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Since the early 1990s, porcine reproductive and respiratory syndrome (PRRS) 
virus outbreaks have been reported across various parts of North America, 
Europe, and Asia. The incursion of PRRS virus (PRRSV) in swine herds could 
result in various clinical manifestations, resulting in a substantial impact on the 
incidence of respiratory morbidity, reproductive loss, and mortality. Veterinary 
experts, among others, regularly analyze the PRRSV open reading frame-5 (ORF-
5) for prognostic purposes to assess the risk of severe clinical outcomes. In this 
study, we explored if predictive modeling techniques could be used to identify 
the severity of typical clinical signs observed during PRRS outbreaks in sow herds. 
Our study aimed to evaluate four baseline machine learning (ML) algorithms: 
logistic regression (LR) with ridge and lasso regularization techniques, random 
forest (RF), k-nearest neighbor (KNN), and support vector machine (SVM), for the 
clinical impact classification of ORF-5 sequences and demographic data into high 
impact and low impact categories. First, baseline classifiers were evaluated using 
different input representations of ORF-5 nucleotides, amino acid sequences, and 
demographic data using a 10-fold cross-validation technique. Then, we designed 
a consensus voting ensemble approach to aggregate the different types of 
input representations for genetic and demographic data for classifying clinical 
impact. In this study, we observed that: (a) for abortion and pre-weaning mortality 
(PWM), different classifiers gained improvement over baseline accuracy, which 
showed the plausible presence of both genotypic-phenotypic and demographic-
phenotypic relationships, (b) for sow mortality (SM), no baseline classifier 
successfully established such linkages using either genetic or demographic input 
data, (c) baseline classifiers showed good performance with a moderate variance 
of the performance metrics, due to high-class overlap and the small dataset size 
used for training, and (d) the use of consensus voting ensemble techniques helped 
to make the predictions more robust and stabilized the performance evaluation 
metrics, but overall accuracy did not substantially improve the diagnostic metrics 
over baseline classifiers.
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1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) is currently 
considered the most important endemic viral disease affecting 
commercial swine populations in North America (1, 2). PRRS is present 
globally, with only a few countries with swine populations in Europe (i.e., 
Switzerland, Sweden, Norway, and Finland) and New Zealand free from 
it (3, 4). PRRS affects the pork industry’s breeding and grower-finisher 
sectors through a significant decrease in reproductive health, an increase 
in mortality and morbidity, and a reduction in growth rate (5). In 
individual animals, the disease is characterized by reproductive and 
respiratory clinical signs such as abortion, anorexia, dyspnea, 
inappetence, premature farrowing, stillborn or weak-born piglets, 
mummified fetuses, and increased likelihood of mortality (5–7). The 
causative agent of PRRS is the porcine reproductive and respiratory 
syndrome virus (PRRSV), an RNA virus classified into the family 
Arteriviridae, now classified into the genus Rodartevirus (8). PRRSV is 
classified into two major types: the European type (Type-1 or Lelystad 
virus) and the North American type (Type-2 or VR-2332) (9–11).

PRRSV diagnostics and monitoring depend on molecular 
characterization, commonly based on the 603 nucleotide base pairs 
long open reading frame 5 (ORF-5) region, which encodes for 
envelope surface glycoprotein (GP5). The sequencing of ORF-5 is 
used to establish the plausible origin of outbreaks and for conducting 
molecular and epidemiological studies (12–14). Once available, the 
ORF-5 nucleotide sequence is used to classify PRRSV into distinct 
groups, either based on the in-silico classification of ORF-5 into 
discrete restricted fragment length polymorphism (RFLP) patterns 
or genetic clusters based on the direct application of clustering 
algorithms (14). Although PRRSV circulates endemically, temporal 
emergence and clustering of individual genotypes are well established. 
Some of the distinct PRRS virus groups that emerged consistently 
have a high clinical impact in swine herds, and this assessment is 
typically done using clinical impressions and in some cases, followed 
by experimental studies (12, 15, 16). Some recent examples of PRRS 
viruses with a reported high clinical impact are designated as RFLPs 
1–7–4 (17), 1–8–4 (13, 18, 19), 1–22–2 (8), and RLFP 1–4–2 or 1–4–4 
(20). Apart from ORF-5 genetic sequences, herd-level demographic 
attributes are also known to contribute to the clinical severity of 
outbreaks (5). Therefore, classifying PRRSV circulating strains helps 
predict the possible clinical impact of the outbreak in a herd or 
region. This prognostic assessment is essential because the 
management of PRRSV in sow herds is complex and involves several 
pharmaceuticals, demographic, and management approaches used in 
different combinations and sequences (21–23).

Understanding the likely clinical impact of PRRSV outbreaks 
using demographic and genetic data could potentially influence the 
timing of intervention strategies for managing PRRSV outbreaks and 
reducing their impact on health, welfare, and productivity. The wide 
availability of nucleotide data, when coupled with advances in 
machine learning (ML) approaches, creates unique opportunities to 
explore the clinical prognosis of PRRSV outbreaks using a data-driven 
approach. ML techniques have been used with different 
representations of genomic sequences for sequence classification tasks 
(24–31), including the pathogenicity classification of avian influenza 
viruses in poultry (32). An overview of ML and ensemble approaches 
used in this study and different bioinformatics applications can 
be found in Section S1 (see Supplementary materials).

