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Avian influenza viruses (AIVs) in wild birds are phylogenetically separated in Eurasian 
and North American lineages due to the separated distribution and migration of 
wild birds. However, AIVs are occasionally dispersed between two continents by 
migratory wild birds flying across the Bering Strait. In this study, we isolated three 
AIVs from wild bird feces collected in South Korea that contain gene segments 
derived from American lineage AIVs, including an H6N2 isolated in 2015 and two 
H6N1 in 2017. Phylogenetic analysis suggests that the H6N2 virus had American 
lineage matrix gene and the H6N1 viruses had American lineage nucleoprotein and 
non-structural genes. These results highlight that novel AIVs have continuously 
emerged by reassortment between viruses from the two continents. Therefore, 
continuous monitoring for the emergence and intercontinental spread of novel 
reassortant AIV is required to prepare for a possible future outbreak.
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1. Introduction

Wild waterfowl are the natural hosts of avian influenza viruses (AIVs) (1) Because of the 
geographical barrier, AIVs are separated into two phylogenetic lineages, the Eurasian and 
American lineages (2). However, some migratory waterfowl (e.g., the Northern Pintail duck; 
Anas acuta and Greater White-fronted goose; Anser albifrons) move intercontinentally, causing 
genetic mixing between the two lineages of AIVs (3–8).

Previous surveillance studies on AIVs in wild birds provide evidence for the intercontinental 
exchange of AIVs. For example, the Eurasian H6 subtype AIV has been reported in North 
America since the 1990s and it replaced the prevailing North American H6 AIV (8). AIVs 
subtype H9N2, which contains six genes originating from North America, were simultaneously 
isolated in South Korea, China, and Alaska (5–7). In 2019, subtype H6N5 AIV carrying all eight 
gene segments from North American ancestors was detected in Mandarin duck in South Korea 
(4). In addition, the intercontinental spread of the highly pathogenic avian influenza (HPAI) 
virus from Eurasia to North America was detected in 2014 and 2021 (9, 10). Western Alaska, 
where migratory flyways of waterfowl overlap, is the location to encounter AIVs from Eurasian 
and North American lineages (3).
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In the current study, we  report three reassortant H6 viruses 
containing gene segments originating from North America. Complete 
genome sequencing and phylogenetic analysis were used to find the 
origin of each gene segment.

2. Materials and methods

We collected fresh fecal samples from wild bird habitats in South 
Korea for routine AIV surveillance during the fall migration and 
wintering seasons of wild waterfowl. In the 2015–2016 winter, 
we collected total of 1,896 fecal samples and in the 2016–2017 winter, 
we collected total of 8,096 fecal samples. Following as the previous 
study, fecal samples were examined for influenza A virus by real-time 
reverse transcription polymerase chain reaction (rRT-PCR) targeting 
the matrix (M) gene (11). Virus isolation was done using embryonated 
SPF chicken eggs. We found three reassortant H6 viruses containing 
gene segments originating from the American continent: A/Mandarin 
duck/Korea/K15-68/2015 (H6N2), A/Greater White-fronted goose/
Korea/K16-727-5/2017 (H6N1), and A/Greater White-fronted goose/
Korea/K16-738/2017 (H6N1) (designated as K15-68, K16-727-5, and 
K16-738, respectively). The date and location information of the 
isolated viruses is shown in Table  1. We  sequenced full-length 
genomes of the isolates using the Illumina MiSeq system. We deposited 
the nucleotide sequences of each virus into the Global Initiative for 
Sharing All Influenza Data (GISAID) database (accession nos. EPI_
ISL_11110143, EPI_ISL_11112483, and EPI_ISL_11112543, 
respectively). The host of each fecal sample positive for AIV was 
identified using a DNA barcoding technique, as previously 
described (12).

Comparative phylogenetic analysis of each gene was conducted to 
trace their origin. For phylogenetic analysis, all available sequences 
collected between 2010 and 2021 were downloaded from GISAID. To 
prevent the omission of intercontinental spread viruses during the 
subsampling process, we classified all downloaded sequences into two 
groups before subsampling: one containing the viruses isolated from 
Asia, Africa, and Europe and the other containing the viruses isolated 
from South and North America. We reduced the number of sequences 
in each gene segment of each group based on sequence identities of 
97 ~ 99% using the program CD-HIT (13). Maximum-likelihood 
(ML) phylogenetic trees were constructed using a general time 
reversible (GTR) substitution model with 500 bootstrap replications 
in RAxML version 8.2.11 (14). We  used BLAST1 to search for 

1 https:///blast.ncbi.nlm.nih.gov/Blast.cgi

sequences with the highest identity to each virus for each 
gene segment.

