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Meta-analysis of RNA-Seq
datasets highlights novel
genes/pathways involved in fat
deposition in fat-tail of sheep

Seyedeh Fatemeh Hosseini, Mohammad Reza Bakhtiarizadeh *

and Abdolreza Salehi

Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran

Introduction: Fat-tail in sheep is considered as an important energy reservoir to

provide energy as a survival bu�er during harsh challenges. However, fat-tail is

losing its importance in modern sheep industry systems and thin-tailed breeds

are more desirable. Using comparative transcriptome analysis to compare fat-tail

tissue between fat- and thin-tailed sheep breeds provides a valuable approach to

study the complex genetic factors associated with fat-tail development. However,

transcriptomic studies often su�er from issues with reproducibility, which can be

improved by integrating multiple studies based on a meta-analysis.

Methods: Hence, for the first time, an RNA-Seq meta-analysis on sheep fat-tail

transcriptomes was performed using six publicly available datasets.

Results and discussion: A total of 500 genes (221 up-regulated, 279 down-

regulated) were identified as di�erentially expressed genes (DEGs). A jackknife

sensitivity analysis confirmed the robustness of the DEGs. Moreover, QTL and

functional enrichment analysis reinforced the importance of the DEGs in the

underlying molecular mechanisms of fat deposition. Protein-protein interactions

(PPIs) network analysis revealed the functional interactions among the DEGs

and the subsequent sub-network analysis led to identify six functional sub-

networks. According to the results of the network analysis, down-regulated DEGs

in green and pink sub-networks (like collagen subunits IV, V, and VI, integrins 1

and 2, SCD, SCD5, ELOVL6, ACLY, SLC27A2, and LPIN1) may impair lipolysis or

fatty acid oxidation and cause fat accumulation in tail. On the other hand, up-

regulated DEGs, especially those are presented in green and pink sub-networks

(like IL6, RBP4, LEPR, PAI-1, EPHX1, HSD11B1, and FMO2), might contribute to a

network controlling fat accumulation in the tail of sheep breed through mediating

adipogenesis and fatty acid biosynthesis. Our results highlighted a set of known

and novel genes/pathways associated with fat-tail development, which could

improve the understanding of molecular mechanisms behind fat deposition in

sheep fat-tail.

KEYWORDS

adipose tissue, lipid metabolism, comparative transcriptome, gene expression—tools and

techniques, RNA-Seq

Introduction

In recent years, with the growth of world population, there is a considerable demand

for the agricultural improvement, especially for meat and milk of animals. In modern

agriculture, sheep play an important role in the production of meat, wool and milk.

Currently, there are a lot of sheep breeds over a wide geographical range worldwide with
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a large variation in many phenotypic traits. One of the most

important phenotypic traits in sheep is the ability to store of

fat in the tail. In this regard, generally sheep breeds can be

divided into two main groups (thin- and fat-tailed breeds) and

five subgroups including fat-long, fat-short, fat-rumped, thin-long,

and thin-short tailed sheep breeds (1). It is well-known that the

fat-tailed sheep breeds are evolved from its thin-tailed ancestor

(∼5,000 years ago), by the principle of selective breeding (natural or

artificial selection) and following initial domestication, in response

to hazardous environments (2, 3). Fat-tail is considered as an

important energy reservoir for the animal to provide energy as

a survival buffer during harsh challenges such as drought and

food deprivation periods like winter, when pasture is dormant (4).

Nowadays, fat-tail is losing its importance and lean-tailed breeds

are more desirable, which can be explained by providing three

reasons: (1) In modern sheep farming systems, intensive or semi-

intensive feeding systems are preferred, which cause fat-tail be no

longer important as an energy source; (2) fat deposition led to a

higher energetic cost than accretion of an equivalent amount of

lean tissue and decreases the feed efficiency (5); and (3) in modern

society, consumers prefer low-fat foods to be healthy. Therefore,

both customers and producers prefer thin-tailed sheep (6). It is

estimated that the fat-tailed sheep breeds constitute about 26% of

the world sheep population (7). Hence, study of the fat deposition

in sheep tail is of great importance to understand the background

molecular mechanisms of the fat-tail development as well as to

develop the new breeding strategies to produce improved breeding

sheep herds.

Up to now, several transcriptome-based studies have been

conducted to elucidate the factors and molecular mechanisms

responsible for the differences in fat deposition between different

sheep breeds (6, 8–17). Earlier studies were focused on single gene

to identify the candidate genes involved in regulating the fat-tail

formation. In this regard, higher expression of the leptin (LEP) gene

in fat lines of Coopworth sheep was reported for different fat tissues

when comparing fat lines and lean lines in Coopworth sheep breed

(18). In our previous study, fatty acid binding protein 4 (FABP4)

gene was suggested as a candidate gene relevant to fat deposition

in sheep breeds (8). Moreover, uncoupling protein 1 (UCP1) (15)

and cell death-inducing DFFA-like effector c (CIDEC) (19) genes

were reported as other candidate genes involved in regulation of fat

deposition and mobilization in tail of sheep breeds.

