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Bacterial pathogens of animals impact food production and humanhealth globally.

Food animals act as the major host reservoirs for pathogenic bacteria and thus

are highly prone to su�er from several endemic infections such as pneumonia,

sepsis, mastitis, and diarrhea, imposing a major health and economical loss.

Moreover, the consumption of food products of infected animals is the main

route by which human beings are exposed to zoonotic bacteria. Thus, there

is excessive and undue administration of antibiotics to fight these virulent

causative agents of food-borne illness, leading to emergence of resistant strains.

Thus, highprevalence antibiotic-resistant resistant food-borne bacterial infections

motivated the researchers to discover new alternative therapeutic strategies to

eradicate resistant bacterial strains. One of the successful therapeutic approach

for the treatment of animal infections, is the application of cell membrane-coated

nanoparticles. Cell membranes of several di�erent types of cells including

platelets, red blood cells, neutrophils, cancer cells, and bacteria are being wrapped

over the nanoparticles to prepare biocompatible nanoformulations. This diversity

of cell membrane selection and together with the possibility of combining with

an extensive range of nanoparticles, has opened a new opportunistic window

for the development of more potentially e�ective, safe, and immune evading

nanoformulations, as compared to conventionally used bare nanoparticle. This

article will elaborately discuss the discovery and development of novel bioinspired

cell membrane-coated nanoformulations against several pathogenic bacteria of

food animals such as Klebsiella pneumoniae, Escherichia coli, Staphylococcus

aureus, Salmonella enteritidis, Campylobacter jejuni, Helicobacter pylori, and

Group A Streptococcus and Group B Streptococcus.
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Introduction

Livestock and aquatic animals are the major sources of income, food, fertilizer, clothing,
and building materials for a human being (1, 2). The continuous progression and growth of
livestock sector offer significant opportunities for food security gains, poverty decline, better
human nutrition, and agricultural development (3, 4). Farm animals constitute 40% of total
agriculture output globally (5). These production animals support the livelihoods and the
income of almost 1.3 billion people in the world (6). However, disease outbreak in livestock
and aquaculture species may significantly reduce this quantum (7, 8). Highly contagious
diseases especially the bacterial diseases of animals may have ripple effects on the revenue,
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food supply, trade, and even human health as these may lead
to reduced animal fertility, low yields (milk, eggs, etc.), animal
death, and disease transfer in humans (9). There is a need to
better understand the emerging animal diseases and their impact
on the environment and society, as well as the development of
innovative and potential therapeutic and preventive methodologies
for their management.

Several therapeutic approaches have been considered to control
livestock and fish bacterial diseases including the use of chemicals
and antibiotic drugs (10–16). The use of antibiotics has become a
vital input in food animal species to achieve the ultimate goal of
successful farming with high production (17–19). Yet, the extensive
use of antibiotics has raised the prevalence of antimicrobial
resistant bacteria (20). In addition, the existence of drug residues
in food animals further exaggerates the alarming situation for
human beings (21–23). This lethal condition motivates scientists
to search and develop new innovative nano-therapeutic agents
which may successfully treat the resistant infections and avoid the
undue excessive use of inaffective antibiotic drugs (24, 25). Several
groups reported the development of nanoparticles which have been
comprehensively analyzed in therapeutic context (26, 27). These
tiny particles offer advantages of improved delivery of drug to target
site (28) as well as controlled release of cargo (29). However, despite
of these benefits, food and drug administration (FDA) approved
only a few nanoparticles for clinical use. As our body system
can easily recognize and rapidly remove the foreign substances
via reticuloendothelial system, complex circulatory proteins and
immune cells (30). Moreover, another strategy has been considered
for surface modification of nanoparticles, that is the coating
of Poly(ethylene glycol) (PEG) onto nanoparticles (31). Though
pegylation was not a successful solution, as the studies showed
that subsequent dosing of PEG-modified nanoparticles induce the
rapid clearance by the hepatic phenomenon of accelerated blood
clearance (32) via IgM antibodies production and complement
system activation against PEG (33). Hence, a protective shield for
cargo was needed in the form of an optimal delivery system to
avoid rapid degradation and to offer a targeted and controlled
drug delivery (34). Hence, the idea of development of biomimetic
system start gaining attention to functionalize the nanoparticles
with therapeutic potential. The cell membrane coating technology
involves use of the cell membrane as drug-carrier, facilitating the
controlled and targeted delivery of core nanoparticles irrespective
to properties of nanomaterial. The cell membrane coated nano-
moieties replicate the shape, surface composition, and movement
of normal physiological cells (35).