This study aimed to explore the application of supervised ML 
techniques for predicting the clinical impact of PRRSV in sow herds. 
This was accomplished by addressing two objectives. The first 
objective was to evaluate the accuracy of different baseline ML 
algorithms using ORF-5 sequence data and herd-level demographic 
and management factors data for the prognosis of three distinct and 
frequently reported clinical impacts at the herd level: abortion, 
preweaning mortality (PWM), and sow mortality (SM). The second 
objective was to create an ensemble using the best-performing 
baseline algorithms on different input representations and compare its 
performance with the individual classifiers.

2. Materials and methods

2.1. Data collection, data cleaning, and 
data preprocessing

The ORF-5 sequence and the demographic dataset were collected 
during a previous study by Rosendal et al. (33), for which sequencing 
was performed at the Animal Health Laboratory (AHL), University of 
Guelph, Guelph, Ontario, Canada. Briefly, the samples for sequencing 
were collected from swine herds in Ontario and submitted to the AHL 
from Sept. 1, 2004, to Aug. 31, 2007. Dichotomous herd-level 
information about the presence of different clinical signs for each herd 
(i.e., abortion, sows-off-feed, stillborn pigs, weak born pigs, sow/boar 
mortality, pre-weaning mortality, nursery respiratory, nursery 
mortality, finisher respiratory, and finisher mortality) were collected 
by a retrospective telephone interview with the owner or manager of 
the respective herds (33). In the literature, it is noted that PRRS 
clinical signs vary and may include a range of respiratory signs, 
reproductive signs, reduced growth rate, and neurological signs (5, 6, 
34). The decision to include these three clinical signs and production 
measures was based on several criteria. First, these clinical signs are 
frequently reported to accompany different phenotypes of PRRSV 
strains (i.e., reproductive and respiratory). Second, they are important 
production, health, and welfare indicators for animals and producers. 
Third, it was deemed that such clinical signs will have the lowest 
likelihood of misclassification among all clinical signs originally 
available from the previous study, and it would plausibly represent a 
reasonable number of the clinical impact that could be  managed 
within the framework of this computational study. Therefore, among 
the collected data in Rosendal et al. (33), we used three clinical signs: 
abortion, PWM, and SM, as the outcomes of interest for this study.

As a data-cleaning technique, we excluded the herds with missing 
information about any of the three clinical signs used in this study, 
which resulted in a total of 247 (n = 442) herds for analysis purposes. 
Furthermore, the herd demographic, management, and outbreak 
attributes included: the number of sows in inventory, type of herd, date 
of outbreak, and whether modified live vaccine (MLV) along with live 
virus inoculation (LVI) were included in the management of the herds 
during the PRRS outbreak. The month extracted from the PRRS 
outbreak date data was used as input for ML algorithms. The details 
about the type and distribution of demographic variables used in this 
study are described in Supplementary Table S1. The starting codon for 
many deoxyribose nucleic acid (DNA) sequences was missing. 
Therefore, the translation of nucleotide sequences into amino acid 
sequences was performed by manually inspecting and keeping the 
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longest translated frames using the “Geneious 2019.0.4”1 tool and 
Expasy (35). Finally, DNA and amino acid sequences were aligned using 
the Clustal Omega multiple sequence alignment algorithm (36, 37).

The application of ML classification techniques requires class label 
information for the given inputs. In Rosendal et  al. (33), the 
information about the clinical signs for each herd was recorded 
through an interview process primarily over the telephone, along with 
mailed/faxed survey filling and herd veterinarians administering the 
survey to clients. The clinical outcomes information was observed in 
binary format at the herd level for the circulating strains after the 
outbreak was detected and confirmed with a study selection criterion 
(33). As the circulating PRRSV strains can cause severe respiratory 
distress, high fever, and reproductive failure in pigs, therefore the 
differential impact for each clinical outcome may be linked with its 
genotype and herd-level demographics. In each herd, for each clinical 
sign, the binary observation ‘0’ indicated an absence of a specific 
clinical sign in association with the PRRS strain outbreak, and ‘1’ 
represented otherwise. Therefore, for classification purposes in this 
study, the binary outcome labels were categorized into low-impact (LI) 
and high-impact (HI) categories based on the recorded binary 
observations. The distribution of LI and HI class labels and the 
frequency of the majority class for DNA sequences, amino acid 
sequences, and demographic dataset for each clinical sign used in this 
study are shown in Table  1. Table  1 shows that the LI/HI class 
distribution was relatively balanced for abortion and PWM but 
imbalanced for SM. The baseline accuracy of a dataset is often 
characterized as the percentage of the majority class in the data.