In recent years, rapid development of next generation

sequencing (NGS) technologies has lowered the barriers to

perform high-throughput gene expression profiling through RNA

sequencing (RNA-Seq) approach. This method made it possible

to measure the expression of thousands of genes simultaneously,

which enables us to better understand the genetic factors

associated with phenotypic differences in sheep fat-tail. To date,

several studies have been employed this approach to identify the

genes linked to fat-tail deposition by conducting a comparative

transcriptome study on the fat- and thin-tailed sheep breeds (6, 8–

15, 17, 19).

A review of these studies indicates the variability in their results

including different set of DEGs or inconsistent gene expression

patterns, which can be attributed to different bioinformatics

pipeline used, number of biological replicates and other limitations

coming from the different nature of the samples. In this context,

a meta-analysis of several independent studies focused on a

specific biological question, offers a useful approach to increase the

statistical power. Additionally, combining evidence from several

studies increases the reliability and robustness of the results (6, 11–

14, 17, 20). In this study, for the first time a meta-analysis of six

independent RNA-Seq studies was performed to provide a basis for

the identification of mechanisms underlying fat deposition in sheep

tail, which can be exploited in future breeding strategies.

Materials and methods

RNA-Seq datasets

A comprehensive review of authoritative papers was conducted

to find the studies that performed gene expression profiling by

RNA-Seqmethod to identifymolecularmechanisms affecting sheep

fat-tails (Table 1, Supplementary material 1). Out of 11 identified

studies, four studies (11, 13, 14, 17) had one biological replication

per breed and data of one study was not available (17) in the public

databases. Therefore, six datasets were remained to be used in this

study. The samples of these datasets were related to fat-tail tissue

of adult male sheep with at least three biological replications per

breed (accession numbers of these studies are bolded in Table 1).

Only male samples of Fan et al. (9) study were used. RNA-Seq reads

for the selected studies (Table 1) were retrieved from the NCBI’s

sequence read archive database (SRA: https://trace.ncbi.nlm.nih.

gov/Traces/sra/). All samples of each study were processed with the

same bioinformatic pipeline, explained as follow (Figure 1).

Di�erential expression analysis

The quality of RNA-Seq reads was checked using FastQC

(v0.11.5) software (22). Trimmomatic (v0.38) software (23) was

applied to remove low-quality reads/bases and adaptor sequences

based on its adaptive trimming algorithm, maximum information

(MAXINFO), to balance the benefits of retaining longer reads

against the drawback of having low-quality bases. The other

trimming criteria were TRAILING: 20, MAXINFO: 80: 0.8,

MINLEN: 80. FastQC was used again to re-evaluate the quality of

the clean reads. The clean reads were then aligned to the ENSEMBL

ovine reference genome (rambouillet_v1.0.104) using HISAT2 (24)

software (version 2.1.0) based on the default parameters. A list

of exon-exon junctions extracted from the Ensembl ovine GTF

file (rambouillet_v1.0.104) was applied to guide the read mapping.

To quantify the aligned reads to annotated genes, python script

HTSeq-count (version 2.7.3) tool (25) was used (union intersection

mode) according to Ensembl ovine GTF file (rambouillet_v1.0.104)

and a gene expression matrix was created for each study. Genes

with low read counts (<10 reads across all samples) were filtered

out. DESeq2 (v 1.32.0) was used to normalize and perform

differential expression analysis for individual studies using the

median-of-ratios method as a normalization factor (26). DESeq2

used Cox-Reid adjusted profile likelihood approach to estimate

dispersions (27).

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2023.1159921
https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hosseini et al. 10.3389/fvets.2023.1159921

TABLE 1 List of the comparative transcriptome studies on the fat- and thin-tailed sheep breeds.

Fat (Nu of BR)∗ Thin (Nu of BR)∗ Up
genes∗∗

Down
genes∗∗

Type of
reads∗∗∗

Sex∗∗∗∗ Accession
number

References

Kazak (1) Tibetan (1) 280 366 P (100) M NA (14)

Dorset (1) Han (1) 266 336 P (100) M, F NA (13)

Guangling (1) Han (1) 3,160 2,235 P (90) M SRP113440 (11)

Lanzhou (3) Han (3) 7 3 P (150) M PRJNA432669 (12)

Lori (3) Zel (3) 80 184 P (150) M PRJNA508203 (6)

Hulun-Fat (3) Hulun-Thin (3) 515 1,012 P (101) M, F PRJNA517348 (9)

Han-Fat (3) Han-Thin (3) 237 284 P (75) M PRJNA699984 (20)

DHH (3) DDH (3) 262 181 P (150) M PRJNA745517 (16)

Ghezel (3) Zel (4) 254 78 P (150) M PRJNA598581 (10)

Bashby (3) Bashby-Argali (3) - - P (150) M NA (21)

Altay (1) XFW (1) 1,389 6,652 P (100) M PRJNA627341 (17)

∗Name of the fat- and thin-tailed breeds (Number of biological replications).
∗∗Up- and down-regulated genes in fat-tailed sheep breed.
∗∗∗P, paired-end and S, single-end reads (length of reads).
∗∗∗∗M, male and F, female. The bolded accession numbers are used in this study. The link address of these data are provided in “Data availability statement” section.

FIGURE 1

The bioinformatics pipeline for RNA-Seq meta-analysis of fat-tail tissue in sheep breeds.

RNA-Seq meta-analysis

Raw p-values obtained from previous step were applied to

perform meta-analysis using metaRNAseq R package (v1.0.7) (28).

