TIANamp bacterial 
DNA extraction kit (TianGen, Beijing, China), and DNA quality was 
evaluated by UV spectroscopy with a NanoDrop-2000 instrument 
(Thermo Fisher, Shanghai, China). The extracted DNA was diluted 
to 50 mg/L in sterile deionized water for PCR assays (see below).

Antimicrobial resistance genes (ARGs) were detected using 
multiplex PCR as previously described (22). Briefly, PCRs included 
gene-specific primers for the following ARG groups: penicillin (blaZ), 
macrolide (msrA and msrB), erythromycin (ermA and ermC), 
streptogramin acetyltransferase genes (vatA, vatB, and vatC), 
aminoglycoside (aacA-D), tetracycline (tetK and tetM), lincosamide 
(linA), methicillin (mecA), florfenicol (fexA), oxazolidine ketone (cfr 
and optrA) and vancomycin (vgaA and vgaC).

Virulence genes (hla, hlb, hld, sea, seb, sec, sed, see, tst, and 
lukF), biofilm-related genes (bap, icaA, and icaD) and adhesion-
related genes (fnbA, fnbB, clfA, and clfB) were detected using PCR 
as previously described (23). The primers were provided by Sangon 
Biotech (Shanghai, China), and water rather than DNA template 
was added as a contamination control. DNA from isolates that 
harbored virulence genes or ARGs was used as a positive control. 
These were included in all PCRs. Gene amplifications were 
performed using a commercial PCR instrument (Bio-Rad, 
Hercules, CA, United States) as previously described (24). Briefly, 
the PCR mixture contained DNA (1 μL), 0.2 μL of each primer, 
Prime STAR Max DNA polymerase (12.5 μL), and ddH2O (11.1 μL). 
The PCR cycling conditions consisted of an initial denaturation at 
95°C for 10 min, followed by 30 cycles of 95°C for 30 s, annealing 
at appropriate temperatures for 30 s (Supplementary Table S1) and 
extension at 72°C for 1 min.

Biofilm formation

Biofilm formation was determined in 96-well microtiter plate 
assays using minimal medium M9 (Sigma Chemical) as previously 
described (25). Briefly, the overnight cultures in TSB were diluted 
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TABLE 1 Antimicrobial susceptibility of S. aureus isolates from subclinical mastitis of buffaloes.

Antimicrobial 
agents

MICs (μg/mL)
Break point Resistance Mediate Susceptibility

MIC50 MIC90 Range

Penicillin 4 32 0.03– ≥ 128 ≤0.12, –, ≥0.25 84.96% (96/113) 15.04% (17/113)

Ampicillin 0.125 16 0.125– ≥ 128 ≤0.25, –, ≥ 0.5 55.75% (63/113) 54.25% (50/113)

Cefoquinoxime 0.06 16 0.06–32 ≤2, 4, ≥ 8 18.58% (21/113) 12.39% (14/113) 69.03% (78/113)

Ceftizoxime 0.12 8 0.12–32 ≤2, 4, ≥ 8 15.04% (17/113) 10.62% (12/113) 74.34% (84/113)

Ceftiofur 4 8 0.125– ≥ 128 ≤2, 4, ≥ 8 27.43% (31/113) 36.28% (41/113) 36.28% (41/113)

Cefoxitin 0.012 16 0.006–32 ≤4, −, ≥8 10.62% (12/113) 0 89.38% (101/113)

Chloramphenicol 16 ≥128 0.5– ≥ 128 ≤4, 8, ≥ 16 81.42% (92/113) 10.62% (12/113) 7.96% (9/113)

Ciprofloxacin 0.5 4 0.125–64 ≤1, 2, ≥ 4 7.08% (8/113) 15.04% (17/113) 77.88% (88/113)

Ofloxacin 0.5 32 0.06–64 ≤1, 2–4, ≥ 8 16.81% (19/113) 19.47% (22/113) 63.72% (72/113)

Enrofloxacin 1 32 0.06– ≥ 128 ≤0.5, 1–2, ≥ 4 37.17% (42/113) 20.35% (23/113) 42.48% (48/113)

Erythromycin ≥128 ≥128 0.125– ≥ 128 ≤0.5, 1–4, ≥ 8 74.34% (84/113) 7.08% (8/113) 18.58% (21/113)

Azithromycin 4 ≥128 0.06– ≥ 128 ≤2, 4, ≥ 8 32.74% (37/113) 19.47% (22/113) 47.79% (54/113)

Gentamicin 1 32 0.125– ≥ 128 ≤4, 8, ≥ 16 21.24% (24/113) 15.04% (17/113) 63.72% (72/113)

Tetracycline 8 ≥128 0.125– ≥ 128 ≤0.25, 0.5, ≥ 1 82.3% (93/113) 2.65% (3/113) 15.04% (17/113)