ML algorithms require a numerical representation of DNA and 
amino acid sequences, which do not contain explicit features. We used 
three encoding strategies to encode the symbolic string sequences as 
input to ML algorithms: (1) dummy variable encoding was used to 
encode the categorical information into numeric values and (2) the 
increased dimensionality in the number of variables with low sample 
size makes ML algorithms prone to overfitting, which is also known 
as the ‘curse of dimensionality’ (38, 39). As the ORF-5 sequences are 
highly dimensional, we reduced the dimensionality by using principal 
component analysis (PCA) based embedded representation for 
extracting low dimensional features of different sizes (i.e., 2, 3, 5, 10, 
15, 20). PCA selects the best-performing features which overcome the 
issues related to the ‘curse of dimensionality.’ Finally, (3) we extracted 
frequency count-based features of different sizes (i.e., 2, 3, 4, 5, 6) for 
both DNA and amino acid sequences. Frequency count-based vectors 
were used in the literature as input to ML algorithms for classification 
problems in text mining and genomics (40–42). In addition, k-mer 
count-based encoded numeric representations of genetic sequences 
were used as an input to ML algorithms in the literature for 
classification purposes. However, for larger values of k, the input 
vector becomes highly dimensional and sparsely populated.

2.2. Proposed methodology

In this study, we investigated the plausible relationships between 
ORF-5 genotype data and herd-level demographic data with three 

1 https://www.geneious.com

phenotypic outcomes using the general framework of ML techniques 
described in Supplementary Figure S1. We  also used ensemble 
techniques to address issues with small and complex datasets. As 
shown in Supplementary Figure S1, collecting data relevant to the 
PRRS classification problem is important. Therefore first, the data 
were requested from the AHL, and data-cleaning techniques were 
applied to generate the data for experimental purposes. Data cleaning 
and transformation are crucial in preparation for modeling. Therefore, 
as a data preprocessing step, the numeric values in demographic data 
were standardized before feeding it as an input to ML classifiers. 
Furthermore, the DNA and amino acid sequences were encoded using 
dummy, k-mer, and PCA-based feature vector input representations. 
Choosing appropriate machine learning models and using the data to 
train the model is important, and during training, the model 
parameters optimization is used to minimize the error between the 
predicted and actual outcomes. The encoded representations obtained 
using each format were used as input to the following linear and 
non-linear baseline classification algorithms: logistic regression (LR) 
with lasso/ridge regularization, random forest (RF), k-nearest 
neighbor (KNN), and support vector machine (SVM). Before training, 
fine-tuning the hyperparameters of the model was helpful in 
improving performance. The optimal hyperparameter values for each 
ML algorithm were evaluated using the grid search approach. Finally, 
the performance of different classification methods used in this study 
was evaluated using different metrics such as accuracy, precision, 
recall, F1-score, and area under the curve (AUC) using a 10-fold 
cross-validation technique. In this study, we  used F1-score as a 
primary evaluation metric to deal with imbalanced data.

In general, ensemble methods aggregate the predictions observed 
from multiple models trained using single/multiple data sources. The 
differences in the predictive performance of baseline classifiers 
indicated that introducing diversity by selecting the best-performing 
classifier on different input representations of data might be a more 
integrative approach. In addition, applying ensemble models may pose 
a practical solution to increase the robustness of the predictions. 
However, training ensembles require more computational power and 
memory despite being simple to train. At the same time, for 
classification, a voting ensemble combines the individual predictions 
of the two or more supervised classifiers, most employing different 
representations of the input datasets used.

The consensus voting ensemble approach used in this study is 
described in Supplementary Figure S2. Using a consensus voting-
based ensemble approach, we  investigated the advantage of using 
heterogeneous representations of input data formats and different 

TABLE 1 Distribution and baseline accuracy of PRRS DNA sequences, 
Amino acid sequences, and demographics data for clinical signs used in 
this study.

Input type
Clinical 
sign

Label 
(LI/HI)

Baseline 
accuracy 

(Frequency of 
majority class) 

(%)

DNA/Protein/

Demographic

Abortion 129/118 52.22

PWM 125/122 50.60

Sow mortality 173/74 70.04

DNA, deoxyribose nucleic acid; PWM, pre-weaning mortality; LI, low impact; HI, high 
impact.
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classification techniques for each clinical sign. The best-performing 
baseline classifiers for each clinical sign using different input 
representations in each partition were collectively used for decision-
making. The consensus voting ensemble approach used in this study 
is described below:

Input: PRRSV genetic sequences and demographic data with 
clinical sign information.

Output: Prediction of PRRS clinical impact.
Step  1: Identify the best-performing classifiers and respective 

hyperparameters for each clinical sign (i.e., abortion, PWM, and SM) 
for different input representations (i.e., demographic, dummy, k-mer, 
and PCA) during each partition.

Step 2: For abortion, PWM and SM train the best-performing 
baseline classifiers observed during each partition using the 
demographic, DNA, and amino acid datasets.

Step  3: For abortion, PWM and SM aggregate the predicted 
outcomes using consensus voting during each partition by assigning 
the majority outcome obtained from DNA, amino acid, and 
demographic datasets.