There are two p-value combination methods to combine p-values

from different studies in this package including Fisher’s and inverse

normal methods. It is reported that both methods provide similar

results. Using these methods enable us to combine results from

heterogeneous datasets directly to identify commonly regulated

genes among all studies. Here, to minimize the false positive results,

both methods were used and differentially expressed genes (DEGs)

with a false discovery rate (FDR)< 0.05 found in common between

two methods were considered statistically significant. One of the

limitations of p-value-based methods is that the combined p-values

are estimated regardless of the expression patterns in the different

studies. In other words, some genes are significantly up-regulated

in some studies, while in the other studies they are significantly

down-regulated, which may not reflect the biological reality (28).
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TABLE 2 Information of number of reads, alignment rate per sample, and number of DEGs per study.

Study Average Nu of
reads ± SD∗

Average alignment
rate ± SD

Nu of DEGs
(up and down)

References

Study 1 21.63± 2.42 91.10± 0.03 602 (224, 378) (6)

Study 2 17.68± 6.66 78.18± 0.13 442 (222, 220) (20)

Study 3 42.73± 4.32 74.05± 0.04 30 (12, 18) (12)

Study 4 22.42± 2.25 92.81± 0.01 60 (16, 44) (16)

Study 5 27.74± 4.37 93.13± 0.03 548 (482, 66) (9)

Study 6 22.720± 1.50 93.32± 0.02 14 (6, 8) (10)

∗Million reads.

This limitation can be overcome by selecting the DEGs that showed

the same expression pattern inmost of studies. In the present study,

out of the DEGs that were common between the two methods, only

those genes that showed the same expression trend (up or down

regulated) in more than half of the datasets, were finally considered

as DEGs.

Jackknife analysis

One of the concerns inmeta-analysis is that the identifiedDEGs

can be affected by the properties of a single dataset (29). Hence,

to evaluate the robustness of the meta-analysis results, a Jackknife

sensitivity analysis was applied (30). To do this, meta-analysis was

repeated (as described above) six times, each time including all the

datasets except one and six sets of DEGs were generated. Finally,

number of presence/absence of DEGs in the six sub meta-analysis

was compared with the main meta-analysis.

Functional enrichment analysis

To gain further insight into the biological processes and

pathways significantly enriched in DEGs, functional enrichment

analysis was performed. To do this, EnrichR web-based tool was

applied, using default parameters, focusing on gene ontology (GO;

biological process) and the kyoto gene and genome encyclopedia

(KEGG) (31). Also, up- and down-regulated DEGs were submitted

separately and FDR < 0.05 was considered for the selection of the

significantly enriched GO terms and pathways.

QTL enrichment analysis

To determine if the DEGs are located in the QTLs associated

with fat metabolism, a co-localization analysis was applied. To

do this, all QTLs related to fatness were obtained from sheep

AnimalQTLdb database (32). Then, enrichment of the DEGswithin

the QTLs were analyzed using GSAQ R package based on Gene Set

Validation with QTL (GSVQ) method (33).

Network analysis

To reveal the protein-protein interactions (PPIs) among the

DEGs, STRING (34) database (v11.5) was applied using Ovis aries

as the reference organism. The PPIs networks were constructed

for up- and down-regulated DEGs, separately. Confidence score

<0.4 (6) was considered to discard unreliable PPIs. Moreover, sub-

networks within the networks were identified based on the k-means

clustering approach (three clusters) in the database. Cytoscape

software (version 3.9) was used to visualize the networks (35).

Results

RNA-Seq data analysis

Six RNA-Seq datasets were analyzed including 18 fat-tailed

and 19 thin-tailed sheep breeds (Table 1). In total, more than 952

million paired-end raw reads were obtained for the six datasets,

ranging from 7.5 to 50.5 million per sample. Among these, 468

and 484 million reads were belonged to fat- and thin-tailed breeds,

respectively. Only 1.6 million reads (∼0.002%) were removed

after quality control and filtering, which shows the quality of

the datasets. The clean reads were then aligned to the sheep

genome with an average of 87.26% read mapping rate (Table 2 and

Supplementary material 1).

Meta-analysis

Differential gene expression analysis was performed for each

study and the raw p-values of all studies were integrated based on

our meta-analysis approach. After multiple testing correction, 761

DEGs were identified. Inspecting the DEGs to have the same log-

fold change direction across most of the studies led to identification

of 500 DEGs including 221 up- and 279 down-regulated genes

in fat- against thin-tailed sheep breeds. Results of the differential

expression analysis per study and meta-analysis can be found in

Table 2 and Supplementary material 2. To illustrate the common

DEGs shared among the individual studies and meta-analysis, a

venn diagram was constructed (Figure 2). Out of 500 DEGs, 330

DEGs were shared with the other studies and 170 DEGs were

identified only through the meta-analysis. Moreover, most of the

identified DEGs from each individual study were not shared with
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FIGURE 2

Venn diagram showing the number of common DEGs shared among the individual studies and meta-analysis. Study 1 (6), Study 2 (20), Study 3 (12),

Study 4 (16), Study 5 (9), and Study 6 (10).

the other studies. No DEG was found to be common among all the

studies and meta-analysis.

