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Genomic inbreeding coe�cients
using imputed genotypes:
assessing di�erences among SNP
panels in Holstein-Friesian dairy
cows

Christos Dadousis1*, Michela Ablondi1, Claudio Cipolat-Gotet1,

Jan-Thijs van Kaam2, Ra�aella Finocchiaro2, Maurizio Marusi2,

Martino Cassandro2,3, Alberto Sabbioni1 and Andrea Summer1

1Department of Veterinary Science, University of Parma, Parma, Italy, 2Associazione Nazionale Allevatori

della Razza Frisona Bruna e Jersey Italiana (ANAFIBJ), Cremona, Italy, 3Department of Agronomy, Food,

Natural Resources, Animals, and Environment, University of Padova, Legnaro, Italy

The objective of this study was to evaluate the e�ect of imputation of single

nucleotide polymorphisms (SNP) on the estimation of genomic inbreeding

coe�cients. Imputed genotypes of 68,127 Italian Holstein dairy cows were

analyzed. Cows were initially genotyped with two high density (HD) SNP panels,

namely the Illumina Infinium BovineHD BeadChip (678 cows; 777,962 SNP) and

the Genomic Profiler HD-150K (641 cows; 139,914 SNP), and four medium

density (MD): GeneSeek Genomic Profiler 3 (10,679 cows; 26,151 SNP), GeneSeek

Genomic Profiler 4 (33,394 cows; 30,113 SNP), GeneSeek MD (12,030 cows;

47,850 SNP) and the Labogena MD (10,705 cows; 41,911 SNP). After imputation,

all cows had genomic information on 84,445 SNP. Seven genomic inbreeding

estimators were tested: (i) four PLINK v1.9 estimators (F, Fhat1,2,3), (ii) two

genomic relationship matrix (grm) estimators [VanRaden’s 1st method, but with

observed allele frequencies (Fgrm) and VanRaden’s 3rd method that is allelic

free and pedigree dependent (Fgrm2)], and (iii) a runs of homozygosity (roh)

– based estimator (Froh). Genomic inbreeding coe�cients of each SNP panel

were compared with genomic inbreeding coe�cients derived from the 84,445

imputation SNP. Coe�cients of the HD SNP panels were consistent between

genotyped-imputed SNP (Pearson correlations∼99%), while variability across SNP

panels and estimators was observed in the MD SNP panels, with Labogena MD

providing, on average, more consistent estimates. The robustness of Labogena

MD, can be partly explained by the fact that 97.85% of the SNP of this panel is

included in the 84,445 SNP selected by ANAFIBJ for routine genomic imputations,

while this percentage for the other MD SNP panels varied between 55 and

60%. Runs of homozygosity was the most robust estimator. Genomic inbreeding

estimates using imputation SNP are influenced by the SNP number of the SNP

panel that are included in the imputed SNP, and performance of genomic

inbreeding estimators depends on the imputation.
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1. Introduction

The evolution in recent years of genotyping technologies

enabled a continuous drop in costs and increased availability

in the market of various single nucleotide polymorphism (SNP)

microarrays (hereafter denoted as SNP panels) for livestock

species diverse in quantity (number of SNP) and quality (e.g.,

SNP targeting specific genes). This promoted advanced genomic

tools in animal breeding, but also led many breeding companies

to genotype, in time, different groups of animals with diverse

SNP panels. Moreover, the combination of overlapping SNP

among panels and imputation pipelines allows to further reduce

costs. Nowadays, it is a common practice to genotype few core

animals with high density (HD) SNP panels (or whole genome

sequencing), genotype a high number of animals with low density

or medium density (LD and MD, respectively) SNP panels and

to impute the LD/MD to HD genotypes, hence ending up with

a common number of imputed genotypes for all genotyped

animals (1, 2). Very analogous is the imputation of low coverage

sequencing data to high coverage (3). The imputation SNP data

can be used for genomic predictions, genome-wide association

analyses, genetic diversity studies within and across populations,

etc. Moreover, imputation SNP data can be used for estimating

genetic relationships among animals and inbreeding coefficients

(termed as genomic inbreeding), that were traditionally estimated

via pedigree data. For the latter, there are various factors that can

influence genomic inbreeding coefficients, such as methodology

(e.g., summing homozygosity over individual SNP vs. summing

homozygous blocks), associated parameters within each estimator

(e.g., parameters to define a homozygous block), SNP quality

control, imputation method, etc. (4–6).