Step 4: Evaluate the performance of each clinical sign.

2.3. Model evaluation criteria

We used a 10-fold cross-validation technique in which the dataset 
was partitioned into ten partitions, from which nine were used for 
training, and the remaining partition was used for evaluating the 
model’s performance. Before the k-fold partitioning was performed, 
the data was randomly shuffled so that the same data from both the 
HI and LI categories were shown to the classifier in each partition. As 
we  compared the performance of multiple models, therefore, for 
uniformity, different representations (i.e., demographic or genetic) of 
the same herd were used in each partition as input for the ML models 
used in this study. Model overfitting is a problem that arises when a 
model becomes more complex than needed. For this reason, it’s 
crucial to find an acceptable balance between model complexity and 
fitting accuracy. Overfitting can be  avoided with the help of grid 
search by checking how well the model generalizes on a separate 
validation set. The model parameters were selected for each partition 
using grid search-based hyperparameter selection (43) using internal 
cross-validation on the data in nine partitions. After the grid search 
was performed in each partition, the models were trained with the 
optimal parameters using which the highest evaluation metrics were 
observed. A brief description of the parameters evaluated for each 
classification method is defined in Supplementary Table S2.

In this study, we  evaluated the performance of different 
classification models using accuracy (Acc.), sensitivity (SN), specificity 
(SP), and F1-score defined in (44). As reported in the literature, 
accuracy, sensitivity, and specificity are unreliable performance metrics 
when the models are developed using a complex and imbalanced 
dataset. In such cases, other metrics from the confusion matrix, such 
as precision, recall, area under the curve (AUC) score, and the F1 score, 
can be used to evaluate the model’s performance. AUC measures the 
ability of a model to discriminate between positive and negative classes. 
F1-score is a weighted average of the model’s precision and recall. In 
general, the F1-score is a useful metric when the objective is to achieve 
a balance between precision and recall, whereas the AUC is beneficial 

when the objective is to maximize the model’s ability to correctly 
classify positive and negative instances. As a primary evaluation metric, 
in this study, we used the F1 score to evaluate the overall contribution 
of precision and recall for selecting the best-performing classifiers. The 
mean and standard deviation among the observed evaluation metrics 
from all folds were also observed.

3. Results

The results obtained for the experiments in this study were 
executed on a Microsoft Windows-based machine with a quad-core 
i7 processor with a base frequency of 2.80 GHz and 16GB 
RAM. Python version 3.8, Numpy version 1.21.6, Scikit-learn library 
version 1.0.2, Scikit-learn pandas version 1.8.0, and Matplotlib 
visualization library version 3.2.2 (45, 46) were used for the 
classification and visualization purposes. The baseline classifiers were 
evaluated using the different parameters listed in 
Supplementary Table S2.

3.1. Performance evaluation of baseline 
classifiers on genotypic and demographic 
input representations for each clinical sign

A summary of the results observed using the best-performing 
baseline classifiers, their mean value of performance evaluation 
metrics observed over all the ten folds, and the standard deviation in 
metrics for each clinical sign used in this study are reported in 
Tables 2, 3, respectively.

3.1.1. Results using demographic input 
representation

The detailed performance evaluation results of different baseline 
classifiers on the demographic dataset are reported in 
Supplementary Table S3. For abortion, we observed that among all 
baseline classifiers, the KNN classifier achieved the highest mean 
F1-score value of 59.40% (15.18) and a mean accuracy of 60.65% 
(14.81). For PWM, we observed that among all baseline classifiers, the 
RF classifier achieved the highest mean F1-score value of 56.87% 

TABLE 2 Best performing baseline classifiers for each clinical sign.

Data 
representation

Abortion PWM
Sow 
mortality

Demographic KNN RF KNN

DNA Dummy SVM RF KNN

PCA SVM (PC=10) SVM (PC=3) KNN (PC=2)

K-mer RF (Kmer=5) RF (Kmer=6) KNN (Kmer=6)

Protein Dummy SVM SVM KNN

PCA SVM (PC=10) SVM (PC=5) KNN (PC=10)

K-mer SVM (Kmer=3) LR (Kmer=5) RF (Kmer=6)

aThe best-performing classifier among LR/RF/KNN/SVM for demographic, different input 
representations of DNA, and amino acid sequences for each clinical sign used in this study 
are highlighted in bold in the above table.
bDNA, deoxyribose nucleic acid; PCA, principal component analysis; LR, logistic regression; 
RF, random forest; KNN, k nearest neighbor; SVM, support vector machine; PWM, pre-
weaning mortality; PC, principal component.
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TABLE 3 Performance evaluation metrics of baseline classifiers for each clinical sign.