Jackknife sensitivity analysis

To confirm that our meta-analysis results were not affected

by any single study, a jackknife sensitivity analysis was conducted

by iteratively removing one dataset at a time. Figure 3 shows the

common DEGs among the six Jackknife tests and the full meta-

analysis results. All the identified DEGs by meta-analysis (except

two genes ASIC3 and MYBPC1) were identified in at least one

Jackknife test. On the other hand, more than 80% of the DEGs (403

genes including 232 down- and 171 up-regulated) were present in

at least 50% of the Jackknife test results (oval circles in Figures 4,

5 represent these genes). Sixty-eight DEGs pass all six jackknife

analyses and showed complete consistency over the tests, indicative

of their importance as they can be considered as a more robust set

of potential candidates.

Functional enrichment analysis

To identify the main biological processes or pathways that

the 500 DEGs (including 221 up- and 279 down-regulated genes

in fat- against thin-tailed sheep breeds) may be involved in,

functional enrichment analysis was performed. In up-regulated

genes (higher expression in fat-tailed breeds), none of them were

significant at FDR < 0.05 (Supplementary material 3). In total, 26

biological processes and seven KEGG were significantly enriched

in down-regulated DEGs (lower expression in fat-tailed breeds) at

FDR < 0.05 (Supplementary material 3). It is worthy to highlight

the significant GO terms related to fat metabolism including

“unsaturated fatty acid biosynthetic process” and “fatty-acyl-CoA

biosynthetic process” in the down-regulated DEGs. Thus, it is

reasonable to infer that these genes might be related to fat-

tail development.

QTL enrichment analysis

A total of 98 annotated QTLs related to fatness were obtained

from the sheep AnimalQTLdb database (32). Totally, 113 genes

(including 50 up- and 63 down-regulated as represented in bold

text in Figures 4, 5) were significantly (p-value = 0.018) located

within coordinates of 16 QTLs (Supplementary material 4), which

were located in chromosomes 1, 6, 8, 10, 11, 12, 18, 14, 16, 19,

and 23. These QTLs pertained to nine different traits including

internal fat amount, fat weight in carcass, carcass fat percentage,
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FIGURE 3

Venn diagram showing the number of common DEGs among di�erent Jackknife tests and meta-analysis results. Study 1 (6), Study 2 (20), Study 3

(12), Study 4 (16), Study 5 (9), and Study 6 (10).

muscle depth at third lumbar, dressing percentage, subcutaneous

fat area, subcutaneous fat thickness, carcass length and lean meat

yield percentage. Out of 113 genes, 35 up- and 55 down-regulated

DEGs were present in at least 50% of the Jackknife test results

(∼80%). To checkwhether the identifiedDEGs per individual study

are significantly enriched in the QTLs, this analysis was performed

on the DEGs of each study, separately. Out of six study, only DEGs

of the study one was significantly enriched in the QTLs.

PPI network analysis

To construct an PPI network of DEGs (500 DEGs including

221 up- and 279 down-regulated genes in fat- against thin-tailed

sheep breeds), where the nodes are proteins and the edges represent

the predicted functional associations, STRING database (34) was

used. ENSEMBL accession numbers of DEGs were first annotated

and 361 gene names (135 up and 226 down) were found. Of these,

125 and 218 genes were matched with the database and applied

to construct the PPI network in up- and down-regulated DEGs,

respectively. A total of 72 nodes with 98 edges (known or predicted

interactions) composed the final PPIs network of up-regulated

DEGs (PPI enrichment p-value= 0.002, Figure 4). Further, the gene

network interaction of down-regulated DEGs included 157 nodes

with 337 edges (PPI enrichment p-value= <1.0e−16, Figure 4).

The resulting PPIs networks were subjected to module

analysis with k means clustering approach and three significant

sub-networks were identified in each network. In this regard,

three sub-networks including 22 nodes and 20 edges in sub-

network orange (p-value = 6.51E−09), 24 nodes and 55 edges

in yellow sub-network (p-value = 5.49E−11) and 20 nodes and

16 edges in light-blue sub-network (p-value = 2.89E−06) were

found in up-regulated DEGs (Figure 4). Functional enrichment

analysis of the clusters showed only six significant biological

processes in orange sub-network including “gene expression,”

“RNA metabolic process,” and “translation.” On the other

hand, 34 nodes and 41 edges in green sub-network (p-

value < 1.0e−16), 64 nodes and 90 edges in pink sub-

network (p-value < 1.0e−16) and 51 nodes and 105 edges

in purple sub-network (p-value < 1.0e−16) were found in

the down-regulated DEGs (Figure 5). Genes of green sub-

network were significantly enriched in “Lipid biosynthetic

process” biological process (FDR < 0.04) and “Biosynthesis

of unsaturated fatty acids” KEGG pathway (FDR < 0.01).

Moreover, 17 biological processes (such as “Extracellular matrix

organization” and “Anatomical structure morphogenesis”) and

11 KEEG (such as “ECM-receptor interaction,” “PI3K-Akt

signaling pathway,” and “Focal adhesion”) were identified in

pink sub-network (Figure 6). No significant term was found in

purple sub-network.
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FIGURE 4

PPI network and functional clusters of the up-regulated DEGs. Orange, yellow and light blue nodes represent orange, yellow and light blue

sub-networks, respectively. Oval circles indicate the DEGs that were presented in at least 50% of the Jackknife test results. The DEGs that were

located in QTL regions related to fatness are represented as bold texts.