A recent approach is the use of biomimetic nanoparticles in
medical science for rapid diagnosis and biocontrol or treatment of
bacterial diseases (36–39). Application of biomimetic nanoparticle
can provide a sustainable and natural solution to control resistant
bacterial infectionsin the livestock and fish farming industry (40,
41). The bioinspired nanotherapy may present a viable antibiotics
alternative (40). The cell membrane coatings over nanoparticles
give the appearance of surfaces of naturally occurring cells in
the body, that when correctly selected and prepared do not
have any risk of immune system activation and attack (38). The
biomimetic therapeutic design demonstrates several therapeutic
benefits like capability of biointerfacing (42, 43), biocompatibility

(44), prolonged duration of circulation (45), immune evasion (46),
and protection of the entrapped drug from active targeting and
degradation (47).

A number of biomimetic nanoformulations have been designed
using wide range of natural cell membranes coated over a
variety of nanoparticles to ascertain antibacterial potential (48–
52). Studies indicated that there is a significant medical importance
of biomimetic and bioinspired nanoparticles to fight against the
pathogenic bacteria of food animal host (45). However, our
understanding of the design strategies for fabricating potentially
effective and economically viable antibacterial nano-moieties
remains limited. In this review, we will highlight the recent
progress on the antibacterial activity of combo of different
nanoparticles with natural cell-derived surfaces. Moreover, we will
discuss recent research studies regarding successful development of
novel biomimetic and biodegradable antibacterial nanomedicines
against major bacterial pathogens responsible for veterinary
bacterial diseases.

Concept of cell membrane coating
over nanoparticles

The conception of coating several types of nanoparticles
with plasma membranes of cells was raised in view of
the troubleshooting of the functionalization of synthesized
nanoparticles (53). Therefore, scientists developed new
nature inspired nano-transporters, so that the nanoparticles
may not be degraded by the internal environment of the
organism and may easily reach their therapeutic targets (54).
The synthesis of biomimetic nanoparticles combines the
properties and specifications of cell membranes (external
surface) and nanoparticles (core) (55, 56). This new emerging cell
membranes coating technology allows the designing of biomimetic
nanotransporters with covering surfaces which may directly
imitate complicated functionalities of the cells, needed to have
precise physiological interaction with other living cells and tissues
(57, 58).

The plasma membrane coating concept was first reported
in 2011, Hu and his coworkers (59) first employed red blood
cell membranes for coating poly (lactic-co-glycolic acid) (PLGA)
nanoparticles. The RBCs were first chosen for coating as they have
extended circulation period of 120 days so the nanocarriers may
stay longer in the blood circulation, the property which is highly
needed for the nanocarriers. Since then, for this technology, wide
variety of cell types have been considered including mesenchymal
stem cells, bacterial cells, platelets, white blood cells, and cancer
cells (60, 61).

Cell membrane coating techniques

To produce cell membrane-coated nanoparticles, the specific
cell membrane must be coated over the nanoparticle core (62).
The most frequently mentioned technique for cell membrane
coating is membrane extrusion and ultra-sound to date (63).
Membrane extrusion is one of the primary cell membrane-coating
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techniques. Physical membrane extrusion is performed so that
both the cell membranes and nanoparticles may move through
membranes of various pore sizes concurrently, leading to the
wrapping of the membranes over the nanoparticles (64). This
method is beneficial as uniformly sized particles are obtained
by using this methodology (65). The strategies employed for
extrusion of membranes are membrane emulsification, vesicle
extrusion and precipitation extrusion for emulsions, liposomes and
nanoparticles/nanofibers respectively. The extrusion technique was
first reported for uniform coating of PLGA nanoparticle core with
red blood cell membrane (59). After that successful coating several
research groups have stated this method for coating different
types of cell membranes with varying pore size (66–68); however,
mechanical forces may affect the structure of the membrane in this
protocol (59).