Input 
representations

Abortion (Baseline=52.22)
PWM (Baseline=50.60) Sow mortality 

(Baseline=70.04)

Acc. SN SP
F1-

score
AUC

Improve 
ment

Acc. SN SP
F1-

score
AUC

Improve 
ment

Acc. SN SP
F1-

score
AUC

Improve 
ment

Demographic
60.65 

(14.81)

49.21 

(18.84)

72.39 

(18.68)

59.40 

(15.18)

59.35 

(17.18)
8.43

57.03 

(13.47)

62.18 

(20.63)

55.57 

(13.51)

56.87 

(13.38)

61.58 

(12.10)
6.43

68.85 

(12.09)

16.58 

(11.92)

91.97 

(9.62)

51.97 

(11.50)

52.74 

(19.25)
−1.19

DNA

Dummy
68.33 

(9.76)

80.71 

(12.68)

57.36 

(11.07)

67.61 

(9.77)

70.63 

(10.62)
16.11

61.97 

(7.94)

66.83 

(12.22)

58.76 

(12.36)

61.37 

(7.60)

68.95 

(6.57)
11.37

69.33 

(10.35)

10.58 

(20.71)

96.06 

(4.52)

46.62 

(11.8)

60.26 

(10.29)
−0.71

PCA
68.33 

(9.20)

80.83 

(13.36)

57.43 

(10.37)

67.60 

(9.28)

69.32 

(10.73)
16.11

61.08 

(8.58)

77.30 

(12.30)

44.84 

(10.78)

59.26 

(9.07)

63.13 

(10.02)
10.48

66.47 

(7.96)

13.33 

(20.77)

91.41 

(8.24)

46.37 

(9.72)

59.97 

(14.46)
−3.57

K-mer
69.53 

(11.82)

76.03 

(13.70)

65.16 

(15.38)

69.19 

(11.78)

71.67 

(11.76)
17.31

64.35 

(7.37)

68.89 

(17.07)

62.39 

(11.30)

63.80 

(7.33)

68.26 

(8.31)
13.75

62.40 

(8.21)

49.81 

(25.18)

68.41 

(11.52)

55.96 

(10.93)

63.49 

(11.24)
−7.64

Protein

Dummy
64.67 

(12.65)

72.67 

(15.20)

57.94 

(14.63)

64.10 

(12.37)

68.25 

(11.17)
12.45

63.95 

(9.58)

72.47 

(14.35)

55.97 

(10.77)

63.01 

(9.28)

68.53 

(10.35)
13.35

66.43 

(5.80)

9.08 

(11.50)

92.08 

(8.21)

45.46 

(7.53)

56.72 

(11.78)
−3.61

PCA
68.70 

(10.52)

77.48 

(14.69)

62.01 

(13.05)

68.25 

(10.33)

68.48 

(9.34)
16.48

62.78 

(5.70)

82.57 

(8.12)

43.03 

(8.24)

60.52 

(6.09)

63.96 

(11.55)
12.18

66.45 

(7.32)

11.25 

(20.79)

92.55 

(7.83)

44.76 

(8.77)

53.46 

(9.56)
−3.59

K-mer
67.15 

(5.87)

66.10 

(13.70)

69.56 

(11.20)

66.60 

(6.01)

69.93 

(7.09)
14.93

69.25 

(6.80)

76.07 

(11.84)

62.12 

(6.09)

68.33 

(6.45)

73.18 

(4.30)
18.65

71.72 

(11.40)

22.58 

(22.18)

94.29 

(5.97)

55.18 

(15.04)

67.60 

(10.04)
1.68

aThe performance evaluation of the best-performing classifier (standard deviation) among LR/RF/KNN/SVM for demographic, different input representations of DNA, and amino acid sequences for each clinical sign used in this study are highlighted in bold in the 
above table.
bIndicates best in the category for each input representation.
cEvaluation Metric (standard deviation).
dDNA, deoxyribose nucleic acid; PCA, principal component analysis; LR, logistic regression; RF, random forest; KNN, k nearest neighbor; SVM, support vector machine; PWM, pre-weaning mortality; Acc, accuracy; SN, sensitivity, SP, specificity.
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(13.38) and a mean accuracy of 57.03% (13.47). For SM, we observed 
that among all the baseline classifiers, the KNN classifier achieved the 
highest mean F1-score value of 51.97% (11.50) and a mean accuracy 
of 68.85% (12.09). When using herd demographic attributes as input 
data, the best-performing baseline classifiers achieved 8.43 and 6.43% 
improvement (Table 3) over the baseline accuracy for abortion and 
PWM, respectively. However, we could not observe such improvement 
over the baseline for SM.

3.1.2. Results using dummy input representations 
using DNA and amino acid sequences

The performance of different classifiers on dummy variable 
representations of DNA and amino acid sequences is reported in 
Supplementary Table S4 and S5, respectively. For example, using 
dummy variable representation for (1) DNA sequences as input, 
we  observed that among all the classifiers, SVM, RF, and KNN 
classifiers achieved the highest mean F1-score value of 67.61% (9.77), 
61.37% (7.60), and 46.62% (11.80) for abortion, PWM, and SM, 
respectively, (Supplementary Table S4); (2) amino acid sequences as 
input, we observed that among all the classifiers SVM, SVM, and 
KNN classifiers achieved the highest mean F1-score value of 64.10% 
(12.37), 63.01% (9.28), and 45.46 (7.53) for abortion, PWM, and SM, 
respectively, (Supplementary Table S5).