The imputation procedures in livestock breeding programs

increased the interest to assess the effect of SNP panels in

estimating inbreeding coefficients. The objective of this study was

to evaluate the effect of imputation of SNP on the estimation of

genomic inbreeding coefficients. Thus, we extended a previous

work on genomic inbreeding with imputed SNP (6), aiming

to quantify differences among SNP panels that cows were

genotyped with (i.e., MD vs. HD). Two HD (Illumina Infinium

BovineHD BeadChip and Genomic Profiler HD-150K) and four

MD (GeneSeek Genomic Profiler 3, GeneSeek Genomic Profiler

4, GeneSeek Genomic MD and Labogena MD) SNP panels were

analyzed. Genomic inbreeding coefficients were estimated with

seven commonly used estimators. Comparisons between genotyped

– imputation inbreeding coefficients were made for each SNP panel

and estimator.

2. Materials and methods

2.1. Animals and genotypes

The available dataset contained 95,540 Italian Holstein dairy

cows, all registered to the official herd book of the Italian National

Association of Holstein, Brown and Jersey Breeders (ANAFIBJ).

Cows were born between 1998 and 2020 and genotyped with

30 different SNP panels of varying densities (from 3k to 777k;

Figure 1). From those, we selected 68,127 Italian Holstein dairy

cows genotyped with two high density (HD) SNP panels, namely

the Illumina Infinium BovineHD BeadChip (678 cows; 777,962

SNP) and the Genomic Profiler HD-150K (641 cows; 139,914 SNP),

and four medium density (MD) SNP panels: GeneSeek Genomic

Profiler 3 (10,679 cows; 26,151 SNP), GeneSeek Genomic Profiler

4 (33,394 cows; 30,113 SNP), GeneSeek MD (12,030 cows; 47,850

SNP) and the Labogena MD (10,705 cows; 41,911 SNP). A dataset

of 84,445 common SNP (on the 29 autosomes) was created. Those

SNP are pre-selected and used in the routine genomic evaluations

of ANAFIBJ. Cows genotyped with the four MD SNP panels were

imputed, while those with the two HD SNP panels were degraded

to the 84,445 common SNP. The imputation was carried out in

an improved version of the PedImpute software (7) for faster

computations. After imputation, SNP quality control included:

(i) call rate < 95%, (ii) parent-offspring SNP mismatch > 0.01,

(iii) minor allele and genotype (< 0.02 and < 0.001, respectively)

frequencies and (iv) extreme deviation from Hardy–Weinberg

equilibrium (P < 0.005).

2.2. Inbreeding coe�cients

In scientific literature, inbreeding coefficient is abbreviated

either as F or f. To be consistent with software abbreviation,

we used F to denote the first genomic inbreeding estimator of

PLINK v.1.9 software [(8); http://pngu.mgh.harvard.edu/purcell/

plink/]. We adopted “f ” to denote inbreeding coefficient and fSNP
for referring to whole genome SNP based inbreeding coefficients.

Seven genomic inbreeding estimators were tested, and genomic

inbreeding coefficients were calculated for the 68,127 cows for

each estimator:

(i) Four estimators (F, Fhat1,2,3) implemented in PLINK v1.9

[(8); http://pngu.mgh.harvard.edu/purcell/plink/]. F (flag

–het in PLINK v1.9) was proposed by Li and Horvitz

(1953) and counts the proportion of homozygous SNP.

Fhat1−3 were primarily implemented in the GCTA software

(9, 10) and can be obtained simultaneously with the flag

–ibc in PLINK v1.9. More precisely, Fhat1 is estimated as

1
n

∑n
m=1

(Xm−2pm)
2

2pmqm
− 1, where X is the genotype matrix

based on the number of copies of the defined reference

allele, with p and q being the frequencies of the reference

and alternative alleles, respectively and m is the number

of SNP. Fhat2 measures the excess of homozygosity (1 −

1
n

∑n
m=1

Xm(2−Xm)
2pmqm

) and differs from F in the sense that Fhat2
is a sum of ratios, while F is a ratio of sums (11). Fhat3

is estimated as 1
n

∑n
m=1

X
2
m−(1 + 2pm)Xm+2p2m

2pmqm
and reflects

the inbreeding definition of Wright stated as correlation

between uniting gametes (12, 13).

