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Introduction: Physical and non-physical processes that occur in nature may 
influence biological processes, such as dissemination of infectious diseases. 
However, such processes may be hard to detect when they are complex systems. 
Because complexity is a dynamic and non-linear interaction among numerous 
elements and structural levels in which specific effects are not necessarily linked 
to any one specific element, cause-effect connections are rarely or poorly 
observed.

Methods: To test this hypothesis, the complex and dynamic properties of 
geo-biological data were explored with high-resolution epidemiological data 
collected in the 2001 Uruguayan foot-and-mouth disease (FMD) epizootic that 
mainly affected cattle. County-level data on cases, farm density, road density, 
river density, and the ratio of road (or river) length/county perimeter were 
analyzed with an open-ended procedure that identified geographical clustering 
in the first 11 epidemic weeks. Two questions were asked: (i) do geo-referenced 
epidemiologic data display complex properties? and (ii) can such properties 
facilitate or prevent disease dissemination?

Results: Emergent patterns were detected when complex data structures were 
analyzed, which were not observed when variables were assessed individually. 
Complex properties–including data circularity–were demonstrated. The 
emergent patterns helped identify 11 counties as ‘disseminators’ or ‘facilitators’ (F) 
and 264 counties as ‘barriers’ (B) of epidemic spread. In the early epidemic phase, 
F and B counties differed in terms of road density and FMD case density. Focusing 
on non-biological, geographical data, a second analysis indicated that complex 
relationships may identify B-like counties even before epidemics occur.

Discussion: Geographical barriers and/or promoters of disease dispersal may 
precede the introduction of emerging pathogens. If corroborated, the analysis 
of geo-referenced complexity may support anticipatory epidemiological policies.
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Introduction

To occur, epidemics involve more than a pathogen and a 
susceptible group of hosts. In addition to immunological, 
microbiological and demographic factors, numerous factors 
(including but not limited to the geographical environment) may also 
influence the development and progression of epidemics. To explore 
such factors, the analysis of variables that can be defined in terms of 
geographical coordinates (geo-referenced variables) has been 
proposed (1–5).

Numerous calls have suggested the development of methods that 
address complexity and dynamics in epidemiology (6, 7). Given its 
potential relevance in prevention, the study of disease dissemination 
with geo-referenced data is a topic of particular interest (8).

While some geographical factors (such as the road structure) may 
facilitate disease dispersal, other factors may act as barriers (1, 9). Yet, 
geographical factors do not have a single and constant role–they 
change over time and/or across space. For instance, both low and high 
road density may prevent disease dissemination. While low road 
density tends to prevent disease dispersal, high road density may also 
act as a barrier because, in highly urbanized areas (where road density 
is invariably high), roads compete against farming for land and, 
consequently, high road density may inadvertently block 
dissemination of infections affecting domestic animals (10).

Similarly, bridges may play different roles (11). If used to control 
epidemics (e.g., as disinfection sites), bridges act as obstacles, 
complementing the natural barrier effect exerted by rivers and other 
geographical features, such as mountains. However, in their typical 
usage—connecting regions separated by rivers—bridges may foster 
epidemic spread. Consequently, the study of geographical facilitators 
or non-facilitators of epidemic dissemination is not a discrete and/or 
static endeavor: it involves the analysis of dynamic interactions among 
pathogens, hosts, and geography. Rivers on the other hand most likely 
act as barriers for animal movement, and therefore, prevent infectious 
diseases. For example, rivers are suggested to shape present-day 
patterns of ecological and genetic variation among Amazonian species 
and communities (12).

To study dynamics (interactions that change over time), 
complexity should be  considered. Measuring complexity is not a 
trivial endeavor because the mathematics (if not also the biology) 
influencing one scale may differ from the factors that affect other 
scales (13).

To investigate epidemics, “information” (not just “data”) should 
be generated. Data analysis is not enough–data structuring is needed 
(14). Structured data may reveal informative data patterns not directly 
conveyed by simple (non-structured) data.

Data structuring that focuses on relationships is not common (15). 
Much less so is the analysis of dynamic and complex relationships that 
include but exceed medical expertise (16). The information generated 
by structured data also depends on the data format utilized: for 
instance, it is not the same to read numbers from a table that lacks 
relationships than to directly visualize 3D patterns on a map (17–19). 
The validity and/or informative value of structured data can 
be  objectively determined: it only requires determining whether 
structured data (complex indicators that include multiple variables) 
inform more than non-structured (simple) variables (20).