To verify the result of the phylogenetic tree, we constructed time-
scaled phylogenetic trees using BEAST version 1.10.4 (15). The GTR 
nucleotide substitution model and uncorrelated lognormal relaxed 
molecular clock model were used for constructing a time-scaled 
maximum clade credibility (MCC) tree. MCC trees were visualized 
using FigTree 1.4.2.2

To evaluate the pathogenicity of the viruses in chickens, a total of 
15 three-week-old SPF chickens (Namdeok SPF, Korea) were divided 
into 3 groups (5 chickens/group). The chickens were inoculated with 
H6 LPAI viruses at 106.0 EID50 in a volume of 100ul by intranasal route. 
At 2-, 3-, 5-, and 7-days post-infection (dpi), oropharyngeal (OP) and 
cloacal (CL) swabs were collected from all chickens and examined for 
virus shedding using a quantitative real-time reverse transcription 
polymerase chain reaction (rRT-PCR) targeting the matrix gene, as 
described previously (11). For each virus, the standard curve was used 
to convert the Ct values into equivalent EID50 titer. All chickens were 
monitored daily for clinical signs and mortality. Serum samples were 
collected for serological investigations including anti-NP ELISA 
(Bionote, Inc., Korea) and Hemagglutination inhibition (HI) testing 
for homologous HA-specific antibodies.

3. Results

We successfully obtained complete genome sequences of the 
K15-68, K16-727-5, and K16-738 viruses. Host species of K15-68 was 
identified as Mandarin duck, and K16-727-5 and K16-738 viruses’ 
host were identified as Greater White-fronted goose using DNA 
barcoding. The genome sequences of K16-727-5 and K16-738 which 
were isolated on the same sample collection day were almost identical 
(NP: 99.936%, NS: 99.944%, and other 6 genes: 100%).

BLAST research indicated that the matrix (M) gene of K15-68 
strain shared >99% nucleotide identity with the Guatemalan origin 
H14N3 subtype AIV. The nucleoprotein (NP) gene of K16-727-5 and 
K16-738 strains sharing 99.94% nucleotide identity with H9N6 
subtype AIV isolated from Missouri, United  States, and the 
nonstructural (NS) gene shared 98.31% nucleotide identity with Ohio, 
USA isolate (Table 2). All other segments showed >98% identity with 
the low-pathogenicity AIVs (LPAI) identified in South Korea, Japan, 
China, and Mongolia. Corresponding to the BLAST results, the ML 
and Bayesian phylogenetic analysis showed that the M gene of K15-68 

2 http://tree.bio.ed.ac.uk/software/figtree/

TABLE 1 Summary of viruses used in this study.

Virus name GISAID accession # Collection date Province Location coordinate

A/Mandarin duck/Korea/K15-

68/2015(H6N2)
EPI_ISL_11110143 2015-11-11 Cheonsu bay 36°36’21’’N 126°25’9’’E

A/Greater white-fronted goose/

Korea/K16-727-5/2017(H6N1)
EPI_ISL_11112483 2017-03-14 Ganghwa-gun 37°44′50″N 126°29′8″E

A/Greater white-fronted goose/

Korea/K16-738/2017(H6N1)
EPI_ISL_11112543 2017-03-14 Ganghwa-gun 37°44′50″N 126°29′8″E
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and the NP and NS gene of K16-727-5 and K16-738 clustered with the 
American lineage wild bird AIVs and the rest of the gene segments 
were clustered with the Eurasian lineage wild bird AIVs (Figure 1; 
Supplementary Figures S1, S2). These results demonstrate that the 
three viruses were generated by reassortment between Eurasian and 
American AIVs.

The HA genes from H6N1 and H6N2 AIVs have some 
phylogenetic distance. Eurasian lineage H6 genes are divided into 
seven groups; ST339-like, W312-like, ST2853-like, HN573-like,  
South African-like, Taiwan-like, and Europe (Figure 1) (16). HN573-
like is divided into three subgroups, subgroup 1 (mixed group), 2 
(Eurasian group), and 3 (American group). All three isolates cluster 
with HN573-like, but with different subgroups 
(Supplementary Figure S1D). H6N2 belongs to subgroup 1 and H6N1 
belongs to subgroup 2.

The amino acid changes related to the mammalian adaptation, 
including Q591K, E627K, and D701N mutations in PB2 (17), N137/ 

E190V/ G228S triad, and Q226L mutation in HA (H3 numbering) 
(18, 19), were not detected in the viruses isolated in this study. The NA 
stalk deletion, which has been associated with adaptation to 
gallinaceous hosts (20), was also not detected.