For abortion using dummy variable representation as input, the 
best-performing classifiers achieved 16.11 and 12.45% improvement 
over baseline accuracy for DNA and amino acid sequences, 
respectively (Table 3). For PWM using dummy variable representation 
as input, the best-performing classifiers achieved 11.37 and 13.35% 
improvement over baseline accuracy for DNA and amino acid 
sequences, respectively (Table 3).

In summary, for abortion, the dummy variable-based 
representation of DNA sequences resulted in higher mean accuracy 
and mean F1-score over baseline accuracy with lower variance than 
amino acid sequences (Table 3).

3.1.3. Results using principal component 
representation of DNA and amino acid sequences

The detailed performance of different classifiers with a principal 
component embedded representation of DNA sequences for abortion, 
PWM, and SM are reported in Supplementary Tables S6–S8, 
respectively. SVM, SVM, and KNN classifiers achieved the highest 
F1-score and improvements over the baseline accuracy for abortion, 
PWM, and SM using the 10-dimensional, 3-dimensional, and 
2-dimensional principal component representations 
(Supplementary Tables S6–S8). Using 10-dimensional and 
3-dimensional PCA embedding as input representation of PRRSV 
DNA sequences, the SVM classifier achieved 16.11, and 10.48% mean 
improvement over baseline accuracy, respectively, for abortion and 
PWM (Table 3). However, we could not observe such improvement 
for SM. For SM, the performance of different classifiers with a 
principal component embedded representation of DNA sequences did 
not improve much over the baseline.

The performance of different classifiers with the principal 
component embedded representation of amino acid sequences for 
abortion, PWM, and SM are reported in Supplementary Tables S9–S11, 
respectively. SVM, SVM, and KNN classifiers achieved the highest 
F1-score and improvements over the baseline accuracy for abortion, 
PWM, and SM using the 10-dimensional, 5-dimensional, and 

10-dimensional principal component representations 
(Supplementary Tables S9–S11). Using PCA representation of PRRSV 
amino acid sequences as input representation, the SVM classifier 
achieved 16.48 and 12.18% improvement over baseline accuracy for 
abortion and PWM, respectively (Table  3). However, for SM, the 
performance of different classifiers with a principal component 
embedded representation of amino acid sequences did not improve 
much over the baseline. In summary, using the PCA-based 
representation of DNA and amino acid sequences, the amino acid 
representation improved over baseline accuracy with moderate 
variance in the observed results.

3.1.4. Results using principal k-mer input 
representation of DNA and amino acid sequences

The performance of different classifiers on the k-mer 
representation of DNA sequences for abortion, PWM, and SM are 
reported in Supplementary Tables S12–S14, respectively. The RF 
classifier achieved the highest F1-score and improvements over 
baseline accuracy for abortion and PWM using 5-mer, and 6-mer 
input representations, respectively (Supplementary Tables S12 and 
S13). The KNN classifier achieved the highest F1-score and 
improvements over baseline accuracy for SM using 6-mer input 
representation, respectively (Supplementary Table S14). Using the 
k-mer representation of PRRSV DNA sequences as input 
representation, the best-performing classifiers achieved 17.31, and 
13.75% improvement over baseline accuracy for abortion, and PWM, 
respectively (Table  3). However, such an improvement could not 
be observed for SM.

The performance of different classifiers on the k-mer 
representation of amino acid sequences for abortion, PWM, and SM 
are reported in Supplementary Tables S15–S17, respectively. Briefly, 
SVM, LR, and RF classifiers achieved the highest F1-score and 
improvements over baseline accuracy for abortion and PWM using 
3-mer, 5-mer, and 6-mer input representations 
(Supplementary Tables S15–S17). Using the k-mer representation of 
PRRSV amino acid sequences as input representation, the best-
performing classifiers achieved 14.93, 18.65, and 1.68% improvement 
over baseline accuracy for abortion, PWM, and SM, respectively 
(Table 3).

In summary, from Table 3, we observed that among the k-mer-
based representation of DNA and amino acid sequences, the amino 
acid representation achieved greater improvement over baseline 
accuracy and lower variance in the observed results for PWM but not 
for abortion.