Because ‘point predictions’ (e.g., the specific number of a specific 
variable that differentiates two or more specific conditions at a specific 

time and place) depend on highly variable initial conditions, 
complexity analysis does not attempt to make long-term predictions. 
Instead, it focuses on properties (21). Complex systems possess at least 
three properties: (i) emergence, (ii) irreducibility, and (iii) 
unpredictability (21–23). Emergence (also known as novelty) refers to 
the fact that complex systems are multi-level structures, which reveal 
new features or functions only when the most complex (system-level) 
structure is assembled. Irreducibility means that emergence cannot 
be  shown by or reduced to the properties of any one ‘simple’ 
(non-structured or low-level) variable. Unpredictability refers to the 
inability to predict emergence when only ‘simple’ and/or isolated 
variables are analyzed.

While investigated in infectious diseases, complexity and 
dynamics have been poorly explored in geo-referenced studies of 
epidemic dispersal. Yet, several properties of biological complex and 
dynamic systems are already well known in infectious diseases (24). 
For example, data circularity (data with no beginning and no end) is 
the essence of seasonality—one factor known to influence 
geo-epidemiology (25). Detecting such properties in epidemics 
matters because, given the highly combinatorial nature of complex 
and dynamic systems, numerous informative patterns may 
be embedded in the data, which may be missed by simple approaches 
(12, 26). If properties that characterize dynamic complexity were 
demonstrated in geo-referenced epidemics, it could then be explored 
whether some geographical factors may act as facilitators or barriers 
of epidemics.

To that end, data previously analyzed are here re-investigated (10). 
The reason to re-assess data collected in the 2001 Uruguayan FMD 
epizootic is because it predominantly affected bovines (a species that 
displays observable signs when infected by the FMD virus) and, at the 
time, all bovines in Uruguay were susceptible (no vaccine against 
FMD had been used in the previous decade). While other 
(non-bovine) species do not always reveal clinical signs when affected 
by the FMD virus (27), both the geographical location of the onset and 
the geo-temporal progression of the 2001 Uruguayan FMD epizootic 
were unambiguously recorded. While the purpose of this study is not 
to explore how FMD epizootics can disseminate or how the 2001 
Uruguayan episode took place [such questions have been addressed 
in numerous, earlier studies (10, 28, 29)], data collected in that 
epizootic are used to ask two questions: (i) do epidemics reveal 
properties typical of complex systems? and (ii) if so demonstrated, 
could such properties distinguish geographical factors that may act as 
facilitators or barriers of epidemic spread?

Materials and methods

Materials

Two hundred and seventy-five counties of Uruguay were 
investigated. County-level geographical variables were combined with 
epidemic data collected in the first 11 weeks of the 2001 FMD 
Uruguayan epidemic (10, 29). These data were complemented with 
non-epidemiologic, geo-referenced data on area- and line-based 
structures (counties, rivers and roads, as reported in https://
srvgisportal.igm.gub.uy/portal/apps/webappviewer/index.html?id=2
6d59683d5cb475fa70e8223fa0da173; Supplementary Table 1). Seven 
variables were investigated: county area (sq. km), FMD case density 
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FIGURE 1

Geographical features of the 2001 FMD epizootic that took place in Uruguay. (A) county-wide FMD case density (cases/sq. km) reported in the first 
11 weeks of the epizootic. (B) county farm density (farms/sq. km). (C) road and county boundaries composed of roads (D) rivers and county boundaries 
composed of rivers. (E) county road density. (F) county road length/county perimeter composed of roads. (G) county river density. (H) county river 
length/county perimeter composed of rivers. County case density was higher in the south-western region (A), south of the Negro river, which flows 
diagonally trough the country, from the north-eastern to the south-western border (D). The south-western region, as well as much of the southern 
coast shows the highest road density (F). Such geo-epidemic structure suggests that the Negro river acted as a de facto obstacle for the dissemination 
of the epidemic, which was first reported to the south of this river.
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FIGURE 2

Geographic features of counties suspected to facilitate or block 
epidemic dispersal. Most ‘facilitator’ counties were clustered in the 
south-western region, where they occupied a continuous area (A). 
To elucidate whether such pattern was due to chance or geo-
biology, time-related epidemic data were investigated. Most 
‘facilitator’ counties were contiguous to a group of counties where 
the highest case density was reported over the entire course of the 
epizootic (B).