Three-week-old SPF chickens were inoculated with the H6 viruses 
to study their infectivity and virulence. During the 14-day experiment, 
no obvious clinical signs and no mortality were observed. Virus 
shedding through the OP and CL routes was detected during 3–7 dpi, 
but the detected amount of viruses was very low (<103.5 EID50) 
(Table 2). For the chickens inoculated with K15-68 and K16-727-5 
virus, mean shedding titers for both routes did not exceed 101.0EID50 
throughout the whole period of the experiment. Chickens inoculated 
with K16-738 showed a peak of OP shedding at 3 dpi and a peak of CL 
shedding at 7 dpi, with mean shedding titers of 101.85 EID50 and 101.84 
EID50, respectively. Both HI and NP-specific antibodies were detected 
in two of five, one of five, and one of five chickens inoculated with 
K15-68, K16-727-5, and K16-768, respectively (Table 3).

TABLE 2 BLAST results of 8 gene segments of three viruses isolated in this study.

Virus Gene BLAST results

Strain % Genetic identity GenBank accession 
#

K15-68

PB2 A/duck/Hokkaido/201/2014(H1N1) 99.01% LC339528.1

PB1 A/waterfowl/Korea/S353/2016(H11N9) 99.83% KX703017.1

PA A/waterfowl/Korea/S245/2016(H6N2) 99.60% KX761368.1

HA A/wild bird/Jiangxi/P419/2016(H6N8) 98.34% KX867857.1

NP A/waterfowl/Korea/S245/2016(H6N2) 99.74% KX761370.1

N2 A/duck/Miyazaki/CAD-1/2016(H4N2) 99.38% LC415036.1

M
A/blue-winged teal/Guatemala/CIP049H105–

15/2011(H14N3)
99.42% KJ195679.1

NS A/waterfowl/Korea/S245/2016(H6N2) 99.44% KX761373.1

K16-727-5

PB2 A/waterfowl/Korea/S245/2016(H6N2) 99.36% KX761366.1

PB1 A/duck/Akita/51019/2017(H5N3) 98.88% MK592459.1

PA A/Duck/Mongolia/782/2017(H7N3) 99.01% MH744642.1

HA A/duck/Hunan/10.27_YYGK57B2-O/2016(mixed) 99.42% MW108112.1

NP A/northern shoveler/Missouri/17OS4858/2017(H6N2) 99.94% MK237594.1

N1 A/wild waterfowl/Korea/F14-5/2016(H6N1) 99.65% MH130116.1

M A/mallard/Netherlands/89/2017(H4N6) 99.42% MK192396.1

NS A/Mallard/Ohio/18OS1894/2018(mixed) 98.31% MT565511.1

K16-738

PB2 A/waterfowl/Korea/S245/2016(H6N2) 99.36% KX761366.1

PB1 A/duck/Akita/51019/2017(H5N3) 98.88% MK592459.1

PA A/Duck/Mongolia/782/2017(H7N3) 99.01% MH744642.1

HA A/duck/Hunan/10.27_YYGK57B2-O/2016(mixed) 99.42% MW108112.1

NP A/northern shoveler/Missouri/17OS4858/2017(H6N2) 99.94% MK237594.1

N1 A/wild waterfowl/Korea/F14-5/2016(H6N1) 99.65% MH130116.1

M A/mallard/Netherlands/89/2017(H4N6) 99.42% MK192396.1

NS A/Mallard/Ohio/18OS1894/2018(mixed) 98.31% MT565511.1

The American lineage strains were highlighted in bold.
K15-68, A/Mandarin duck/Korea/K15-68/2015(H6N2); K16-727-5, A/Greater white-fronted goose/Korea/K16-727-5/2017 (H6N1); K16-738, A/Greater white-fronted goose/Korea/K16-
738/2017(H6N1). PB, polymerase basic protein polymerase basic gene; PA, polymerase acidic gene; HA, hemagglutinin gene; NP, nucleoprotein gene; NA, neuraminidase gene; M, matrix 
protein; NS, nonstructural protein.
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4. Discussion

In the current study, we  report American-Eurasian 
reassortants H6N1 and H6N2 viruses isolated from two wild bird 
species, the Greater White-fronted goose and Mandarin duck. 
Since the first report of North American-Eurasian reassortant 

AIVs detected from wild birds in South Korea in 2010 (21), North 
American lineage AIV gene segments have been detected 
continuously in South Korea (4, 21–23). Previous studies also 
detected multiple Eurasian lineage AIV genes in Alaska, indicating 
the bi-directional flow of AIV exchange between East Asia and 
North America (24).

FIGURE 1

Maximum-likelihood phylogenetic trees of each gene segment of avian influenza virus including Eurasian lineage and American lineage genome 
sequences. Red and blue circles indicate lineages of Eurasia and America, respectively. Green circles indicate genome sequences of novel viruses 
which isolated in this study; K15-68, K16-727-5, K16-738. Maximum-likelihood phylogenetic trees for each gene segment are shown in 
Supplementary Figure S1.