(ii) Two genomic relationship matrix (grm) – based inbreeding

estimators (based on VanRaden’s 1st and 3rd methods). The

first method (Fgrm) (14–16) was estimated as follows: grm

=
ZZ

′

2
∑

qm(1−qm)
, where Z = X – 2(qm – 0.5); where Fgrm =

diag(grm) – 1. To alleviate the problem of using observed

allele frequencies in Fgrm, a simplified version of VanRaden’s

3rd proposed method was used Fgrm2, where we regressed

the diagonal of XX
′ on pedigree inbreeding coefficients
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FIGURE 1

Cows and genotype panels available from which were selected two high density SNP panels (Illumina Infinium BovineHD BeadChip and GeneSeek

Genomic Profiler HD-150K) and four medium density SNP panels (GeneSeek Genomic Profiler 3, GeneSeekGenomic Profiler 4, GeneSeek MD and

Labogena MD). Numbers on the top of the bars show the number of cows genotyped within each SNP panel. Horizontal numbers in blue show the

total number of SNP included in each SNP panel.

(Fped) to get the mean and the slope and then to obtain

Fgrm2 =
diag

(

XX
′
)

−mean

slope
, where mean and slope are the

estimates of the previous regression. Both estimators were

determined without considering a base population or AI

sire information to calibrate the diagonal elements of XX′,

as, for e.g., reported by (17),

(iii) A roh-based estimator (Froh), where Froh expresses the sum

of rohs identified in an individual to the total genome

length. We used the consecutive runs method in the R

software (v. 3.6.3) package detectRUNS v. 0.9.5 (18–20). To

define a roh we set the minimum length of roh to 1 Mbp

and a minimum of 15 SNPs/ROH. Moreover, we allowed

one heterozygous SNP within a roh to account for possible

genotyping errors. In a previous study (6), we focused

on the differences among genomic inbreeding estimators.

In that study, two more genomic inbreeding estimators

were included that were simplifications of the F and Froh
estimators, namely FPH and FROH2, respectively, as reported

in (6). Due to their high correlations, we decided to exclude

those estimators from the current study.Moreover, the grm-

based estimator (FGRM05; with allele frequencies set to 0.5)

described in (6) was highly correlated with F and was not

considered in the current analysis.

In addition, pedigree based inbreeding coefficients (Fped) were

also estimated in the pedigree R package (18, 21). This estimation

does not consider genetic groups and assigns the value of 0

for missing ancestors. Pedigree consisted of 393,607 cattle with

10 generations depth with a pedigree completeness index (22),

estimated in R package optiSel (23), of 0.99.

Pairwise comparisons were made between genotyped-

imputation fSNP for each SNP panel and genomic inbreeding

estimator. In each panel, only those genotyped SNP included in the

preselected imputation set of 84,445 SNP were considered (because

the rest of the SNPwere automatically omitted from the imputation

pipeline of ANAFIBJ). This means that the genotyped SNP per

panel were 79,900 (Illumina Infinium BovineHD BeadChip),

77,085 (Genomic Profiler HD-150K), 13,870 (GeneSeek Genomic

Profiler 3), 16,862 (GeneSeek Genomic Profiler 4), 27,331

(GeneSeek MD) and 40,218 (Labogena MD) (Table 1). Average

SNP distance per chromosome for each panel and the imputation

data was estimated. Results were also summarized over genomic

inbreeding estimators across the different SNP panels. Pearson

and Spearman correlations were considered for estimating the

consistency of inbreeding coefficients between genotyped –

imputation SNP for each SNP panel. The imputation data of 84,445

SNP was a mixture of genotyped and imputed SNP, hence the term

imputation SNP was adopted herein rather imputed SNP.

3. Results

3.1. Similarities among the SNP panels and
the imputed SNP data

Table 1 and Supplementary Figure 1 summarize the

number and density, respectively, of SNP per chromosome

for each SNP panel and the imputation data. The number

of SNP included in the preselected 84,445 imputation SNP

varied for each SNP panel from 79,900 (Illumina Infinium
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TABLE 1 Number of single nucleotide polymorphisms per chromosome in the imputed dataset and each genotype panel.