3.2. Performance of the consensus voting 
ensemble approach

No single input representation and baseline classifier performed 
best for all clinical signs used in this study. Also, different predictive 
performances and uneven distributions of misclassified sequences 
justified the need for considering diverse input data formats using 
ensemble methods. Therefore, achieving the consensus among at least 
two different input data representations using a majority voting 
approach may increase the robustness in the decision-making of 
predictive techniques and introduce diversity in ensemble building. 
The results for the consensus voting approach for abortion, PWM, and 
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SM are presented in Table  4. Following the application of the 
consensus voting classifier using demographic, DNA, and amino acid 
sequence representations as input: (1) for abortion consensus voting 
approach achieved a mean F1-score value of 69.62% (9.64) with 
69.93% (9.71) mean accuracy; (2) for PWM consensus voting 
approach achieved a mean F1-score value of 66.00% (5.90) with 
66.77% (5.85) mean accuracy; and (3) for SM consensus voting 
approach achieved a mean F1-score value of 50.59% (14.24) with 
67.67% (11.63) mean accuracy. In summary, the application of the 
consensus voting approach improved by 17.71 and 16.17% over the 
baseline for abortion and PWM, respectively, but such an increase 
could not be observed for sow mortality. In addition, the consensus 
voting approach achieved lower variance in the standard deviation of 
mean accuracy and F1-score for abortion and PWM compared to 
baseline classifiers reported in Table 3.

3.3. Visualization of genetic sequences

As nucleotides and amino acids are qualitative multivariate data 
with many categories, numerical conversion is required for estimating 
relationships among sequences quantitatively (47). Conventionally, 
dendrograms were used to analyze such relationships, but they are not 
very informative (47), at least for clinical impact classification. The 
lower-dimensional representation of DNA and amino acid sequences 
for each clinical outcome was obtained using PCA, and the PCA plots 
are shown in Figure 1. Each principal component axis shows specific 
connections and the distribution of underlying biological information 
present with fewer variables. From Figure 1, the X and Y axes of the 
PCA plot depict principal component 1 and principal component 2, 
respectively, which did not separate the samples into major grouping/
clusters. Instead, we observed a high degree of class overlap between 
HI and LI classes for all three clinical signs used in the study.

4. Discussion

This study is an extension of the work done by Rosendal et al. (33) 
using machine learning approaches. Rosendal et al. initially collected 
the data and performed a study using the approaches described in (33) 
to identify the associations between different PRRSV RFLP types and 
the observed clinical signs. In the current study, we analyzed the high-
dimensional ORF-5 region and herd-level demographic data for 
phenotypic mapping with the three clinical signs frequently of concern 
during PRRS outbreaks.

In general, k-mer count-based input representations were most 
informative in linking genotype with clinical impact for abortion and 
PWM using DNA and amino acid sequences, respectively. K-mers are 
alignment-free methods, and the large length k-mers showed 

discriminatory patterns between the LI/HI classes, which suggests that 
the distribution of k-mers was different for the LI/HI classes. However, 
a one-to-one correspondence for linking genotype–phenotype cannot 
be established. For k-mer input representations, with an increase in 
the value of k, the input becomes highly dimensional, which, when 
coupled with the small sample size inputs for training, results in a lack 
of statistical power for the predictive methods. However, alternative 
explanations are possible as varying sizes of k-mers (e.g., short versus 
long) yielded different performances for differentiating the species and 
host class distribution of different viruses (48). Regarding the size of 
the k-mer composition, it is too early to make strong conclusions 
about the clinical impact of PRRS, especially under field conditions 
that are subject to additional uncertainty and measurement errors in 
the outcome assessment.

The PCA feature extraction technique was intended to bring 
improvements to overcome the challenges of high-dimensional inputs 
by using dummy variables and k-mer representations. PCA removes 
noise, and the low dimensional embedded representations contain 
important extracted features and meaningful information, but it did 
not bring substantial improvement over other representations in 
predictive performance on the small PRRS dataset. A limitation of 
PCA is that it assumes a linear relationship between the input features, 
which is not always the case for real-world datasets. In our opinion, 
the underlying relationship between the input features of PRRS may 
be non-linear. Therefore, PCA representations may not capture the 
data’s true structure, resulting in low performance. In addition, these 
data are population-level disease impact estimates obtained through 
an observational study. As such, other confounders, measured and 
unmeasured, and a misclassification error of the outcome might have 
impacted this study in general and the PCA representation itself. Also, 
PCA helped visualize genetic sequences with a low-dimensional 
representation. PCA plots showed high overlap in the corresponding 
axes, which plausibly indicated the presence of shared motifs in the 
LI/HI classes. However, such overlap does not conclude the genetic 
relationship but gives a different understanding of the low 
performance of linear and non-linear baseline classifiers on the small 
PRRS dataset.

Therefore, with the preliminary evaluation of baseline classifiers 
presented in this study, we quantified the plausible extent of linkage 
by using different representations of the genetic and demographic 
datasets for abortion, PWM, and SM. Based on the limited dataset 
offered to ML algorithms in this study, the trend of achieving 
improvements in predictive performance over the baseline accuracy 
was consistently established for abortion and PWM. Such a trend 
indicates a plausible genotypic-phenotypic relationship for abortion, 
and PWM, which can be moderately established for PRRS in sow 
herds in Ontario. However, any plausible relationship could not 
be  established with high confidence by using any of the input 
representations for SM. These results are concordant with the results 

TABLE 4 Evaluation metrics observed using voting ensemble technique.