Discussion

To date, several transcriptome-based studies have been

conducted to identify DEGs related to fat-tail formation through

comparison of fat- and thin-tailed sheep breeds (Table 1). However,

one of the main problems of these studies is a small number of

biological replicates due to the cost of sequencing, which can lead

to decrease the statistical power to detect DEGs. In this regard,

the variation among the identified DEGs by different datasets

(Figure 2) emphasized the importance of meta-analysis to obtain

core genes that are consistently DEGs across multiple studies. Some

of the lack of agreement from one study to another can be attributed

to differences in the experimental conditions such as environmental

variables, bioinformatics pipeline, etc.

It should be noted that various sheep breeds have been used

in the six studies, however these breeds can be used to identify

core genes involved in fat deposition in the fat-tail of sheep.

While vertebrate species differ in many phenotypic traits, however,

organ physiology in mammals are conserved. Furthermore, it

is well-known that many biological processes and pathways are

deeply conserved among the species (36). Based on this idea that

many developmental gene expression patterns are conserved across

mammals, rodents can be applied as models of human tissues

physiology (37). Previous studies in this area have shown that inter-

study distances between similar tissues of various species were

generally less than intra-study distances among various tissues,

implying that meta-analysis of using RNA-Seq data from different

breeds can provide insights into the molecular mechanisms behind

the mammalian tissues (38). Here, a meta-analysis was performed

to find the common core DEGs across six studies and remove

the inconsistencies in these datasets to obtain a deeper biological

insight associated with fat deposition in tail of sheep, compared

to that achieved through single dataset. These core genes can be

considered as putative candidates involved in fat-tail development

regardless of the different characteristics of the studies. Therefore,

our aimwas to shed light into themolecular mechanisms conserved

across the sheep breeds instead of identifying specific mechanisms

in each breed.

To better integrate the datasets, a standard and similar

bioinformatics workflow was applied to analyze the raw RNA-Seq

data from the studies, in which different pipelines were used. To

further evaluate the consistency of the DEGs across the datasets,

Jackknife sensitivity analysis was applied and revealed that most

of the DEGs (>80%) passed at least 50% of the Jackknife tests,

which indicates the robustness of the results and independency

of these genes to a single study. It is worth to note that in this

study only DEGs with the same pattern of expression over half

of the datasets were considered (500 DEGs including 221 up-

and 279 down-regulated genes in fat- against thin-tailed sheep

breeds), which make them more robust and constitutes a suitable

way for better understanding the regulatory mechanisms of fat-

tail development. To assess potential functions of DEGs in fat-

tail development, we investigate their relationships with the QTLs

related to sheep fatness and found that they were significantly
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FIGURE 5

PPI network and functional clusters of the down-regulated DEGs. Green, pink and purple nodes represent green, pink and purple clusters,

respectively. Oval circles indicate the DEGs that were presented in at least 50% of the Jackknife test results. The DEGs that were located in QTL

regions related to fatness are represented as bold texts.

enriched in these QTLs. These findings reinforced that the

identified DEGs may play important roles in fat-tail development

in sheep.

GO terms as well as KEGG pathways associated with

fat metabolism were the most enriched terms in the DEGs,

which explains the fact that these genes can be related to fat-

tail formation (Supplementary material 3). Some of the DEGs

grouped under terms that were directly or indirectly related to

fat metabolism, including LEPRRBP4, CSNK2B, EPHX1, SCD,

ALOX15, SCD5,HSPA6, ACLY, ELOVL6, FOXO3, PPP5C,DAGLA,

ACSF2, DHCR24, JUNB, FNDC5, FMO2, FOS, FRZB, ZBTB16,

LSS,COL5A1, SLC27A2, SPTLC3, PLPP3,ZBTB20, SMPDL3B, LBP,

LPIN1, IL6, PDGFRA, CCL21, SPP1, PAI-1, HSD11B1, MTMR4,

S100A1, COL6A3, TNNC2, ITGA1, SCG5, NR4A1, DUSP1, and

APOE (6, 8–14, 17, 39–41). Most of these genes passed at least 50%

of the Jackknife tests or reside in the QTLs previously found to

be linked to sheep fatness (Supplementary material 2, 4). Some of

these genes require particular attention considering that they have

been previously linked to fat deposition.

PPIs network construction by STRING database confirmed

that up- and down-regulated DEGs were members of functional

interaction networks. It is well-known that genes from the same

sub-network in a PPI network more probably play similar roles

and are implicated in the same biological functions. To investigate

this hypothesis, sub-network analysis on the PPI network results

was performed and two of the three identified sub-networks in

the down-regulated DEGs were significantly enriched in different

GO terms and KEGG pathways. Hence, it might be possible to

hypothesize that genes of green sub-network may be involved

in fat deposition in tail of sheep breeds, as “Biosynthesis of

unsaturated fatty acids” and “Lipid biosynthetic process” were

significantly enriched (Figure 5). Some genes of this sub-network

that may be of particular interests are SCD, SCD5, ELOVL6, ACLY,

DHCR24, SPTLC3, LSS, LPIN1, SLC27A2, CKAP2, FOS, JUNB,
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FIGURE 6

Functional enrichment analysis results of pink sub-network. Size and color of points represent -Log2 of FDR and number of genes associated with

each term, respectively. BP, Biological processes.