Chr Imputation Illumina
Infinium
BovineHD
BeadChip

GeneSeek
Genomic
Profiler
HD-150K

GeneSeek
Genomic
Profiler 3

GeneSeek
Genomic
Profiler 4

GeneSeek
MD

Labogena
MD

1 5,255 4,980 4,750 794 981 1,673 2,628

2 4,398 4,150 4,019 627 770 1,506 2,142

3 4,120 3,868 3,736 661 833 1,408 2,040

4 3,938 3,748 3,561 523 643 1,238 1,949

5 3,835 3,642 3,506 820 976 1,298 1,674

6 4,004 3,792 3,649 590 759 1,227 1,960

7 3,617 3,447 3,291 569 673 1,102 1,711

8 3,794 3,575 3,428 538 670 1,179 1,853

9 3,431 3,261 3,140 526 670 1,189 1,649

10 3,436 3,250 3,155 479 582 1,111 1,685

11 3,642 3,412 3,304 545 667 1,129 1,724

12 2,815 2,660 2,569 441 512 882 1,306

13 2,827 2,680 2,585 437 536 946 1,382

14 2,887 2,760 2,665 497 604 924 1,405

15 2,880 2,709 2,627 507 604 889 1,369

16 2,770 2,609 2,515 443 543 904 1,320

17 2,553 2,416 2,350 370 449 792 1,223

18 2,352 2,226 2,171 536 642 784 1,012

19 2,340 2,216 2,138 539 641 812 1,071

20 2,631 2,482 2,357 470 598 924 1,323

21 2,383 2,234 2,151 440 534 797 1,111

22 2,137 2,022 1,964 311 386 682 997

23 1,922 1,825 1,787 410 495 653 881

24 2,124 2,031 1,937 331 394 659 953

25 1,608 1,518 1,500 312 374 518 757

26 1,800 1,704 1,668 301 356 566 827

27 1,605 1,529 1,499 257 296 492 757

28 1,618 1,539 1,478 278 315 516 721

29 1,723 1,615 1,585 318 359 531 788

Total 84,445 79,900 77,085 13,870 16,862 27,331 40,218

Percentagea / 94.62 91.28 16.42 19.97 32.37 47.63

aPercentage of SNP of the SNP panel included in the imputation data.

BovineHD BeadChip) to 13,870 (GeneSeek Genomic

Profiler 3), that is corresponding to 94.6% and 16.4%,

respectively.

The average SNP distance over the 29 autosomes (Figure 2)

was 29,138 bp for the imputation set, 30,791 bp for the Illumina

Infinium BovineHD BeadChip and 31,867 bp for the Genomic

Profiler HD-150K. Higher average SNP distances were observed

for Labogena MD (61,119 bp), GeneSeek MD (90,200 bp), and

the GeneSeek Genomic Profiler 4 and 3 (146,433 and 177,375 bp,

respectively). The SNP distance distributions over the 29 autosomes

were comparable for the two HD SNP panels and the imputation

set. Regarding MD SNP panels, the Labogena MDwas more closely

to the HD SNP panels, followed by GeneSeek MD, while the

GeneSeek Genomic Profiler 4 and GeneSeek Genomic Profiler 3

clearly diverged from the rest, with both SNP panels consisting of a

mixture of distributions.
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FIGURE 2

SNP distance distribution over the 29 autosomes for each of the SNP panels.

3.2. Correlations of inbreeding coe�cients
between genotyped and imputation SNP

Descriptive statistics of the pedigree and SNP inbreeding

coefficients are reported in Table 2. The average Fped was 0.05 for

the cows genotyped with Illumina Infinium BovineHD BeadChip,

0.07 for GeneSeek Genomic Profiler 3, 4 and Labogena MD and

0.08 for Genomic Profiler HD-150K and GeneSeek MD. Average

fSNP was close to 0 (for both genotyped and imputed SNP) for

the genomic estimators, except for Fgrm2 and Froh. Specifically,

average fSNP across all SNP panels for Fgrm2 varied between−0.92

and−0.95 with inbreeding coefficients being always negative. The

highest mean fSNP across all SNP panels was observed for Froh
(0.11 to 0.16). Moreover, although the mean fSNP was, in general,