Consensus voting Acc. SN SP F1-score Improvement

Abortion (Baseline=52.22) 69.93 (9.71) 75.99 (15.03) 66.28 (13.34) 69.62 (9.64) 17.71

PWM (Baseline=50.60) 66.77 (5.85) 75.31 (15.55) 60.44 (10.74) 66.00 (5.90) 16.17

Sow Mortality (Baseline=70.04) 67.67 (11.63) 18.67 (21.89) 90.23 (6.77) 50.59 (14.24) −2.37

Acc, accuracy; SN, sensitivity; SP, specificity; PWM, pre-weaning mortality.
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of a recent study by Melmer, O’Sullivan, et al. (8). However, Melmer, 
O’Sullivan, et al. (8) used a different study population, and samples 
were collected in different periods. Melmer, O’Sullivan, et  al. (8) 
investigated similar objectives through an approach that dealt with 
abortion, PWM, and SM on a quantitative rather than a discrete scale, 
using only the random forest model. Among the demographic, 
dummy, k-mer, and PCA-based input representations used in this 
study, the qualitative agreement in the results obtained from the two 
studies is that the best predictive results were achieved for assessing 
PWM, followed by abortion, with relatively little/no improvement for 
SM. The data collected by Rosendal et  al. (33) were collected by 
retrospective telephone interviews and, therefore, subject to recall 
bias. Although there could be  an underlying link between the 
composition of the PRRSV genome and the severity of specific clinical 
signs, the accuracy of reporting reproductive and respiratory clinical 
signs during PRRS outbreaks could also contribute to measurement 
error. This may be of particular relevance for SM, which could have 
multiple causes and has been a topic of attention to measurement and 
reporting, variability among herds, and temporal trends (49–51). In 
addition, a highly imbalanced class distribution was used to train the 
ML classifiers with a small sample size for SM, which is why the ML 
classifiers always ultimately favored the prediction of the majority 
class (i.e., the LI class).

Different classifiers showed improvement with different input data 
for the clinical outcomes used in this study. From a big-picture 
perspective, improvement in the predictive performance of best-
performing individual classifiers over the baseline frequency of the 
majority class is approximately 17.31 and 18.65% in the case of abortion 

and PWM, respectively. Considering the complex nature of PRRS 
pathogenicity classification, adopting an integrative approach for 
studying the clinical impact classification of PRRSV strains using 
ensemble approaches is desirable. The consensus voting ensemble 
approach integrated different input datasets with varying input 
representations. Given the diverse number of classifiers, input dataset 
representations, and small sample size used in this study, the consensus 
voting approach effectively introduced a diversity of input 
representation, and the aggregating approach made the ensemble more 
stable. The consensus voting approach improved the predictive 
performance metrics by approximately 17.71% for abortion and 
16.17% for PWM over baseline accuracy. In the case of small-sized 
datasets with moderately high variance for non-weak baseline 
classifiers, using the consensus voting approach may increase the 
stability of ensemble methods. However, using the consensus voting 
approach might not improve the performance metrics for the PRRS 
dataset and may benefit from a bigger genotypic-phenotypic 
input dataset.

5. Conclusion

Despite obvious clinical rationale, studies utilizing ML for 
PRRSV clinical impact classification continue to be  rare. One 
reason for the lack of such studies is the limited availability of PRRS 
phenotypic information in the public domain. This study showed a 
linkage between the high impact of abortion and PWM with ORF-5 
genetic sequences. Though demographic and management factors 

FIGURE 1

Low Dimensional PCA Visualization of DNA and Protein Sequences for Abortion (Top Left and Bottom Left), PWM (Middle Top and Bottom), and Sow 
Mortality (Top Right and Bottom Right) *DNA, deoxyribose nucleic acid; PWM, pre-weaning mortality.
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are known to play a role in the duration of PRRS outbreaks (52), 
this study could not establish the link. Measurement error in 
collecting demographic details for such phenotypic datasets always 
poses a risk which might be a reason for low improvements over 
baseline using herd-level demographic data. The improvements in 
results obtained from baseline classifiers and ensemble methods 
also resonate with the recent study by Melmer, O’Sullivan, et al. (8), 
adding consistency to obtained results using ML techniques for the 
three clinical signs used in this study. Though the accuracy was not 
high, our study made good progress in linking the ORF-5 genotype 
with phenotypic information using data-driven computational  
approaches.

Also, the integration of multiple representations of genetic data 
and herd-level demographic data presented in this work has not yet 
been considered in the literature for analyzing the impact of circulating 
strains in swine populations. The consensus voting ensemble approach 
used in this study could be extended on additional training data to 
assist veterinarians and domain experts in analyzing the currently 
circulating strains along with herd-level demographic details for the 
prognostic clinical impact analysis. However, further study with 
additional training data might help determine the genotypic-
phenotypic relation for SM.

Our study has been largely successful in achieving the determined 
research objectives. The study suggests exploring other factors that 
could contribute to PRRS’s clinical impact, including other regions in 
the PRRSV genome, herd demographics, herd management factors, 
herd immunity status, and host genetics. Such an integrative approach 
for studying the clinical impact classification of PRRSV strains may 
be more informative in the absence of large genotypic datasets.
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