Consistent and stable cell membrane-coated nanoparticles
(CMCNPs) can be obtained by ultrasound technique. This
technique also encourages the membrane and nanoparticles to
naturally form a core-shell structure with a little loss of substantial
material; however it may destroy the nanoparticles (69). Several
researchers have reported to use this technique for assembling
different types of cell membranes such as assembling or coating
of membranes of platelet (54), stem cell (70), neutrophil (71)
onto PLGA nanoparticles; Moreover, coating of cardiac stem cell
membrane over microparticles of PLGA (72). Another example is
assembling of a hybrid of platelet and RBC membranes over gold
nanowires (73).

In another technique, nanoparticles and cell membrane vesicles
are first mixed in the microfluidic system with the S and Y-shaped
channels. Then, instantaneous pores are created on the vesicles
by using electrical pulses at the exit of the channels and thus
allowing nanoparticles to penetrate the vesicles, this technique is
known as electroporation (74). An example of application of this
technique is successful coating of RBC membranes onto ferric
oxide (Fe3O4) nanoparticles resulting in uniform fabrication of
RBC-Fe3O4 nanoparticles of good colloidal stability (75).

Another technique involves co-incubation of nanoparticles
and live cells followed by the addition of serum-free media for
secretion and production of exosomes (76). While wrapping the
cell membrane over nanoparticles, it is vital to keep in mind that
the coating process makes stable homogenous nanoparticles that
do not interfere with either the function of the nanoparticles or the
cellular membrane (77).

Concerning the membrane coating methods, the easiest
strategy for coating among the above mentioned methods, is
based on subsequent extrusion technique. Moreover, ultrasounds
produce sonication forces to coat membrane surfaces over
nanoparticles with better efficacy (69). Microfluidic technology
is highly recommended for coating magnetic nanoparticles with
good control as fine-tuning may be obtained via the flow
speed (75).

Bioinspired nanotherapies against
principal food borne pathogens

Biomimetic manufacturing of nanoparticles is a successful and
rapidly developing field of nanotechnology (58). Depicting the

concept of specific attachment sites and translocation protocols
by pathogenic bacteria and host mammalian cells, the biomimetic
nanoparticles showed several pharmacological functions like
improved accumulation at site of infection/inflammation (78),
efficient drug delivery to the target (79, 80), prolonged duration
of circulation (81), and eliminate off-target adverse effects in
the healthy host tissues (82). Thus, resulting in development
of more effective and targeted nanoplatforms. All over the
world, researchers have been working on bioengineered coated
nanoparticles with special focus on antibacterial therapy (83, 84).
The effectiveness, long-term safety, biopharmaceutical, and
pharmacokinetic profiles of newly developed biomimetic
nanotherapies are being confirmed by comprehensive anti-bacterial
studies (85) (Table 1, Figure 1).

Major food animal pathogens treated
through cell membrane-coated
nanoparticles

Klebsiella pneumoniae

Klebsiella pneumoniae is commonly considered a responsible
pathogen for nosocomial and community-acquired infections,
including liver abscesses, infections of urinary tract and lower
respiratory tract (102). The causative bacteria may be found
in several niches like soil, meat, feaces, skin and intestine of
livestock, and sea food animals (103). Antimicrobial-resistant
species of K. pneumoniae have been found in various food
products, including raw meat (bovine, chicken, and pork), sea
food, vegetables, and ready-to-eat meals (104–108). World Health
Organization (WHO) has listed cephalosporins and carbapenems
resistant K. pneumoniae strain, as one of the top threats to
public health globally. Thus emphasizing the urgent need for
the discovery and development of new therapeutic agents (109,
110). Sepsis is a systemic inflammatory response syndrome caused
by infection, with high incidence and mortality. Therefore, it is
necessary to carry out an effective anti-infection treatment. In
a recent research work, the scientists designed and developed a
new biomimetic nanomedicine and named it γ3-RBCNPs. This
bioinspired antibacterial agent involves the loading of ciprofloxacin
into PLGA nanoparticles and then wrapping with RBCM. These
functionalized nanoformulations specifically target intercellular
adhesion molecule-1 (ICAM-1) via γ3 peptide on their surface and
ultimately eradicate the K. pneumoniae with the help of loaded
ciprofloxacin. The RBC membrane coating over the nanoparticles
offers the properties of prolonged circulation time and immune
escape (45, 46). Further investigations indicated that γ3-RBCNPs
have good antibacterial efficacy, good bio-safety, and long half-life
in mice mode (51).