equal between genotyped – imputed SNP for all estimators, the

space of the inbreeding coefficients differed when estimated using

genotyped vs. imputation SNP. This was observed for all estimators

and SNP panels. The most consistent results were found for the two

HD SNP panels when fSNP was estimated with Froh. For e.g., F in

the group of cows genotyped with the GeneSeek Genomic Profiler

3 varied between−0.35 to 0.26 for the genotyped and−0.16 to 0.82

for the imputation SNP data. Similarly, for the same group of cows,
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TABLE 2 Mean, standard deviation (superscript) and range (subscript) of the pedigree and the genomic inbreeding coe�cients for each genotyping

panel.

Estimator Genomic
information

Illumina Infinium
BovineHD
BeadChip

GeneSeek
Genomic Profiler

HD-150K

GeneSeek
Genomic
Profiler 3

GeneSeek
Genomic
Profiler 4

GeneSeek
MD

Labogena
MD

Pedigree

Fped 0.050.02[0,0.28] 0.080.03[0,0.29] 0.070.02[0,0.31] 0.070.02[0,0.33] 0.080.03[0,0.31] 0.070.02[0,0.31]

PLINKa

F Genotyped −0.010.04[−0.30,0.24] 0.010.05[−0.09,0.31] −0.010.04[−0.35,0.26] 0.000.04[−0.44,0.36] 0.000.05[−0.60,0.94] −0.010.04[−0.22,0.37]

Imputation −0.010.04[−0.30,0.24] 0.010.05[−0.09,0.31] 0.000.05[−0.16,0.82] 0.010.05[−0.20,0.78] 0.010.06[−0.38,0.79] 0.00.04[−0.17,0.55]

Fhat1 Genotyped −0.030.07[−0.27,0.27] 0.000.09[−0.18,0.50] −0.020.07[−0.24,1.81] −0.010.17[−0.29,11.10] 0.000.61[−0.42,65.74] −0.010.09[−0.21,1.46]

Imputation −0.030.07[−0.26,0.27] −0.010.10[−0.20,0.52] −0.020.11[−0.21,1.33] 0.000.12[−0.22,2.28] 0.000.31[−0.31,31.04] −0.010.10[−0.19,1.84]

Fhat2 Genotyped −0.010.06[−0.30,0.25] 0.010.09[−0.45,0.29] −0.010.07[−1.89,0.26] 0.000.17[−11.11,0.36] 0.000.10[−3.50,0.30] −0.010.09[−1.32,0.39]

Imputation −0.010.06[−0.28,0.26] 0.010.10[−0.48,0.29] 0.000.09[−1.28,0.82] 0.000.11[−2.27,0.80] 0.010.11[−3.66,0.69] 0.000.10[−1.69,0.50]

Fhat3 Genotyped −0.010.04[−0.23,0.25] 0.010.03[−0.08,0.32] −0.010.03[−0.28,0.26] 0.000.03[−0.35,0.78] 0.000.30[−0.47,32.86] −0.010.03[−0.18,0.29]

Imputation −0.010.04[−0.22,0.26] 0.010.03[−0.08,0.32] 0.000.05[−0.12,1.05] 0.000.04[−0.15,1.16] 0.010.15[−0.27,15.60] 0.000.04[−0.13,0.86]

grmb

Fgrm Genotyped −0.010.05[−0.31,0.27] 0.010.05[−0.13,0.36] −0.010.04[−0.27,0.26] −0.030.16[−1.05,0.44] 0.000.05[−0.46,1.87] −0.010.04[−0.23,0.28]

Imputation −0.010.05[−0.32,0.28] 0.010.05[−0.13,0.37] 0.000.06[−0.22,0.93] −0.020.16[−1.08,0.91] 0.000.06[−0.45,0.71] 0.000.05[−0.26,0.67]

Fgrm2 Genotyped −0.950.05[−1.36,−0.63] −0.920.04[−1.00,−0.70] −0.930.04[−1.26,−0.67] −0.930.13[−1.85,−0.62] −0.920.04[−1.46,−0.19] −0.930.03[−1.13,−0.59]