(infected farms/sq. km), farm density (farms/sq. km), road density 
(km of county road length/county area), river density (km of river 
length/county area), and the percent of county perimeter occupied by 
roads or rivers (road [river] length/county perimeter).

Method

An open-ended, combinatorial approach was used, which 
investigated georeferenced and/or epidemiologic variables until 
visually distinct data patterns were detected in the early epidemic 
phase (first 2 weeks). Such patterns were then used to classify counties 
into two categories: facilitator [F] or barrier [B] of epidemic dispersal. 
Subsequent data analyses focused on detecting properties associated 
with complex and dynamic systems, such as emergence, irreducibility, 
and/or unpredictability. The method operated as an open-ended series 
of multivariate, map-based analyses which, after comparing several 
data ranges of each variable, concluded when at least one distinct 
pattern of geographical units (counties) was identified. Such a pattern 
should include not more than one dissimilar unit into a cluster of units 
otherwise similar, e.g., a cluster of was characterized by counties with 
similar values of the same geographical feature or not more than one 
county exhibiting dissimilar values.

Using a commercial Geographical Information Systems (ArcGIS 
9.3, ESRI, Redlands, CA, United States) package, a layer (shapefile) of 
county boundaries was created. The seven variables used in the analysis 
were generated from variable layers and the county boundaries layer 
utilizing buffer, intersection and other data manipulation tools. The 
resulting data for these seven variables were combined into a single 
table which was then joined (appended) to the county boundaries layer 
using the common county identifier. The resulting dataset was then 
used to conduct a query for counties that fell within specified intervals 
(e.g., “road density greater than … AND river length segments in 
perimeter less than …”), and a new set was created. Such procedure was 
conducted for the entire 11-week long epidemics and for each epidemic 
week. The corresponding tables were then exported to a commercial 
statistical package (Minitab 22, Minitab Inc., State College, PA, 
United States) for further analyses. Correlation analysis was used to 
explore simple relationships among variables. The Mann–Whitney test 
for comparison of medians was applied to compare groups of counties. 
The same package was utilized to generate three-dimensional plots. A 
proprietary algorithm was used to facilitate the open-ended cycle that 
included map-based and 3D plot-based assessments.

Results

The geographical location of FMD cases, farms, rivers, and roads 
is shown in Figures 1A–H. A physical barrier was observed: most 
FMD cases were located south of the Negro river (Figure 1D).

When geographical variables were analyzed (without considering 
temporal-epidemiologic data), farm density was positively associated 
with both road density and road length (both with r ≥ 0.34, p < 0.01). 
In contrast, road length was negatively and statistically significantly 
associated with river length (Supplementary Table 2). When epidemic 
and temporal data were assessed, positive and significant correlations 
were found between case density and both farm density and road 
density in at least one of the first two epidemic weeks. In the early 

epidemic phase, farm density was positively and significantly 
correlated with road length –a variable associated with road density 
(Supplementary Table  3). The values of the geographic variables 
changed over time: while infections were only reported in 29 of the 
275 counties in epidemic week I, 71 counties reported FMD cases 
1 week later (Supplementary Table 4A).

While correlation analysis indicated relationships, it did not 
distinguish county categories. In contrast, map-based assessments of 
complex data combinations detected a group of 11 counties here labeled 
as ‘facilitators of epidemic spread’ (F). Most ‘facilitator’ (F) counties 
clustered in the south-western region of the country (Figure  2A). 
‘Facilitator’ counties were characterized by: (i) farm density > 0.15; (ii) 
road density > 0.1; (iii) river density > 0.1 but <0.3; (iv) road length / county 
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perimeter > 0.1; and (v) river length/county perimeter > 0.38 but <0.6. The 
remaining 264 counties were classified as ‘barriers’ (B, Figure 2A).

To validate such a classification, FMD case data were assessed 
over time in F and B counties. Over 11 epidemic weeks, 130 and 

1,420 cases were reported in F and B counties, respectively 
(Supplementary Table  4B). That is, the percentage of all cases 
associated with ‘facilitator’ counties (8.4% or 130/1550) was 2.1 times 
higher than the percent of cases within all counties (4.0% or 11/275). 
The F cluster was also geographically connected: it showed a 
continuous and contiguous structure within which, over 11 weeks, 
the highest FMD case density was observed (Figure 2B).

