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Editorial on the Research Topic

Cryopreservation of mammalian gametes and embryos: implications of

oxidative and nitrosative stress and potential role of antioxidants

The e�ect of cryopreservation on gametes

Despite the advances in cryopreservation procedures, the developmental rate of

frozen-thawed oocytes is still lower compared to their fresh counterparts. Mechanical

damage by crystal ice formation, the toxicity of cryoprotective agents, osmotic pressure

induced by low temperatures, and oxidative stress as a result of intracellular reactive species

are the major cause of the reduced developmental capacity of the cryopreserved sperm and

oocyte (1–4). Excessive generation of reactive oxygen species (ROS) and reactive nitrogen

species (RNS) underline most cryoinjuries which ultimately retard basal functions and

survival of gametes both in vitro and in vivo (3, 5). Key among the damages from stresses of

cryopreservation on gametes is damage to the mitochondria and the endoplasmic reticulum

(ER) which further leads to damage to the lipids, proteins, spindle, and DNA (2, 4).

The main sources of ROS during cryopreservation

Cellular ROS during cryopreservation is genereated from twomain sources, endogenous

or exogenous, and is present as either the superoxide radical (O•−

2 ), hydrogen peroxide

(H2O2), or hydroxyl radical (•OH). O•−

2 is generally unreactive and has a short half-life

(5). Gametes can remove it through the endogenous antioxidant system (3). Antioxidants
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such as superoxide dismutase (SOD) oxidize the O•−

2 to H2O2

which binds to enzymes such as catalase and glutathione to produce

water (H2O) and molecular oxygen (O2) through the Fenton

reaction (4). However, a very reactive •OH is produced during

this reaction that readily reacts with surrounding biomolecules and

breaks them down eventually resulting in cellular damage (4, 5).

Endogenous ROS during
cryopreservation

Exogenous ROS is mainly generated from the environment

and the reagents used in the experimental procedures. The main

source of endogenous ROS is from the mitochondria but the ER

and some oxidases can also generate ROS (5). Mitochondrial ROS

is normally generated through the activities of the complexes I,

III, and IV of the electron transport chain (ETC) which reduces

O2 to H2O. ROS is however generated from about 1% of the

O2 which is reduced to O•−

2 due to electron leakage from the

ETC which then rapidly generates H2O2 from –OH through the

Fenton reaction and thus becomes the main site of intracellular

ROS generation which is then released through the mitochondrial

permeability transition pore (mPTP) into intracellular spaces where

they can cause further ER stress (5). This is a result of Ca2+

overload which causes a continual opening of the mPTP leading to

an increase in mitochondrial membrane potential (1Ψ ) and ATP

dissipation. ROS from the ER is predominantly due to the release

of Ca2+ into the cytoplasm through IP3R, particularly through the

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

4 (NOX4) by Calcium/calmodulin-dependent protein kinase II

(CAMKII) (4, 5). Some of the Ca2+ are absorbed by voltage-

dependent anion channel (VDAC), an anion channel protein in the

mitochondria leading to further generation of mitochondrial ROS

through nitric oxide synthase (NOS) (5). Enzymatic activities of

oxidases such as NADPHoxidase (NOX) andNOS in the cytoplasm

and plasma membrane also generate ROS (6). This produces a self-

sustaining endogenous ROS generation mechanism that decreases

ATP levels and 1Ψ and causes oxidative damage to cellular lipids,

proteins, and DNA in the sperm, oocyte, and embryo in porcine,

mouse, and human oocytes (6–8). ROS from ER stress is produced

by several enzymes such as protein disulfide isomerase (PDI), ER

oxidoreductin-1 (ERO-1), and NOX4. PDI and ERO-1 transfer

electrons to O2 and generate H2O2 through the flavin adenine

dinucleotide (FAD)-dependent reaction. Alternatively, Nox4 uses

NADH or NADPH as an electron donor to produce O•−

2 .

Exogenous ROS during
cryopreservation

Exogenous ROS is mainly generated from the environment

and the reagents used in the experimental procedures. The sources

include cryoprotective agents such as dimethyl sulfoxide (DMSO),

extreme cold, light, pH of culture media, and metal ions (4). DMSO

causes the release of excessive Ca2+ from the ER into the cytoplasm

which is then uptaken by the mitochondrion contributing to

mitochondrial ROS generation (9). Low temperature during

cryopreservation induces ROS production in the presence of

DMSO (9). Lights such as the blue light (400–500 nm) in the

in vitro culture environment constitute radiation that generates

H2O2 which alters enzymes in the respiratory chain (10). Ambient

light such as ultraviolet B radiation (UVB) (290–320 nm) induces

DNA base oxidation and strand breaking (10). Evidence suggests

5min of exposure of mouse oocytes to visible light increases ROS

levels (9). Higher pH values and O2 concentrations lead to higher

oxidase activity and lead to elevated O•−

2 levels (4). Fe2+ and

Cu2+ metal ions in the in vitro media induce ROS production

through the Fenton reaction and the Haber–Weiss reaction (11).

In addition, Fe can also act directly on lipids and amplify

peroxidative damage (4). Cardiolipin in the inner mitochondrial

membrane releases cytochrome C which binds to apoptotic protein

activator 1 (Apaf-1) and caspase-9 to activate the apoptotic

pathway (11, 12). Under oxidative stress cis-aconitate which is

an intermediate molecule of the mitochondrial tricarboxylic acid

cycle (TCA) is inactivated, leading to Fe2+ and H2O2 formation,

and causing oxidative metabolic dysfunction and decreased ATP

production (12).