Imputation −0.950.05[−1.36,−0.63] −0.920.04[−1.01,−0.70] −0.930.05[−1.21,−0.08] −0.930.16[−1.99,−0.26] −0.920.05[−1.37,−0.41] −0.930.04[−1.27,−0.45]

rohc

Froh Genotyped 0.120.03[0.02,0.34] 0.150.05[0.07,0.41] 0.110.03[0.00,0.37] 0.130.03[0.00,0.43] 0.150.04[0.00,0.86] 0.160.03[0.02,0.47]

Imputation 0.120.03[0.02,0.34] 0.150.05[0.07,0.40] 0.140.04[0.02,0.60] 0.150.04[0.03,0.51] 0.150.04[0.01,0.40] 0.160.03[0.01,0.47]

aGenomic inbreeding estimates based on PLINKv1.9 software; bGenomic inbreeding estimates based on genomic relationship matrices (grm); cGenomic inbreeding estimates based on runs of

homozygosity (roh).

Froh ranged between 0.00–0.37 and 0.02–0.60 for the genotyped and

imputation SNP, respectively.

Negative fSNP were found for all estimators, except Froh.

Although with pedigree this cannot happen, with SNP data this

is possible. Theoretically, inbreeding coefficients below zero reflect

potential gain of genetic variability, given an unselected base

population consisted of unrelated individuals. The interpretation

and the theoretical background of inbreeding coefficients has been

elaborated in previous studies (5, 6).

Pairwise comparisons between genotyped vs. imputation fSNP
for each SNP panel were investigated (Supplementary Figure 2);

Pearson correlations are reported, except if stated otherwise.

For the two HD SNP panels correlations between genotyped-

imputation fSNP were close to one (≥ 0.98) for all genomic

inbreeding estimators (Supplementary Figures 2A, B). For

the four MD SNP panels, correlations ranged between 0.65

(GeneSeek Genomic Profiler 3; Supplementary Figure 2C) and 0.85

(GeneSeek MD and Labogena MD; Supplementary Figures 2E,

F). However, for MD SNP panels correlations between

genotyped-imputation fSNP varied across estimators. More

precisely, for the three GeneSeek SNP panels, Fhat2 had

the lowest correlations, ranging between 0.51 (GeneSeek

Genomic Profiler 4; Supplementary Figure 2D) to 0.68

(GeneSeek MD; Supplementary Figure 2E). For Labogena

MD (Supplementary Figure 2F), Fhat3 had the lowest correlation

(0.77) between genotyped-imputation fSNP. Moreover, for

GeneSeek Genomic Profiler 3 the estimators F, Fhat3 and Fgrm2 had

correlations∼0.60, Fhat1 and Fgrm values ranged between 0.68-0.75

with Froh being more consistent (∼0.79) compared to the rest

of the estimators. For GeneSeek Genomic Profiler 4, the lowest

correlation (0.55) was observed for Fhat1, followed by Fhat3 and

Fgrm (∼0.62 for both), F (0.68), Froh (0.89) and Fgrm2 (0.98). For

GeneSeek MD (Supplementary Figure 2E), the estimators F, Fgrm
and Fgrm2 had correlations ∼0.80 between genotyped-imputation

fSNP, while Fhat1, Fhat3 and Froh had values close to one (∼0.97).

In this case, however, it should be noted that an extreme and

influential inbreeding coefficient was observed for Fhat1 and Fhat3
that impacts the values of Pearson correlations. In the case of

Labogena MD (Supplementary Figure 2F), all estimators except

Fhat3 had correlations of between 0.82-0.89 with the highest (0.98)

observed for Froh; correlations between genotyped – imputed fSNP
for Fhat3 were at 0.77. Moreover, for Labogena MD the inbreeding

coefficients of the imputed SNP had always greater variability

and higher values than the genotyped SNP, across all estimators

(Table 2). This, in general, was also observed for the three MD

GeneSeek estimators. However, for the three MD GeneSeek panels

there were cases, especially for Fhat1−3 were fSNP estimated from

genotyped SNP showed greater variability.