FOXO3, EBF2, and MYBL2, which are located in the fatness-

related QTLs regions or passed at least 50% of the Jackknife

tests (Supplementary material 2, 4). In our previous study we

hypothesized that down-regulation of the related genes to lipid

metabolism in fa-tailed breed may be associated with other

pathways than fat deposition such as fat composition (6) or

fatty acid oxidation. It has been demonstrated that the breed

has significant effect on fatty acid composition of tail fat (42).

Here, the similar results were obtained as some members of green

sub-network were involved in the pathways associated with fat

composition or fatty acid oxidation such as SCD, SCD5, ELOVL6,

ACLY, SLC27A2, and LPIN1.

Isoforms of stearoyl CoA desaturase (SCD and SCD5) play

important roles in desaturation of saturated fatty acids. Lower

expression of these genes has been previously reported in fat-

tailed than thin-tailed sheep breeds (11, 13), which can cause

lower content of saturated fatty acids in fat-tailed breeds.

In chicken, SCD5 expression was significantly correlated with

levels of stearidonic acid (43), which might lead to suppress

adipocyte differentiation (44). Very long-chain fatty acids protein

6 (ELOVL6) is well-known as a major regulator of fatty acid

composition in mammals (45). The first step of de novo lipogenesis,

the conversion of citrate into acetyl-CoA, is catalyzed by ACLY.

This product, acetyl-CoA, can then be used as building block

for long chain fatty acids, cholesterol synthesis and/or histone

acetylation (46). It has been shown that ACLY-deficient adipocytes

accumulate lipid in vivo and display some differences in fatty acid

content and synthesis (47). Mammals express three lipin genes

(LPIN1-3) that their functions are evolutionarily conserved. One of

the important roles of these genes is transcriptional co-regulators

of gene expression in the nucleus to promote fatty acid oxidation

(48). In accordance with our results, it was reported that the role

of LPIN1 might be closely associated with fatty acid oxidation in

the bovine liver (49). Solute carrier family 27 member 2 (SLC27A2)
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is a transmembrane transporter coenzyme that participates in the

long-chain fatty acid beta-oxidation (50) as well as plays a key

role in fatty acid degradation (51). SLC27A2 was identified to be

closely associated with tail phenotype in Zhang et al. study that

investigated the transcriptome profiles of fat deposition in tail of

sheep (17). A recent study investigated the correlation of slow-

growing meat type chicken liver gene expression with abdominal

fat deposition using a time-course transcriptomic study (from the

embryonic to the egg-producing period) and reported CKAP2 as

one of the important candidates involved in fat metabolism (52).

Furthermore, in green sub-network, five genes including JUNB,

FOXO3, EBF2, FOS, and MYBL2 were transcription factors with

known roles in lipid metabolism, which can be considered as

regulators of this sub-network. A genome-wide association study

showed that MYBL2 may be involved in abdominal fat deposition

in chickens (53). JUNB is a transcription factor whose role in lipid

metabolism and fat cell differentiation has been documented (54).

Important roles of FOXO protein family in energy homeostasis and

lipid metabolism have been highlighted in previous studies (55).

Based on our findings, lower expression of members of the green

sub-network in fat-tailed sheep breeds are reasonable and might

be potential candidate contributing to shaping fat-tail phenotype

through regulating fat composition or fatty acid oxidation.

On the other hand, some pathways related to the fat

metabolism including “Extracellular matrix (ECM)-receptor

interaction,” “Focal adhesion,” and “PI3K-Akt signaling pathway”