Spatial epidemic dynamics differed markedly between F and B 
counties. While FMD cases were reported in B counties in every week, 
no infection took place in F counties at weeks 10 and 11 (Figures 3A,B). 
The median road density associated with F counties was higher than 
that of B counties in the first 9 epidemic weeks (p < 0.01, Mann–
Whitney test; Figure 3C). Epidemic dynamics also differed between 
county classes: the case density (cases/sq. km) was higher in F than B 
counties in epidemic weeks 2–4, but lower, later (rectangles; 
Figure 3D).

FIGURE 3

Dynamics of counties suspected to facilitate or block disease 
dispersal. In all 11 epizootic weeks, ‘barrrier’ (B) counties reported 
FMD cases; in contrast ‘facilitator’ (F) counties only presented cases 
in the first 9 weeks (A). Log-transformed FMD case data revealed that 
F and B counties revealed similar trends in the first 9 weeks (B). The 
median road density (km of road length/sq.km of county area) was 
significantly higher in F than B counties in the first 9 weeks (C). FMD 
case density was higher in F than B counties in three of the first 
4 weeks (oval, D), becoming zero after week 8 (box, D).

FIGURE 4

Complex and simple data assessments When F counties were 
considered, three epidemic phases were detected (arrows, A). When 
county classes were not considered (F and B classes were not 
differentiated), only two epidemic phases were differentiated (arrows, 
B). While three-dimensional, complex assessments distinguished F 
from B counties, no variable, alone, differentiated F from B counties: 
overlapping data distributions were observed (boxes, C).
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FIGURE 5

Geographical differences between F and B counties. Data clustering, as well as a perpendicular data inflection (shown by F counties after epidemic 
week 8), (A) were not observed in B counties (B). While F counties displayed a high road density in the first 9 epidemics (circle, C), in B counties road 
density was high only in week 1 (arrow, D). F road length data revealed a sudden decrease data that predicted resolution (arrow, E), which was not 
shown the road length of B counties (F).

Three-dimensional (3D) analyses revealed three temporal data 
inflections when the road density associated with F counties was 
measured together with the weekly case count and the area (sq km) of 
such counties (Figure  4A). Such indicators differentiated three 
epidemic phases, here described as early, intermediate, or late (or 
resolution; red, blue, and green symbols; Figure 4A). However, when 
such variables were assessed in B counties, only two data inflections 
were detected, and the last epidemic phase (resolution) was not 
observed (Figure  4B). Hence, a new (emergent) pattern (three, as 
opposed to two data patterns) was only displayed by F counties. In 
contrast, unstructured data, alone, did not distinguish F from B 
counties (Figure  4C). Because emergence was not predicted by or 
reduced to the properties of any one unstructured variable, the data 
demonstrated three typical properties of biological complexity: 
emergence, irreducibility and unpredictability.

Emergence was also documented when road length, road density, 
and river density were considered: a perpendicular data inflection, 

observed in F counties (arrow, Figure 5A), was not revealed by B 
counties (Figure 5B). While F counties exhibited a high river density 
only in the first epidemic week (oval, Figure 5C), B counties displayed 
a high river density throughout the first 9 epidemic weeks 
(Figure 5D). While, in F counties, a sudden decrease in road length 
values predicted resolution (blue arrow; Figure 5E), B counties did 
not express such a feature (Figure 5F).

Findings also revealed data circularity and spatial–temporal 
biological relativity. Circularity was shown in numerous expressions 
(Figures 4A,B and also in Figures 6A,B). Relativity was expressed both 
as data points that occupied a large portion of the space analyzed but 
involved a small period of time (blue lines; Figures 6A,B) and also as 
observations generated over a long period of time, which occupied a 
small plot space (red ovals; Figures 6A,B).