TABLE 3 Viral shedding and antibody responses of chickens inoculated with H6 avian influenza viruses.

viruses No. of positive chickens/total chickens (Mean viral titer, log10 EID50/ml ± SD)c Serology, no. of 
positive/totalf

OPa CLb NP-
ELISAd

HI Assaye

2 dpi 3 dpi 5dpi 7 dpi 2 dpi 3 dpi 5dpi 7 dpi (Mean PI) (Mean 
Titer)

K15-68 

(H6N2)
0/5 3/5 (0.8 ± 0.2) 4/5 (0.8 ± 0.2) 5/5 (0.6 ± 0.4) 0/5 0/5 3/5 (0.6 ± 0.2) 2/5 (0.7 ± 0.0) 2/5 (40.0) 2/5 (24)

K16-727-5 

(H6N1)
0/5 1/5 (1.5) 2/5 (0.9 ± 0.2) 5/5 (0.5 ± 0.0) 0/5 0/5 2/5 (0.7 ± 0.1) 4/5 (1.0 ± 0.3) 1/5 (11.6) 1/5 (23)

K16-738 

(H6N1)
0/5 4/5 (2.0 ± 0.3) 3/5 (1.8 ± 0.5) 4/5 (1.5 ± 0.0) 1/5 (1.8) 2/5 (1.3 ± 0.1) 3/5 (2.1 ± 0.8) 3/5 (2.2 ± 1.0) 1/5 (23.4) 1/5 (27)

aOP: Oropharyngeal swab.
bCL: Cloacal swab.
cPostive birds were indicated by real-time RT-PCR. Ct-value < 36 was considered as positive. Mean viral titer and standard deviation were calculated after converting the Ct values into 
equivalent EID50 titer by using the standard curves for each virus.
dAnti-influenza A nucleoprotein (NP)-specific antibody was analyzed using the commercially available multispecies competitive NP-ELISA Kit (Bionote, Korea). A percent inhibition (PI) 
value >50 was regarded as positive.
eHI assay: hemagglutination inhibition assay. An HI titer ≥4 was regarded as positive.
fSerum samples were collected from the birds at 14 days after the infection.
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Recently, intercontinental reassortants AIVs have been 
frequently detected (4, 6, 9, 21–23, 25, 26). The reason for the 
frequent discovery of intercontinental reassortants is not fully 
determined yet. We assume that climate change can be a factor in 
contributing to frequent exchange of AIVs between two continents. 
A previous study indicated that an abnormal climate in Africa 
might have contributed to the trans-continental introduction of 
HPAI H5Nx in Africa by migratory birds (27). The temperature of 
Alaska has increased since 2014 and it might affect the migration 
pattern of migratory birds and the ecology of AIVs in wild birds 
(28). On the other hand, Next-Generation Sequencing techniques 
have been widely used for AIV sequencing (23), and this high-
throughput sequencing system would also contribute to the 
frequent detections of novel reassortants.

The reassortment of AIVs causes rapid changes in the 
biological characteristics of viruses and it could be a considerable 
threat to the poultry industry and public health (29). In 2014, in 
China, for example, human infection of AIV subtype H7N9 
occurred by reassortment of AIVs in poultry and wild birds (30). 
In 2013, a case of human infection with subtype H6N1, AIV 
generated by reassortment carrying N137/E190V/G228S triad 
amino acid changes in HA, was reported in Taiwan (31). Although 
no mammalian adaptation mutation was detected in this study, the 
emergence of novel AIVs reassortants and the detection of 
mutation related to mammalian adaptation highlights the 
importance of wild bird surveillance in terms of the ‘One Health’ 
concept.

The viruses isolated in this study showed limited infectivity in 
chickens similar to other wild bird-origin H6 viruses tested in 
previous studies (32–35). These H6 viruses may be poorly adapted 
to chickens, but we assume that they possibly replicate in domestic 
waterfowl without prior adaptation which could lead to the spread 
and maintenance of H6 viruses in land-based poultry. Bahl et al. 
showed that the introduction and establishment of Eurasian H6 
viruses in North America dramatically changed the evolutionary 
dynamics of the influenza virus in wild birds (36). Thus, genomic 
surveillance and in vivo pathobiology studies should be continued 
to monitor the evolution of reassortant H6 viruses and their 
host ranges.

Constant monitoring for AIVs in wild birds is essential to detect 
the introduction of new viruses and trace the dispersion path. 
Particularly, as a major wintering site for various wild birds (37), South 
Korea would be  an important location for monitoring the 
intercontinental exchange of AIVs. Combined with recently developed 
sequencing technology, continuing monitoring of the intercontinental 
dispersion of AIVs would expand our knowledge of AIV ecology 
and epidemiology.
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