were significantly enriched in the pink sub-network, which can

further contribute to understanding the fat-tail development in

sheep (Figure 6). All the genes associated with these pathways

(SPP1, COL1A1, ITGA2, ITGA1, VEGFA, COL6A6, COL4A6,

PDGFRA, COL6A3, and SDC1) were located in the QTLs

related to fatness or passed at least 50% of the Jackknife tests

(Supplementary material 2, 4), which indicated their potential

involvement in fat-tail morphogenesis. Focal adhesion is related

to ECM and act as mechanical linkages to the extracellular matrix

(56). Hence, the DEGs belonging to these two pathways were very

similar (Supplementary material 3). ECM is essential for tissue

homeostasis and consists of a complex mixture of functional

macromolecules in adipose tissue, such as glycosaminoglycans,

collagen, elastin, fibronectin, and lammin (57). The ECM

communicates with cells through cell surface-related elements

such as integrin and regulates cell activities such as differentiation,

proliferation, migration, adhesion and apoptosis (58). ECM

receptor interaction signaling pathway has been reported as

a significant enriched pathway in the DEGs between fat- and

thin-tailed sheep breeds in several previous studies (6, 11, 16) as

well as in the DEGs between lean and obese human (59). Moreover,

interaction between ECM components and transmembrane

receptors of fat cells have been demonstrated to be associated

with depot-specific adipogenesis in bovine (60). However, we

believed that research studies in animal filed have paid no

sufficient attention to investigate the role of the ECM receptor

interaction pathway in fat metabolism as well as fat-tail formation

in sheep. ECM was detected as an inhibited KEGG pathway

during differentiation of human mesenchymal stromal-cells into

adipocytes. Down-regulated genes belonging to this pathway were

in agreement with our results like collagen subunits IV, V and VI

(COL1A1, COL6A6, COL4A6, and COL6A3), different integrins

1 and 2 (ITGA1 and ITGA2) and proteoglycans like syndecan 1

and 4 (SDC1). Down-regulation of these genes are attributed to

cytoskeleton reorganization during adipogenesis (61). Collagen

type IV denaturation is reported to be associated with adipogenic

differentiation (62). In a comprehensive assessment to study the

role of COL6A3 in human obesity and diabetes, it was revealed

that COL6A3 expression increased after weight loss and showed

a negative correlation with obesity, which is in good agreement

with our findings in the current study (63). Moreover, it has been

shown that integrin α5 is down-regulated during adipogenesis in

3T3-L1 cells. Therefore, up regulation of this gene inhibits cellular

differentiation (64). Accordingly, our findings let hypothesize that

ECM might mediates a mechanism involved in the differentiation

of fat-tail adipocytes and lipid metabolism, thereby changing the

fat-tail morphology of various sheep breeds.

Phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)

signaling pathway, as the other enriched pathway in pink

sub-network, is a key pathway that specifically phosphorylates

phosphatidylinositol, generate an intracellular second messengers

and mediates glucose and lipid metabolism (65). It is reported that

PI3K/AKT signaling pathway has different functions in various

adipocytes, as promote and inhibit the proliferation/differentiation

in human adipocytes and 3T3-L1, respectively (66, 67). It has been

shown that inhibition of this pathway in children with simple

obesity participates in the occurrence and progression of obesity

(68). In a recent study, PI3K/AKT signaling pathways was enriched

in the target genes of differentially expressed miRNAs between fat-

and thin-tailed sheep breeds (69) and suggested to be involved

in biological processes related to fat deposition in fat-tail tissue.

In the current study, enrichment of this pathway in the down-

regulated genes in fat-tailed breeds suggesting that it may inhibits

the proliferation and differentiation of lipid metabolism in fat-

tail tissue and leads to differences in fat deposition between the

different sheep breeds. Some of the DEGs belonging to PI3K/AKT

signaling pathway in this study were included SPP1, PDGFRA,

VEGFA, and TNC. Positive and negative effects of SPP1 in fat

deposition had been demonstrated in previous reports. Studies

have established that this gene is synthesized by adipocytes and its

higher expression is related to fat deposition (70). In contrast, it

is reported that interaction of SPP1 with integrin αv/β1 inhibits

the adipogenesis of mesenchymal stem cells (71). In agreement

with our results, a recent study found that SPP1 negatively

regulated adipogenic differentiation of peripheral blood-derived

mesenchymal stem cells and interaction between novel-miR-659

and SPP1 coregulate fat deposition in castrated male pigs (40).

All these findings support the potential function of PI3K/AKT

signaling pathway and its related genes in mediating lipolysis and

energy expenditure, which can be led to lower fat deposition.

Some of the up-regulated DEGs in this study have been

previously reported as candidate genes involved in fat-tail/fatness

development or as DEG associated with fat metabolism in animal.

Moreover, they were found in the fatness-related QTLs or passed at

least 50% of the Jackknife tests (Supplementary material 2, 4). Some

of the most important genes in light blue sub-network (Figure 4)

were IL6, RBP4, LEPR, PAI-1, CSNK2B, and MTMR4. Recent

studies highlighted the role of interleukins in lipid metabolism
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(49). Interleukin-6 (IL-6) is known as a key regulator of adipose

homeostasis in obesity. It is worth to note that in Farhadi et al.,

study this gene was down-regulated in fat-tailed breed and they

suggested it as a potential candidate gene in fat-tail formation.

However, our analysis revealed that this gene was up-regulated

in fat-tailed breed in all studies, except Farhadi et al., study.

In this regard, results of a study showed that expression of IL-

6 in lymphedema [a morbid disease characterized by adipose

deposition (72)] is associated with adipose deposition. Since, IL-6

was identified as a highly connected gene in light blue sub-network

(Figure 4), the other genes in this cluster are expected to be

potential candidate genes in fat-tail formation. Interestingly, most

of the connected genes with IL-6 were reported to be involved in

fat deposition processes, which reinforce the importance of light

blue sub-network in fat deposition. For example, retinol binding

protein 4 (RBP4), which is a novel adipokine, is mainly secreted

by adipocytes and is related to obesity. This gene contributes to

systemic insulin resistance that can lead to fat deposition (73).

Leptin receptor (LEPR), as other gene in light blue sub-network

that is also located in fatness-related QTLs regions, was reported as

candidate gene affecting fat deposition in pig (74). Higher levels of

plasminogen activator inhibitor-1 (PAI-1) in plasma was reported

to be a biochemical marker of obesity (75). The association between

PAI-1 and fat deposition had been well-established in animal

studies and the location of this gene in the QTLs linked to sheep

fatnessmake it interesting for further functional investigations (76).