Ambiguity was also observed: observations similar in all variables 
and values could have different meanings (green boxes; Figures 6A,B). 
To further explore complexity, geographic data were also analyzed 
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without consideration of epidemic data. Using the identifiers that, in 
the temporal (11-week long) analysis characterized F counties (those 
that reported most of the infections), a county-centered analysis 
explored whether combinations of variables could reveal patterns that 
differentiated the same 11 counties from the remaining (B-like) 264 
counties. Three levels of complexity were then evaluated: (i) 
complexity level I  (bi-dimensional relationships between two 
variables; Figures  7A–C); (ii) complexity level II (bi-dimensional 
relationships between three variables; Figure 7D); and (iii) complexity 
level III [three-dimensional (3D) relationships among complex [more 
than three] variables; Figures  8A–C). Statistically significant 
differences were found between F and B-like counties when four 
indicators (complexity levels I and II) were assessed (all with p ≤ 0.01, 
Mann–Whitney test; Figures  7A–D). Three-dimensional analyses 
detected an additional emergent pattern: most B-like counties were 
orthogonal to F counties. While the vertical data subset included all F 
and some B-like counties, the horizontal subset only included B-like 
counties (Figures 8A–C).

The 3D analysis of physical structures distinguished two subsets 
that were perpendicular to one another (Figures  8A–C). If 
epidemiologic data were considered, the ‘vertical’ subset would 
include all F counties (and a few B counties) while the ‘horizontal’ 

subset would be 100% free of infections (Figures 8A–C). Because the 
orthogonal patterns were detected regardless of epidemiologic status, 
if these patterns were repeatable, any county included in the 
‘horizontal’ subset could be  suspected to become a barrier if an 
epizootic took place.

Discussion

This study supported two novel inferences: (i) properties 
associated with complexity may be found when methods utilize 
geo-referenced and temporal data; and (ii) complex combinations of 
non-biological, geo-referenced data (such as the road and river 
networks) may reveal non-randomly distributed structures with 
potential influence on disease dispersal, which may be detected even 
in the absence of epidemiologic data. Methodological consequences 
associated with these inferences and some areas of possible 
applications are here discussed.

While unstructured data –observations on simple or isolated 
variables– were non-informative (Figure 4C), data structures that 
captured several levels of complexity described both a dynamic 
process (the epidemic) and a static (geographical) structure 
(Figures 4A,B, 8A–C). Findings support the view that epizootics reveal 
emergence, irreducibility, and unpredictability –properties typical of 
complex systems. The analysis of geo-referenced complexity may, at 
least partially, explain FMD outbreaks (21, 30, 31).

Two properties that may affect data analysis were also 
documented: data circularity and spatial–temporal biological relativity 
(32, 33). Such properties may prevent the use of models that analyze 
finite data intervals because circular data structures have no beginning 
and no end and, therefore, there are no explicit endpoints (34). As 
shown in Figures  6A,B, when relativity occurs, observations with 
similar numerical values may have different, if not opposite meaning 
(35). Yet, geo-referenced and dynamic analyses may distinguish such 
false similarities: the potential problems associated with ‘biological 
relativity theory’ and/or data circularity can be circumvented when 
complex properties are assessed with pattern recognition-oriented 
approaches. When an unambiguous pattern is determined, 
discrimination is possible (32, 35, 36).

Specifically, time-related arrows (data directionality) facilitated 
interpretation, even when circularity and relativity were observed. For 
example, two observations that showed similar numerical values were 
distinguished epidemiologically when temporal information (arrows 
that indicated where a data point was coming from/going to) were 
considered: one preceded the early epidemic phase, the other preceded 
the later phase (black open circle and blue closed square, respectively, 
Figure 4A).

Findings also indicated that, when data circularity is observed, no 
dichotomy is true (37). In contrast, non-binary models (those that 
consider there may be three or more epidemic stages) may prevent 
errors. As expected, complexity analysis extracted more or new 
information (20). Additional information was associated with data 
structures that captured many levels of complexity: level III indicators 
(which simultaneously captured 7 or more interactions, as shown in 
Figures 7A–D) yielded more information than simple (non-structured) 
variables (such as those reported in Figure 4C).

To discriminate, ‘top-down’ and ‘bottom-up’ aspects were 
considered (38). In particular, two challenges were addressed: (i) the 

FIGURE 6

Demonstration of spatial–temporal biological relativity (ambiguity). 
(A) Oscillatory or circular data patterns were observed in numerous 
plots, including this one. One associated property is spatial–
temporal biological relativity. Such a property is expressed as data 
points that describe long temporal periods but occupy a small space 
of the plot (red oval, A,B), as well as the opposite pattern: data points 
collected over a short time period, which occupy a large portion of 
space (blue lines, A,B). For instance, observations collected over 
6 weeks (red oval, B) occupied a smaller space than observations 
collected over 1 week (blue line, B). This property results in 
ambiguity: some data points of similar values in all variables may 
possess different meaning, e.g., the open (red) symbols refer to the 
early epidemic stage, while the closed (blue) symbols reflect the 
resolution phase (green boxes, A,B).
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FIGURE 7