To further investigate the differences between genotyped vs.

imputation fSNP, pairwise comparison with Fped were made for all
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SNP panels and estimators (Supplementary Figure 3). We assume

that the most accurate inbreeding coefficients should have higher

correlation to Fped. In general, the genotyped data had higher

correlations to Fped compared to the imputation set. Opposite

results were found for Fhat1,2 for GeneSeek Genomic Profiler

4, where f SNP estimated from the imputation SNP were higher

correlated to Fped compared to f SNP estimated using the only

the genotyped SNP. No differences were found for the two HD

SNP panels.

Overall, the two HD SNP panels had consistent results between

genotyped-imputation fSNP (correlations close to one). For the four

MD SNP panels, higher correlations were found for the Labogena

MD (summarized over all estimators), followed by the GeneSeek

MD, GeneSeek Genomic Profiler 4 and GeneSeek Genomic

Profiler 3 (Figure 3). Froh provided the most robust results across

all genomic inbreeding estimators tested (Figure 4). Spearman

correlations were always higher compared to Pearson correlations

(with the former being able to capture monotonic patterns).

4. Discussion

Inbreeding coefficients are traditionally estimated from

pedigree data and used to characterize diversity, evolution, and

population structure. The study of inbreeding can be applied

to individual animals, herd, consortium (e.g., dairy chains or

semen companies) and population levels (24–26). It is also used in

livestock breeding and conservation programs to organize matings

and manage the level of relationship among individuals of a given

population. Whole genome SNP data allowed the estimation of

the realized level of homozygosity of an individual, compared to

the expectations derived from pedigree information. However, it is

important to keep in mind that homozygosity might be caused by

either common ancestors (homozygosity by descent; autozygosity)

or by other evolutionary processes. In the latter case, homozygosity

represents an identical by state situation termed allozygosity. The

two forms of homozygosity practically are not straightforward to

be distinguished.

The rationale of the present work was driven by applied

methods of estimating genomic inbreeding coefficients with whole

genome imputed SNP data, during routine genomic evaluations in

dairy cattle breeding programs. Our work is not critical on the SNP

panels evaluated herein per se, rather on the way they are applied

in breeding programs. The rapid increase in number and quality

of SNP panels in the market, the drastic drop for genotyping and

novel imputationmethods resulted in genotyping subgroups within

breeding populations. For instance, in the ANAFIBJ genomic

breeding program to date, 43 SNP panels have been utilized to

genotype different groups of cattle. This situation is representative

of other genomic breeding programs mainly in cattle (27, 28),

broilers (29) and swine (30, 31).

In the dataset analyzed in the current study, 10,679 cows

were genotyped with GeneSeek Genomic Profiler 3 (containing

26,151 SNP), and 33,394 cows with GeneSeek Genomic Profiler

4 (containing 30,113 SNP). However, for those cows only 13,870

and 16,862 SNP were used in the imputation data (representing

16.4 and 20% of the imputation set, respectively). Less SNPs of

these chips were selected because they have a lower overlap with

other DNA chips. This means, that (i) ∼50% of the SNP of

those panels are omitted and (ii) cows genotyped with those SNP

panels have ∼80–85% of their genotypes imputed. For some of

those cows discrepancies were found between observed vs. imputed

SNP genomic inbreeding coefficients, with the question being

which estimates represent the real state. Moreover, results varied

among estimators.

To address this question we used as a baseline the Fped,

assuming that a higher correlation with Fped is favorable. Our

results showed that, in general, the genotyped fSNP were strongly

correlated to the Fped for all estimators (Supplementary Figure 3)

in the MD SNP panels, compared to fSNP estimated with SNP

from the imputation set. However, variability was observed among

estimators on the the actual difference between genotyped –

imputation fSNP. For e.g., for the GeneSeek Profilers 3 Pearson

correlations between Fped and each of the genomic estimators

were 0.56,−0.12, 0.45, 0.36, 0.04, 0.58 and 0.61, while with

the imputation SNP correlations were of 0.38,−0.25, 0.45, 0.16,

0.03, 0.38 and 0.48 for F, Fhat1, Fhat2, Fhat3, Fgrm, Fgrm2 and

Froh, respectively. Moreover, imputation increased the correlations

between the pairwise comparison of the genomic inbreeding

estimators. For instance, in the GeneSeek Genomic Profilers 3

the correlations of Froh with the other estimators were increased

from 0.89 to 0.95, 0.02 to 0.11, 0.61 to 0.69, 0.69 to 0.79,

0.29 to 0.60 and from 0.90 to 0.96 (for F, Fhat1, Fhat2, Fhat3,

Fgrm and Fgrm2, respectively). Furthermore, there where cows

with inbreeding coefficients close to 0 with the genotyped

SNP, and high inbreeding coefficients with the imputed SNP.