Salmonella enteritidis

It is a foodborne pathogen, possess several zoonotic serotypes
as well as a wide range of host organisms including poultry, ovine,
bovine, and humans (111). It is the most common type of infectious

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2023.1148964
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


A
lta

f
a
n
d
A
lk
h
e
ra
ije

1
0
.3
3
8
9
/fv

e
ts.2

0
2
3
.1
1
4
8
9
6
4

TABLE 1 Antibacterial cell membrane-coated nanoparticles against the food borne pathogens.

Food borne
pathogens

Bioinspired therapeutic approach Disease(s) of food animals Host reservoir References

Cell membrane Nano-core Cargo

Methicillin resistant
Staphylococcus aureus

Platelet PLGA Docetaxel and
Vancomycin

Soft tissue infection and mastitis Poultry, pig, cow, sheep,
goat, buffalo, sea food,
human; NA

(54)

RBC PLGA – Sepsis, soft tissue infection and mastitis (86)

RBC Fe3O4 – Mastitis, septicemia arthritis, localized
abscess formation

(40)

Cholestrol enriched RBC Cholestrol Vancomycin Skin infections, Mastitis (87)

Campylobacter jejuni Campylobacter jejunimembrane PLGA – Gastrointestinal hemorrhage,
pancreatitis cholecystitis, endocarditis,
osteomyelitis meningitis

Chicken, swine, cattle,
sea food, human

(88)

Group A Streptococcus RBC PLGA – Sepsis, pharyngitis, necrotizing fasciitis,
impetigo and toxic shock syndrome

Fish, pig, cattle, human
being

(89)

Group B Streptococcus RBC PLGA – Neonatal early-onset sepsis, intra
mammary infection, respiratory
infections, urinary tract infections, joint
and bone infections, meningitis and
bacteremia

Bovine and human (90, 91)

Helicobacter pylori Gastric epithelial cell membrane PLGA Clarithromycin Gastric ulcer, lymphoma and gastric
cancer in humans, Commensal in
Sheep, cow pigs and camel sometimes
cause digestive infection

Sheep, cow, pigs and
camel milk, human

(92)

Endotoxin (LPS) producing
bacteria including strains of
Escherichia coli,
Staphylococcus

Macrophage Ca3(PO4)2-Fe3O4@TiO2 – Osteomyelitis, sepsis, mastitis Poultry, goat, sheep,
broiler, pig, human

(39, 93)

Endothelial cells PLGA Dexamethasone Sepsis (94)

Macrophage Fe3O4 – Endotoxemia, sepsis, shock, and
multiple organ dysfunction

(95)

Macrophage PLGA – Sepsis (48)

Staphylococcus aureus Macrophage Gold-silver nanocage – Mastitis, septicemia
arthritis, localized abscess formation

Cattle, poultry, chicken,
sheep, goat, pigs, and
humans

(96)

Staphylococcus aureus PEG Rifampicin Mastitis, septicemia, septic arthritis (97)

PLGA Vancomycin

Staphylococcus aureus treated
dendritic cells

CuFeSe2 – Staphylococcus induced osteomyelitis (98)

(Continued)
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agent, causing animal and human Salmonellosis (112, 113). S.
enteritidis is responsible for a reduction in egg production in
poultry, leading economic losses to poultry industry (114, 115).
Notably, S. enteritidis-infected meat and contaminated eggs are
the primary cause of human Salmonellosis, so the control and
treatment of Salmonellosis in the food animals would definitely lead
to decline in cases of human Salmonellosis (116, 117). Moreover,
the multi-drug resistant (MDR) strains of salmonella are emerging
and their prevalence is also increasing day by day (118–120). In
Egypt, the percentage of prevalence of multi drug resistant S.

enterica was found to be 69.8% in the marketed meat samples in
2010, and 82.4 to 100% in 2020 (121–123).