EPHX1, HSD11B1, FMO2, S100A1, and HSPA6 were some

of the important up-regulated genes in orange sub-network

(Figure 4). Association between EPHX1 and adipogenesis in

mesenchymal stem cells through the activation of cryoprotective

lipid mediators had been explained previously (77). Rosu-Myles

et al., reported that EPHX1 expressing cells in human stromal

cultures can be led to increased numbers of cells that have

committed to the adipocyte lineage (78). FMO2 is a member of the

FMO gene family and catalyze the NADPH-dependent oxidative

metabolism of a wide array of foreign chemicals as well as is

involved in fat deposition, adipogenesis and fatty acid biosynthesis

(12). FMO3, as other member of this family, was reported as

important candidate in fat metabolism of sheep through inhibiting

fatty acid oxidation (14). Consistent with these observations, FMOs

1, 2, and 4 knockout mice exhibited a lean phenotype and stored

less triglycerides in their white adipose tissue compared to wild-

type mice, despite similar food intake (79). HSD11B1 is well-

known to be closely related to the accumulation of abdominal fat

(80). Recently, an RNA-Seq study was performed to explore the

effects of castration on fat deposition in different parts of pigs

and HSD11B1 was reported as a factor affects glucose uptake by

adipocytes and leads to obesity (81). HSPA6 was reported as an

important regulator of fatty acid metabolism in the skeletal muscles

of sheep (39). Adipogenesis regulatory factor (ADIRF), as other

important up-regulated gene, promotes adipocyte differentiation

by enhancing the expression of peroxisome proliferator-activated

receptor gamma (PPARG) and CCAAT-enhancer-binding protein

alpha (CEBPA) in 3T3 L1 cells and play an important role in fat cell

development. Higher expression of this gene in obese individuals,

suggesting a role for ADIRF in the development of obesity (82).

Angiopoietin-like 8 (ANGPTL8) exhibits its effects by inducing

insulin receptor to inhibits lipolysis and controls post-prandial fat

storage in white adipose tissue. This gene directs fatty acids to

adipose tissue for storage during the fed state. Serpin family E

member 1 (SERPINE1) was highly expressed in obese individuals

and demonstrated as a key gene associated with the network

pathway analysis of obesity (83). Altogether, these results support

the potential role of up-regulated genes, especially light blue and

orange sub-networks in fat deposition in tail of sheep.

Totally, 170 unique DEGs (77 up- and 93 down-regulated)

were found in meta-analysis that were not identified as DEGs

in individual studies (Figure 2), which can be attributed to the

more statistical power of meta-analysis than individual studies for

identifying new candidate genes associated with fat-tail formation.

Of which, 38 DEGs (17 up and 21 down-regulated) were located in

QTLs regions related to fatness of sheep, which further support that

their functions might be relevant. Some of these genes have been

previously reported to be related to lipid metabolism including

NR4A1, ACSF2, MYC, SPP1, PLPP3, PHOSPHO1, and ACP6.

For example, NR4A1 encodes a nuclear receptor (transcription

factor) that is involved in regulation of lipid metabolism and

modulating lipolysis in muscle (41). It is reported that female

NR4A1 deficient mice exhibited higher fat mass compared to wild-

type mice, under the same high-fat diet (84). This gene plays a

vital role in the regulation of liver fat content (41). Expression of

NR4A1 is reported to be negatively correlated with body-fat content

and insulin sensitivity, as its expression was significantly lower in

the muscle of obese men in comparison to lean men (85). MYC,

which is a transcription factor, plays vital roles in lipid metabolism

(86). Furthermore, ACSF2 is involved in the acyl-CoA metabolic

process and malonyl-CoA metabolic process in mammals as well

as reported to be associated with avian lipid metabolism (87, 88).

These findings suggested a link between differentially expressed of

these genes and fat-tail development in sheep.

Conclusion

In this study, a meta-analysis of six RNA-Seq datasets

that compared transcriptome profiles of fat- and thin-tailed

sheep breeds, were performed. By considering the expression

pattern of DEGs across the different studies and performing

Jackknife analysis, a list of robust DEGs were obtained, which

were enriched in the QTLs related to sheep fatness. Moreover,

functional interactions among the DEGs were confirmed using

PPIs network analysis. Functional enrichment analysis showed

that the DEGs were enriched in the GO terms/KEGG pathways

related to fat metabolism such as “fatty-acyl-CoA biosynthetic

process,” “ECM-receptor interaction,” and “PI3K-Akt signaling

pathway.” Cluster analysis of the PPIs network led to identification

several sub-networks that were directly or indirectly involved

in fat deposition. Some down-regulated DEGs in green and

pink sub-networks were SCD, SCD5, ELOVL6, ACLY, SLC27A2,

LPIN1, COL1A1, COL6A6, COL4A6, COL6A3, ITGA1, ITGA2,

SDC1, and SPP1, which probably promote the development of

fat-tail through regulating lipolysis or fatty acid oxidation. In

contrast, up-regulated DEGs such as IL6, RBP4, LEPR, PAI-1,

CSNK2B,MTMR4, EPHX1, HSD11B1, FMO2, S100A1, and HSPA6

were mainly enriched in green and pink sub-networks and may

contribute to a network controlling fat accumulation in tail of sheep
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breed through mediating adipogenesis and fatty acid biosynthesis.

Overall, our meta-analysis successfully identified a core set of

DEGs associated with lipid metabolism including well-known

genes related to fat deposition as well as newly identified genes

such as NR4A1 and ACSF2. Therefore, it is reasonable to infer

that the suggested sub-networks and their gene members might

be potential candidate contributing to shaping fat-tail phenotype.

Although our findings were in good agreement with previous

studies, however they are in transcriptome level and follow-up

functional studies are required to investigate the mechanisms

by which these genes contribute to the fat deposition in tail of

sheep breeds.
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