Fat-tail in sheep is considered as an important energy reservoir to provide energy as a survival buffer during harsh challenges. However, fat-tail is losing its importance in modern sheep industry systems and thin-tailed breeds are more desirable. Using comparative transcriptome analysis to compare fat-tail tissue between fat- and thin-tailed sheep breeds provides a valuable approach to study the complex genetic factors associated with fat-tail development. However, transcriptomic studies often suffer from issues with reproducibility, which can be improved by integrating multiple studies based on a meta-analysis.
Hence, for the first time, an RNA-Seq meta-analysis on sheep fat-tail transcriptomes was performed using six publicly available datasets.
A total of 500 genes (221 up-regulated, 279 down-regulated) were identified as differentially expressed genes (DEGs). A jackknife sensitivity analysis confirmed the robustness of the DEGs. Moreover, QTL and functional enrichment analysis reinforced the importance of the DEGs in the underlying molecular mechanisms of fat deposition. Protein-protein interactions (PPIs) network analysis revealed the functional interactions among the DEGs and the subsequent sub-network analysis led to identify six functional sub-networks. According to the results of the network analysis, down-regulated DEGs in green and pink sub-networks (like collagen subunits IV, V, and VI, integrins 1 and 2,