Several therapeutic and preventive strategies have been
considered to control Salmonella shedding in poultry and other
livestock animals (124). It is expected that novel non-antibiotic
therapeutic agents may reduce burden of bacterial colonization,
environmental contamination and public health risk (125).
Currently, Salmonella vaccines have been developed by coating of
bacterial cell membranes over the chitosan nanoparticles. Scientists
utilized S. enterica outer membrane proteins, flagellin proteins, and
chitosan nanoparticles for the development of nano-vaccine against
Salmonella (CNP-vaccine). Two experiments were performed,
Experiment I was done to evaluate the optimal dose of CNP-
vaccine to get a protective response against bacterial infection
of S. Enteritidis. Whereas the Experiment II was performed
to investigate the cross protection of nanoformulations against
bacterial infection of S. Heidelberg. The results indicated that CNP-
Salmonella vaccine was capable to raise the level of IgA and IgG
in S. Enteritidis or S. Heidelberg infected broilers, thus showed
cross-protection against both serovars of S. enterica (49).

Methicillin-resistant Staphylococcus
aureus (MRSA)

This is a highly dangerous drug-resistant pathogen which is
responsible for a wide range of infections such as endocarditis,
sepsis and bacteremia leading to high rate of mortality (126–128).
In food animals MRSA was first detected in the early 1970s in
Belgium and induced bovine mastitis (129). After that, several
cases have been reported on MRSA infection and colonization in
other food-chain animals such as poultry, cattle, sheep, goat and
pigs, intimating MRSA as an imperative veterinary and zoonotic
pathogen (130–132).

Molecular typing of S. aureus indicated that certain animal
lineages are specific to host while some are able to colonize or
infect a wide variety of animals (133). The most notable case is
ST398, which was primarily detected among pigs, and afterwards
was found in various food-chain animals as well as in humans.
The isolates stated to date and carrying mecC mainly belonged to
lineages in cattle. However, mec C has also been indicated in other
food animals such as sheep and rabbits as well as among various
companion animals (cats, guinea pigs, horses, and dogs) (134, 135).

The pathogenesis of S. aureus pathogenesis is fueled by
lethal secretion of toxins including α-toxin, which damages
the membrane by forming pores and targets epithelium and
endothelium of leukocytes and platelets (136). Most antibiotics
are ineffective in treating MRSA infections as MRSA has a good
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FIGURE 1

Bioinspired and biomimetic nanotherapies against specific bacterial pathogens of food animals.

survival strategy and self-preservation (137, 138). Nano-drug
delivery systems have emerged as a new method to overcome
this barrier (135). Recently, a study was conducted to synthesize
an innovative nano-drug delivery system against MRSA infection.
The researchers developed silver metal-organic frame structure
(Ag-MOF) of methylimidazole and silver nitrate. Then the
framework was loaded with Vancomycin (Vanc) to form Ag-
MOF-Vanc complex and finally coated with platelet vesicles to
get platelet membrane covered nanoparticles PLT@Ag-MOF-Vanc.
The prepared nanoformulations killed MRSA through various
strategies, such as interfering with bacterial metabolism, inhibiting
production of reactive oxygen species, destructing the structure of
cell membrane, and inhibiting formation of biofilm. The coating of
the platelet membrane buttoned up to the surface of the pathogenic
bacteria (MRSA) and the sites of MRSA infection. The results
indicated good therapeutic effect in the mouse MRSA pneumonia
model, and showed no toxic effect (139).