Doxycycline 8 32 0.125–32 ≤0.12, 0.25, ≥ 0.5 84.07% (95/113) 3.54% (4/113) 12.39% (14/113)

Bacitracin 256 512 4– ≥ 1,024 ≤64, 128, ≥ 256 90.27% (102/113) 3.54% (4/113) 6.19% (7/113)

1:100, and 200 μL was transferred into each well of the microtiter 
plate that was incubated at 37°C for 72 h. Each well was washed with 
200 μL PBS after the supernatant was discarded and fixed with 200 μL 
methanol for 20 min and washed again with PBS 3 × and then stained 
with 0.4% crystal violet (Meilunbio, Dalian, China) for 15 min. The 
biofilms were then dissolved in 200 μL 33% (w/v) acetic acid for 
30 min. The biofilm formation was measured at 590 nm optical 
density (OD590 nm) in a Bio-Rad plate reader (Shanghai, China). The 
strong biofilm-forming strain Salmonella enterica Typhimurium 
ATCC 14028 was used as the positive control, and sterile TSB was 
used as the negative control for the biofilm formation assay (26). All 
assays were performed in triplicate. The OD590 nm value of 0.6 was 
applied as the cutoff point to distinguish between biofilm producers 
and nonbiofilm producers (10). Biofilm formation was classified as 
strong +++ (OD590 nm > 1.8), moderate ++ (1.8 > OD590 nm > 1.2), weak 
+ (1.2 > OD590 nm > 0.6), and negative − (OD590 nm < 0.6).

Statistical analysis

Pearson correlation analysis was applied to differences in 
antimicrobial resistance rates in correlation to antimicrobial resistance 
genes harbored by S. aureus isolates. T tests were used to analyze the 
significance of biofilm formation between S. aureus isolates. All analyses 
were carried out using Prism 8 (GraphPad, Boston, MA, United States).

Results

Prevalence of subclinical mastitis in water 
buffaloes

Our screening of 975 water buffaloes indicated that 287 
(29.44%) were considered to have subclinical mastitis according to 

the CMT tests. Strongly positive (+++) results were observed in 
53.31% (153/287) of the cases, while mild and moderate intensity 
results occurred in 26.13% (75/287) and 20.56% (59/287) of the 
cases, respectively. Escherichia coli (276/287) was the most common 
bacteria isolated from these positive samples, followed by coagulase-
negative staphylococci (CNS) (194/287). Staphylococcus aureus 
(113/287), S. agalactiae (82/287) and S. dysgalactiae (41/287).

Antimicrobial resistance phenotype

Resistance to bacitracin, doxycycline, penicillin, florfenicol and 
tetracycline was observed in 90.27, 84.07, 84.96, 81.42 and 82.3% of the 
examined S. aureus isolates, respectively (Table 1). A lower prevalence 
of resistance was noted for ciprofloxacin (7.08%), ceftizoxime (15.04%), 
cefoquinoxime (18.58%) and ofloxacin (16.81%). Among S. aureus 
isolates, only 12 (10.62%) were resistant to cefoxitin, and these were 
classified as phenotypic methicillin-resistant S. aureus (MRSA).

Distribution of antimicrobial resistance 
genes among Staphylococcus aureus 
isolates

The ARGs possessed by S. aureus isolates included tetM, ermC, 
vatC, and aacA-D in 63.72% (72/113), 37.17% (42/113), 32.74% 
(37/113), and 27.43% (31/113), respectively. Moreover, the prevalence 
of msrB, blaZ, mecA, fexA, and tetK was 21.24, 19.47, 16.81, 15.04, and 
6.19%, respectively (Figure  1). Interestingly, ARGs for macrolide 
resistance msrA, erythromycin resistance ermA, streptogramin 
resistance vatA and vatB, oxazolidinone resistance cfr and optrA and 
vancomycin resistance vgaA and vgaC were not detected. These results 
indicated a lack of a correlation between resistance phenotypes and 
ARG distributions among the S. aureus isolates.
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Prevalence of virulence-associated genes

The virulence-associated genes we detected in this study were 
distributed with varying frequencies among S. aureus isolates (n = 113) 
(Figure 2). In particular, clfB and icaA were present in all S. aureus 
isolates, and nearly all harbored hla (93.8%), hld (91.15%), clfA 
(90.27%), fnbA (86.73%) and hlb (83.19%). In contrast, a lower 
prevalence was found for tsst (27.43%), icaD (19.47%), sec (15.93%), 
see (9.73%), fnbB (65.49%) and sea (3.54%). The virulence genes seb, 
sed, bap, and lukF were not detected in any isolates.