Laboratory practices can affect the concentraton of ROS that

is generated. Gamete handling and cryopreservation protocols

are crucial to post-thawed quality as they could influence the

excessive production of ROS. Transport time and temperature

are very crucial in reducing ROS build-up and oxidative stress

(4). It has been demonstrated that O•−

2 generated from ROS

reaches peak accumulation at 3 h post-collection (13). This is

attributed to xanthine oxidase and hypoxanthine accumulation

during ischemia in sheep oocytes (14). Therefore, reducing

transport time can greatly reduce ROS build-up. Furthermore,

in bovine oocytes, high (above 40◦C) and low (below 20◦C)

temperatures induce heat stress or cold shock which leads to

intracellular ROS build-up and subsequently affects the quality

of the oocytes and the development of the embryo (13, 14).

The drastic changes in temperature during the cryopreservation

and thawing process lead to Ca2+ influx and ROS accumulation

in vitrified goat oocytes which reduces in vitro maturation

(15). The selection of proper permeable and non-permeable

cryoprotectants, vitrification with high cooling and warming

rates, and addition of cytoskeleton relaxants or ice blockers

into culture media can minimize oxidative stress to some

extent (16).

The nitrosative stress in gametes and
embryos caused by cryopreservation

Nitrosative stress is a subset of oxidative stress that arises

from an overproduction of RNS from the interaction of nitric

oxide (NO) with oxygen-derived oxidants and includes nitrogen

dioxide (NO2), peroxynitrite (ONOO–), and NO (3). RNS

elicits modifications in several biomolecules through oxidation,

nitrosylation, and nitration (17). Like ROS, mitochondria are

the primary sites of RNS generation, particularly NO and

ONOO– (3). NO forms ONOO– which further reacts with other

molecules and forms NO2 and dinitrogen trioxide that causes

mitochondrial dysfunction, inhibition of ATP production, DNA

strand breaking, and triggers apoptosis through nitration and

oxidation (18).
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Antioxidants as remedy to oxidative
and nitrosative stress during
cryopreservation

Gametes possess enzymatic antioxidants that maintain

cellular homeostasis by preventing excessive ROS build-up, and

oxidative and nitrosative stress. Notable among these antioxidants

are superoxide dismutase (SOD), catalase (CAT), glutathione

peroxidase (GPX), glutathione (GSH), cysteine (CYS), and

cysteamine (CSH) (3, 19). These antioxidants prevent oxidative

stress by either directly scavenging free radicals such as –OH and

H2O2 or indirectly through secondary molecules. SOD catalyzes

the initial detoxification of O•−

2 followed by the conversion of the

product into H2O by CAT or GPX (20). Indirectly, antioxidants act

through antioxidant signaling pathways mostly through receptors

(such as melatonin receptors, MTRs) to enhance GPX activity (21),

or promote the expression of related antioxidant proteins such

as MAD2, NRF1, NRF2, SIRT1, and Drp1 to reduce oxidative

and nitrosative stress and improve post-thawed gamete quality

[(8, 21–23); Qin et al.]. Antioxidant activities of these molecules

are reported in human, bovine, ovine, porcine, and mouse

gametes [(4, 24, 25); Qin et al.]. The endogenous antioxidant

system is however not enough to offset the oxidative imbalance

during cryopreservation (6). Several exogenous antioxidants have

therefore found important usage in cryopreservation and are

used at various stages including vitrification, warming, and/or

culture media to mitigate oxidative and nitrosative stress, and

maintain gamete quality and embryo development (6). These

antioxidants include melatonin (24), quercetin (26), vitamin E

(27), resveratrol (28, 29), L-carnitine (30), proline (31), coenzyme

Q10 (32), and astaxanthin (25). Exogenous antioxidants however

should be used with caution as studies show that beneficial effects

are concentration-dependent but too high concentrations have

a damaging effect on the gametes and embryos (4). In addition,

a combination of antioxidants can be effective in maintaining

post-thawed quality (33). For instance, the melatonin and

resveratrol combination was more effective in reducing ROS levels

in vitrified-warmed mouse GV-stage oocytes (33).

Gametes like many other cells form stress granules (SGs) when

exposed to vitrification and warming which inhibit excessive ROS

formation (34). SGs form part of the endogenous antioxidant

system and are resistant to oxidative damage. The antioxidant

activity is regulated by two core components, GTPase-activating

protein SH3 domain-binding protein 1 (G3BP1) and ubiquitin-

specific protease 10 (USP10) which act antagonistically (4, 34).

Under physiological conditions, excessive G3BP1 inhibits the

antioxidant activity of USP10 and elevates ROS steady-state.

However, oxidative and nitrosative stress induce SGs formation

which cause USP10 to induce ataxia-telangiectasia-mutated protein

(ATM) phosphorylation which suppresses the inhibition of USP10

by G3BP1, thereby reducing ROS production and apoptosis

(4, 34). Gametes have reduced ability to remove oxidized

products than somatic cells probably due to the presence of high

levels of unsaturated fatty acids making them prone to lipid

peroxidation which is indicated by low GPX activity in mice sperm

and testes when compared with other organs the lungs and

blood (35).

Conclusion

Extreme ROS concentrations generated from endogenous

and exogenous sources affect the survivability of gametes

and embryos via intrinsic and extrinsic apoptotic pathways

characterized by mitochondrial ROS generation, lipid peroxidation

of polyunsaturated fatty acids-rich sperm membrane, DNA

damage, and loss of ATP. Endogenous and exogenous antioxidants

can offset this ROS imbalance and improve gametes and embryo

quality and development in a concentration-dependent manner.

Improved protocols, limiting handling time and exposure to bright

light could reduce excessive reactive species build-up and improve

gamete and embryo quality. Understanding of ROS and RNS and

their impact on cryopreserved gametes continue to be broadened

but manymore studies are needed to still improve cryopreservation

procedures because the quality of post-thawed gametes is still low

when compared with fresh ones.
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