A biomimetic nanodecoy strategy was developed to capture and
neutralize S. aureus toxins. The Platelets membranes were isolated
and coated over PLGA nanoparticles and the resulting formulation

of nanospongee inhibit the platelet and macrophage damage,
induced by toxins of S. aureus, thereby supporting activation of
platelets, nitric oxide production, macrophage oxidative burst, and
bactericidal activity. Moreover, nanosponge also helped in release
of neutrophils which are trapped in the extracellular fluid by
a pathogenic organism. Thus, the prepared platelet membrane
coated nanoparticles (PNPs) provided the therapeutic benefits
of cytoprotection and enhanced host resistance to S. aureus

infection (50).
The cell membrane-coated nanoparticles have great potential

for treatment of bacterial infections. However, infection of bones
involved inflammation and loss of bone mass, so the treatment
must have anti-inflammatory and osteoconductive agents (39).
The membrane coating through ultrasonication and extrusion
strategies reduced the functionality of plasma membrane, so for
coating the nanoparticles, another protocol was introduced in 2021,
which involved electroporation procedure to help in retaining the
functionality of cell membranes. A composite of nanoparticles
with bactericidal TiO2 and osteoconductive Ca3(PO4)2 properties
was assembled and coated by macrophage membrane. The
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resulting macrophage membrane coated nanoparticles possess
better functional membranous coating and showed significant
bactericidal and anti-inflammatory potential against methicillin
resistant S. aureus infection (39).

Escherichia coli

Escherichia coli (E. coli) is both commensal and pathogenic
type of bacteria existing in humans and animals (140). Shiga-toxin
producing E. coli (STEC), known as E. coli 0157 is responsible
for causing resistant infectious disease (141–144). The symptoms
of disease include fever, nausea, cramps, vomiting, bloody or
watery diarrhea and sometimes kidney failure leading to death.
Cows especially calves, sheep, goats, pig and deer may transfer
the infection to humans. It is a food-borne pathogen and people
got infection by either having contaminated food, including
unpasteurized milk and undercooked beef or by having direct
contact with E. coli O157 from stool of calves and cattle (145, 146).
Animals carry E. coli O157 in the intestine and then shed in
stool but still appear healthy and clean. The germs can quickly
contaminate the animals’ skin, fur, feathers, and the areas where
they live and roam. Animals can lead healthy life but may
potentially spread E. coli O157 infection to other animals and
humans. E. coli may cause bovine mastitis in cattle (147, 148)
and infection can be graded from being a subclinical illness of
bovinemammary gland to a serious systemic infection. The age and
lactation stage of the cows are the major factors to be considered for
determining the severity of coliform mastitis.

The currently available antimicrobial agents are not effective
enough for treatment of E. coli mastitis. However, cephalosporins
and fluoroquinolones have shown partial therapeutic benefits
for treatment of E. coli mastitis (149). The use of both
drugs is restricted to a limit in food animals with special
instructions (150). In E. coli mastitis, a potential therapeutic
agent is needed, scientists are working to design and develop
biomimetic nanoformulations for the successful treatment of
the E. coli instigated disease. The disguised nanoparticles
were prepared by using macrophage membranes to specifically
neutralize and deactivate lipopolysaccharides secreted by E. coli,
pathogenic bacteria. The in vivo experimentation in endotoxemia-
induced mice model demonstrated that the coated nanoparticles
reduced immune response and the inflammatory reaction.
In addition, the nanoformulation improved the survival rate.
These macrophage membranes coated nanoparticles are broadly
considered for the treatment of LPS associated infectious
diseases (95).

Helicobacter pylori

Helicobacter pylori is a spiral shaped gram negative bacterium
whichmainly colonize in the gastric environment (151). This highly
virulent bacteria specie is responsible to cause ulcer, lymphoma
and gastric cancer (152). The transmission route of the bacteria
is still not known. However, studies were conducted in the past
to evaluate the probability of zoonotic transmission. In a study,

scientists isolated H. pylori from pigs, sheep, cow, and camel
milk (153, 154) and the results showed that H. pylori may opt
these animals as reservoirs. In another study, the prevalence
and virulence of H. pylori was determined in the stomach of
sheep, cow and goat. The zoonotic transmission of H. pylori

was also examined. It was demonstrated in the results that
cows, sheep, and human beings samples were found H. pylori

positive; however the bacterium was not detected in goat samples.
Moreover, the virulent H. pylori genotype (vacA s1a/m1a) linked
to epithelial cell injury, was the predominant H. pylori genotype
in cow, and goat population (155). H. pylori infection is the
major cause of gastric and peptic ulcer, gastritis and gastric
cancer, thus it is highly essential to treat the infection of food
animals and humans with potential therapeutic agents. Currently,
clarithromycin, amoxicillin and metronidazole are recommended
for the treatment. However, mutations in H. pylori genes have led
to the treatment failure (156).