Bi-dimensional analysis of geo-referenced, complex physical relationships that may influence disease dispersal. Dimensionless indicators that included 
ratios and/or products showed statistically significantly different medians when F and B counties were compared (all at p ≤ 0.01, Mann–Whitney test, 
A–D). (A) River length/farm density (the ratio resulting from dividing river length [percent of county perimeter] over farm density). (B) Road density * 
farm density (the product resulting from multiplying road density times farm density). (C) River length/road length (the ratio resulting from dividing river 
length [percent of county perimeter] over road length [percent of county perimeter]). (D) [Road density/river density] * farm density (the result from 
dividing road density over river density, multiplied by farm density). After two products were calculated (river density times river length, and road density 
times farm density), the first product was divided by the second product.

need to structure the data in a way such that a complex host-microbial-
geo-temporal system could be evaluated even without knowing, a priori, 
which data components would inform (a ‘top-down’-related problem); 
and (ii) the computational challenge associated with a very large number 
of data combinations to be analyzed (a potential problem associated 
with ‘bottom-up’ approaches). Both obstacles were overcome using an 
operation oriented to reveal distinct spatial patterns.

The adopted strategy prevented the ‘combinatorial explosion’ (39). 
This problem (also known as the ‘curse of dimensionality’ or 
‘combinatorial complexity’) refers to analytical situations in which the 
number of possible combinations exceeds the number of variables and 
may approach infinity. For example, if 10 locations may experience 3 
different events (to be disease-free, to be currently infected and within 
the exponential growth phase, or to be still infected but within the late 
or resolution phase), there are 310 (~ 59,000) possible combinations. If the 
analysis of each of such combinations took 1 h, the whole analysis would 
require 6.7 years. While some numerical approaches have attempted to 
reduce the length of combinatorial analyses (40), other approaches have 
addressed the combinatorial explosion by focusing on spatial 
relationships (41). Because they tend to be more informative than one- 
or two-dimensional alternatives, this study followed the 3D approach.

Complex data structures demonstrated to be less variable than 
unstructured data (42, 43). Such features matter when validity is 
explored. This study investigated four dimensions of validity (44). 
Construct validity (detection of emergence, expressed as F and B 
counties) was shown at least eight times, as Figures 3 and 7 document. 

Because different data structures revealed emergence, internal validity 
was demonstrated. Because one physical geo-referenced pattern (a 
river acting as a barrier) has been reported in South African FMD 
epidemics (45), external validity was supported. Because statistical 
significance was documented at least four times (Figures  7A–D), 
statistical validity was demonstrated.

The notion that the number of ‘facilitators’ was not as relevant as 
their geo-demographic location and structure was supported: the 
observed geo-referenced network may be  a part of a connecting 
network (28, 46). In several diseases, the geographical structure may 
determine whether disease dispersal occurs synchronically (47, 48). 
However, other factors (such as a ‘network of networks’) may also 
influence disease dissemination (49).

Findings may apply to human diseases, including human cholera 
and mosquito-borne diseases such as malaria and dengue (50). Climate-
related factors –such as El Niño –induce ocean warming, which 
promotes long-distance dissemination of infectious agents (51–53). 
While the approach here explored is not necessarily applicable to 
epidemics of low morbidity, such as Ebola (54), it may apply in rapidly 
disseminating infectious diseases (46). These concepts also apply to 
wildlife surveillance and One Health approaches, where positive 
correlations have been reported between forest density and improved 
public health (55–59).

These considerations may improve interventions meant to stop 
epidemics. For example, practices that assume static situations and 
lack of interactions could be  discontinued (60). They could 
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be replaced with assumption-free, dynamic assessments of the local 
geography, which facilitate anticipatory allocation of resources and 
may lead to less costly and/or more effective control policies (46). 

Because complexity is associated with hidden interactions (61) and 
physical geo-referenced structures are independent of and/or 
precede epidemics, research on multiple geographic variables 
suspected to facilitate (or prevent) disease dispersal can uncover 
patterns usually unobserved. Hence, the analysis of geographical 
complexity is suggested. To that end, additional validations 
conducted in different bio-geographies are recommended.
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