In tomcats, epididymal spermatozoa provide an additional source of male gametes available for cryopreservation. While this procedure is feasible, the survival rate and motility of epididymal cat spermatozoa are both low after thawing. Cryopreservation is known to induce oxidative stress in spermatozoa, with mitochondria and the plasma membrane being the two major generation sites, and an imbalanced presence of free radicals is a possible cause for this low survival rate. Different antioxidants have been tested before for their effect on cryopreserved cat spermatozoa quality, with varying results. Here, we used Mito-Tempo, which is a synthetic mitochondria-targeted antioxidant and a specific scavenger of the mitochondrial superoxide system. By supplementing Mito-Tempo with the freezing extender, we aimed to improve the sperm quality of frozen-thawed cat epididymal spermatozoa.
Epididymal spermatozoa obtained from twelve tomcats were assessed for motility and concentration. Prior to freezing, samples were diluted in TRIS buffered extender with egg yolk and glycerol and divided into five aliquots supplemented with 0 (control), 0.5, 5, 50, and 1005M of Mito-Tempo. After thawing, sperm motility, concentration, morphology, plasma membrane integrity, acrosome integrity, and mitochondrial membrane potential were evaluated. A Friedman rank sum test with a Bonferroni post-hoc test was used to determine statistical in-between group differences in post-thaw semen parameters.
The results indicated a slight improvement in acrosome integrity across all groups that were supplemented with Mito-Tempo, with the group that received 55M of Mito-Tempo showing the greatest improvement [(median of 67.99%, IQR of 5.55) compared to the control group (median of 65.33%, IQR of 7.75;