Recently, a novel targeted nanotherapeutic agent was
developed, inspired by the idea of natural interaction and
adhesion of host and the bacteria. The plasma membranes
of gastric epithelial cells are coated over chlarithromycin-
loaded polymeric nanoparticles, the resulting biomimetic
nanoparticles have the same surface properties as the
epithelial cells and thus adhere to H. pylori bacteria. Thus,
the nanoformulations provided the targeted drug delivery platform
against colonized pathogenic bacteria. Thus, the bioinspired
nanotherapeutic approach strategy reported here represented
a novel drug delivery system to treat infectious disease of H.

pylori (92).
Another versatile targeted therapeutic agent was synthesized

by Zhang and his coworkers (157). The bioinspired moieties
interfere with adhesion of bacteria to the host and thus evade
the decorum of bacterial growth inhibition or killing, which
may reduce the resistance development. The polymeric cores
were wrapped with bacterial outer membranes resulting in
synthesis of H-pylori-mimicking nanoparticles which compete
with source bacteria for binding to gastric epithelial cells.
Treatment of H-pylori-mimicking nanoparticles with gastric
epithelial cells enhance the target adhesion and the efficacy
is dependent on coated nanoparticles concentration and
dosing (157).

Campylobacter jejuni

Campylobacter jejuni is highly responsible for foodborne
zoonosis and is associated with handling and consumption
of the poultry meat. The bacteria colonizes in the intestine
of chicken and thus slaughtering process resulted in fecal
contamination of the carcasses (158). One strategy to control
C. jejuni infection is to halt the bacterial colonization of
broilers (159).

The extent of contamination is directly linked to the number
of bacteria in the cecal content of broiler chicken and the number
of bacteria on the carcasses and cut meat pieces (160). Therefore,
Campylobacter load is reduced at poultry production level before
slaughtering (161). Several antibiotic drugs have been considered
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for the treatment and control of the infection but still the infection
prevails due to the existence of resistant strains of bacteria.

Several therapeutic and preventive strategies have been
developed against C. jejuni colonization in poultry (159, 160, 162–
164). In a study, biodegradable and biocompatible poly (lactide-
co-glycolide) (PLGA) compound was used to prepare nanoparticle
and then the synthesized nanoparticles were wrapped with outer
membrane proteins of C. jejuni. The prepared coated nanoparticles
were then administered through oral/subcutaneous routes. The
results were interpreted based on intestinal colonization of C.

jejuni in chicken. The C. jejuni colonization in cecal and cloacal
contents was reduced post administration of prepared nano
vaccine. It was concluded that nanoparticles encapsulated with
outer membrane proteins of C. jejuni may be considered as a
potential candidate vaccine for controlling the colonization of C.
jejuni in chickens (88).

Considering the dynamic interaction of pathogen with
host as well as understanding the versatile functionality of
bacterial outer membrane proteins for intestinal adherence
and invasion, bacterial outer-membrane vesicles have become
a potential candidate for vaccine targeting against C. jejuni

(165). The chitosan-nanoparticles were coated with outer-
membrane vesicles and then evaluated in mouse model for
induction of specific immune response against C. jejuni.
The results indicated that intragastric delivery of chitosan-
coated outer-membrane vesicles impart significant immune
protection (166).