Biofilm formation ability

All our milk samples produced isolates able to form biofilms. The 
rates of strong, moderate and weak biofilm producers were 30.09, 

50.44, and 19.47%, respectively. In particular, most Qingyuan isolates 
(70.83%, 17/24) were strong biofilm producers, while 20.83% 
displayed moderate phenotypes. In contrast, only 9.76% (4/41) of the 
Guangzhou isolates were strong biofilm producers, and 65.85% 
(27/41) were moderate producers. Biofilm formation in S. aureus 
isolates from Guangzhou, Qingyuan, Jiangmen and Zhaoqing was 
0.69 ± 0.24, 1.16 ± 0.35, 1.05 ± 0.25, and 1.03 ± 0.28, respectively. The 
biofilm formation of isolates from Guangzhou was significantly lower 
(p < 0.01) than that of isolates from other areas (Figure 3; Table 2).

Discussion

Mastitis is a disease that is globally prevalent in dairy animals (1), and 
water buffaloes are generally less susceptible to this infection in 
comparison with dairy cows because of strong muscles at the opening of 
the teat canal (27). In the current study, 29.44% of water buffaloes were 
diagnosed with subclinical mastitis, which was consistent with a previous 
report for these animals (28). Previous studies have indicated that the 
prevalence of subclinical mastitis in water buffaloes ranges from 6.0 to 
87% (27). It seems that factors such as animal age, stage of lactation, 
management style and farm environment may have contributed to these 
variations (13). To our knowledge, few studies have been carried out to 
investigate the bacteriology of subclinical mastitis in water buffaloes. In 
this study, we found that CoNS, E. coli and S. aureus were the dominant 
bacterial pathogens and that S. agalactiae and S. dysgalactiae were present 
to a lesser degree. Escherichia coli infections often lead to severe systemic 
clinical symptoms, and this was the most prevalent pathogen in our study. 
Similarly, E. coli was the most prevalent pathogen in subclinical mastitis 
infections in a Nepal water buffalo study (28), while Streptococcus (39.2%) 
was the most prevalent pathogen in mastitis dairy cows, and only 8.4% 
were present as E. coli (29). Therefore, it seems that other factors (see 
above) may influence the occurrence of mastitis. Moreover, S. aureus 
(61%) was the dominant pathogen in cattle from Jammu and Kashmir 

FIGURE 1

Distribution of antimicrobial resistance genes among S. aureus 
isolates.

FIGURE 2

The detection rate of virulence genes among S. aureus isolates.
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with mastitis, and E. coli (13%), CoNS (13.04%), Streptococcus uberis 
(4.35%) and S. dysgalactiae (8.69%) were also isolated from samples (30). 
Similar results were reported by other researchers (27); the reasons for this 
might be topographical and management conditions and the difference 
between dairy cows and water buffaloes.

Antimicrobial susceptibility can provide important information 
in choosing antimicrobial agents when treating infections. In this 
study, S. aureus isolates showed high resistance to penicillin, 
florfenicol, erythromycin, tetracycline, doxycycline and bacitracin. 
Similar results were observed in S. aureus isolates from dairy cows 
with mastitis in northern China (31). However, other researchers 
reported lower rates of antimicrobial resistance in S. aureus isolates in 
Pakistan (13). Cephalosporins are important antimicrobial agents, and 
S. aureus isolates resistant to ceftiofur have been reported (23). 
Similarly, antimicrobial resistance to cephalosporins, including 
cefoquinoxime, ceftizoxime, and ceftiofur, was detected in our study. 
β-lactams, fluoroquinolones, and aminoglycosides are commonly 
used to treat dairy mastitis (31), and this most likely contributed to 
the high levels of resistance we found to these agents. Saini and his 
colleagues also found that the herd level of antimicrobial agents used 
when treating mastitis in bovines was positively correlated with 
antimicrobial resistance among isolates from mastitic animals (32). 
Unfortunately, the use of antimicrobial agents in these farms was not 
documented in our study, so we cannot directly correlate the use of 

antimicrobial agents and antimicrobial resistance. Moreover, 
we detected antimicrobial resistance genes among isolates, although 
we found no significant correlation between phenotype and genotype. 
For example, only 22.92% (22/96) of isolates resistant to penicillin 
carried the blaZ gene, similar to previous findings (33, 34). These 
inconsistencies indicated that the presence of a particular ARG was 
not an indicator of phenotypic resistance, and this can be influenced 
by numerous genetic and environmental conditions (35).

MRSA is a global health concern since it is not only resistant to 
β-lactams but also nonsusceptible to other commonly used 
antimicrobial agents (36). In the Philippines and Pakistan, the MRSA 
prevalence was 25.81 and 19.6%, respectively, in water buffaloes with 
mastitis (13, 37), while a much lower rate (2.2%) of MRSA was 
detected in water buffaloes with mastitis in Iran (38). Several factors, 
such as age, feeding status, body conditions, and hand or machine 
hygiene on the farm, may contribute to this phenomenon. Several 
technologies, such as nanoparticles and antibiotics combined with 
plant extracts or microparticles, are widely used in food, veterinary 
and animal science. For example, a report indicated that antibiotics 
coupled with zinc oxide nanoparticles can significantly increase the 
zone of inhibition; similarly, amoxicillin showed the highest increase 
in inhibitory effects against MRSA when combined with Calotropis 
procera extract (39). These technologies are believed to be promising 
methods for treating infections caused by MRSA.

Biofilms can increase the resistance of S. aureus to antimicrobial 
agents and are responsible for persistent infections (40). Biofilms are 
composed of multiple layers of bacteria, which prevents the 
permeability of antimicrobial agents and thus increases tolerance. In 
our study, we investigated the biofilm formation ability of S. aureus 
isolates grouped by area. Interestingly, S. aureus isolates from 
Guangzhou showed significantly lower levels of biofilm formation in 
comparison with isolates from other areas (p < 0.01). However, the 
antimicrobial resistance of S. aureus isolates did not differ by region 
(data not shown). Similarly, a previous study indicated that the biofilm 
formation ability of ST7 and ST188 strains was much higher than that 
of other lineages even though their phenotypic antimicrobial 
resistance was comparable with that of other lineages (41). These data 
indicated that gene mutations, horizontal gene transfer and 
modifications of antibiotic molecules are the primary modes of 
antimicrobial resistance in S. aureus isolates from water buffaloes and 
that biofilm formation plays only a secondary role (42).

Virulence genes contribute to the pathogenesis of S. aureus 
infections. Adhesion is the first step for S. aureus to invade host cells 
and immune responses (43) and involves clfA, clfB, fnbA, and fnbB. In 
our study, all isolates carried clfB, and most isolates carried clfA, fnbA, 
and fnbB. These results were similar to previous reports where the clfB 
gene was detected in all isolates from bovine mastitis samples, and 
fnbA and clfB were comparable with the levels we found (44, 45). In 
contrast, much lower detection levels were reported for fnbB in 
S. aureus isolates from Algeria and Australia (43, 46).

Hemolysins are also involved in invasion and the host immune 
response (44, 46). In our study, over 80% of our total isolates carried 
hla, hlb, and hld, consistent with previous reports (41, 44). Toxic shock 
syndrome toxin, a superantigen encoded by the tsst gene, can lead to 
toxic shock syndrome in humans (47). and the tsst prevalence in 
S. aureus isolates ranged from 2.1 to 40.0% (10, 44) and was 25% in 
our study. It is therefore important to monitor the epidemiology of 
such super antigenic toxin genes to protect public health from 
this threat.

FIGURE 3

Biofilm formation of S. aureus isolates in different areas of 
Guangdong. Note: There were no significant difference between S. 
aureus isolates from Qingyuan, Jiangmen, and Zhaoqing. But S. 
aureus isolates from Guangzhou were significantly lower (p  <  0.01) in 
comparison with isolates from Qingyuan, Jiangmen, and Zhaoqing. 
** means p  <  0.01.

TABLE 2 Biofilm formation ability of S. aureus isolates from water 
buffaloes.

Areas
Strong 
biofilm 

formation

Mediate 
biofilm 

formation

Weak 
biofilm 

formation

Qingyuan 70.83% (17/24) 16.67% (4/24) 12.5% (3/24)

Guangzhou 9.76% (4/41) 65.85% (27/41) 24.39% (10/41)

Jiangmen 18.52% (5/27) 51.85% (14/27) 25.93% (7/27)

Zhaoqing 38.1% (8/21) 42.86% (9/21) 16.67% (4/21)

Average 30.09% (34/113) 50.44% (57/113) 19.47% (22/113)
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Conclusion

In conclusion, subclinical mastitis was prevalent among water 
buffaloes in Guangdong, China, and S. aureus was identified as a 
significant pathogen associated with subclinical mastitis of water 
buffaloes. The majority of S. aureus isolates exhibited resistance 
against bacitracin, doxycycline, penicillin, florfenicol, and tetracycline 
while maintaining susceptibility to other antimicrobial agents, 
including ciprofloxacin, ceftizoxime, cefoquinoxime, and ofloxacin. 
Furthermore, the S. aureus isolates harbored various virulence genes, 
such as hla, hld, clfA, fnbA, and hlb. Notably, all S. aureus isolates 
showed the ability to form biofilms, with nearly one-third of the 
isolates possessing strong biofilm formation abilities. Given these 
findings, antibiotics should be  cautiously used when treating 
subclinical mastitis in water buffaloes within this region. Additionally, 
the impact of biofilm formation on the transmission of antibiotic 
resistance must be investigated in further studies.
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