Further, immunization with the outer membrane vesicles
resulted in potent cellular responses with an increased CD4+
and CD8+ T cell population. Moreover, significant upregulation
of IFN-γ and IL-6 gene expression suggests that mucosal
delivery of outer membrane vesicles promotes a Th1/Th2
mixed-type immune response. Together, as an acellular and
nonreplicating canonical end product of bacterial secretion,
mucosal delivery of outer membrane vesicles may represent a
promising platform for developing an effective vaccine against C.
jejuni (166).

Group A streptococcus and Group B
streptococcus

The strains of Streptococcus cause mild to severe bacterial
disease in animals as well as in human beings. The pathogenic
organism is not host-specific as some strains which are associated
with animals can be frequently found in humans (167, 168).
Streptococcus infection may rapidly develop into a lethal disease
despite administration of commercially available drugs (antibiotics
and palliative medication). The streptococcus bacteria possess
detrimental virulence factors, such as Group A streptococcus
pore-forming streptolysin O and Group B streptococcus pore-
forming toxin β-hemolysin/cytolysin. The toxins adversely effects
the host tissues including failing of blood brain barrier, injury
of lung cells, and apoptosis of immune cells (90). Many
zoonotic cases of streptococci are sporadic, but some fish-
linked strain of S. agalactiae are involved in outbreaks (169,
170). Pig associated strain of S. suis, has emerged as a major
environmental pathogen causing deadly shock-like syndrome,

septicemia, streptoccoccal meningitis, and other human diseases
after contact with infected animals or derived food products,
especially in the Asian countries (171–174). Moreover, in
case of cattle, streptococci are declared to be the virulent
bacteria causing bovine mastitis throughout the world (175,
176).

Several classes of antibiotic drugs are considered for the
treatment of infected animals. First-line treatment for streptococci
infection is penicillins either alone or in combo with tetracyclines,
aminoglycosides, lincosamides, macrolides and fluoroquinolones
(177). However, antibiotic-resistant phenotypes of streptococci
have been reported in infected animals all over the world (178).
New treatment strategies are being considered against streptococcal
infection (179, 180), including a titratable detoxification therapy
by a wraping of polymeric cores with donor red blood cell
membranes to create biomimetic “nanosponges”. The polymeric
cores of biomimetic nanosponge retain the same repertoire
of receptors over the cell membrane and proposed a non-
specific toxin decoy stratagem to neutralize and sequester
several bacterial toxins and pro-inflammatory chemokines of
the host. The prepared nanosponge was evaluated to neutralize
and sequester streptolysin O toxin of Group A Streptococcus
(GAS) and inhibit the functioning of later virulent bacteria.
Moreover, this therapeutic intervention inhibited toxin-induced
apoptosis of macrophage and enhanced neutrophil trapping
process leading to enhanced killing of pathogenic bacteria by
phagocytic cells. In vivo studies of biomimetic nanosponge
showed that the local administration of the prepared nanosponge
reduced lesion size and bacterial colony-forming unit in the
GAS-infected mouse model. Thus, the application of a toxin
decoy assisted in the inactivation of secreted toxin and presented
a novel approach to directly target virulence in severe GAS
infections (89).

In the recent research work, red blood cell membrane
vesicles were isolated and coated over polymeric nanoparticles
to formulate biomimetic nanosponge. The prepared nanosponges
proved to be successfully alleviate a sequence of toxic events like
the hemolytic activity of living Goup B streptococcus bacteria,
injury of lung epithelial and production of streptococcus -
induced macrophage IL-1β. The results also indicated that red
blood cell membrane-coated nanoparticles might be considered
a first-in-class treatment option for streptococcal bacterial
infection (90).

Conclusion

Traditional anti-infection therapeutic strategies mainly
involved administration of antibiotics. However, emergence
of drug-resistant bacteria and increasing endemic of lethal
bacterial infections raised the importance of development
of novel therapeutic agents for infectious diseases. Recent
advances in nanotechnology, resulted in synthesis of a
variety of nanoscale cell-membrane bagged nanoparticles.
Several efforts have been directed toward nanoparticle
functionalization by successful protection during the
interaction of bioinspired nanoparticles with pathogens or
exo/endotoxin. Food-borne zoonotic pathogens have been
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targeted by biomimetic nanoparticles and showed potential
antibacterial activity.
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