This was observed even with Froh that was the most robust

estimator. For instance, there was a group of cows genotyped

with the GeneSeek Genomic Profiler 3 with inbreeding coefficients

(based on genotyped SNP) ranging between ∼0-0.15 while with

imputation SNP the inbreeding coefficients were estimated between

∼0.4 and 0.6 (Supplementary Figure 2C). Similar observation was

made for cows genotyped with the GeneSeek Genomic Profiler

4 (Supplementary Figure 2D), where for few cows genotyped fSNP
ranged between 0 and 0.15 while the imputation fSNP for those cows

was >0.3. We could hypothesize that fSNP estimated from ∼15k

SNP (as was the case of GeneSeek Genomic Profilers 3 and 4 in

our study) might be biased. However, it must be also very unlikely

that cows could have 40–60% of their genome in homozygous state,

as was found with fSNP estimated with imputation SNP. It is known

that for a successful imputation three important components are

(i) the distribution along the genome and the number of SNP in the

LD/MD panels, (ii) the linkage disequilibrium between SNP in the

MD and SNP in the HD (32–34) and (iii) the presence of genotypes

from the parents and/or grandparents. For the GeneSeek Genomic

Profilers 3 and 4, perhaps those could be hypothesized as limited

parameters in our study.

5. Future perspectives

Passing through the second decade of applied genomic

breeding programs, it is of interest that we still lack criteria

to select a simple and optimal genomic inbreeding measure. In

a recent work we showed that discrepancies among genomic

inbreeding estimators exist (6) and some genomic inbreeding
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FIGURE 3

Average Pearson (left) and Spearman (right) correlations of the genomic inbreeding estimators tested for each SNP panel. Horizontal bars within

each boxplot represent the median, and red rhombus the mean.

FIGURE 4

Average Pearson (left) and Spearman (right) correlations of the tested SNP panels for each genomic inbreeding estimator. Horizontal bars within

each boxplot represent the median, and red rhombus the mean.

estimators can provide coefficients out of the range [-1, 1];

where negative coefficients reflect proportional gain of variability

compared to a base unselected population of unrelated animals

(5, 6, 35).Moreover, various parameters have to be considered when

comparing genomic inbreeding estimators, such as SNP quality

control, imputation methods, distinguishing between allozygosity

– autozygosity, including SNP on the X-chromosome (28) to

account for differences between males and females and better scale

genomic inbreeding coefficients to pedigree inbreeding coefficients,

to name some.

In the present study, we emphasized on the effect that

imputation might have on the estimation of genomic inbreeding

coefficients, relative to the density of SNP panels. Another

important aspect of imputation relates to the relationship between
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animals genotyped with LD and MD SNP panels (to be imputed)

and the animals that consist of the reference panel, and which were

genotyped in HD. In a preliminary analysis, we have evidenced

that indeed the correlation between genotyped – imputation fSNP
drastically degrades for the cows that have none of the parents

and/or the maternal grand sire genotyped in HD and belonging

in the reference set of the imputation pipeline (data not shown).

This degrade in accuracy varies across the SNP panels and has been

observed even with cows genotyped in HD, albeit to a much lower

degree compared to cows genotyped in MD. This needs further

investigation and quantification.

6. Conclusion

We investigated the effect of imputation, regarding the density

of SNP panels used to genotype cows, in a routine dairy

cattle genomic breeding program on SNP inbreeding coefficients.

Correlations between genotyped vs. imputation SNP inbreeding

coefficients were high and consistent for the HD SNP panels.

Accuracies were degraded for the fourMDdensity SNP panels. This

drop in accuracy was linked to the number of SNP of the SNP panel

included in the imputation SNP set and the average distance of

SNP on the genome. Assuming that high correlation with pedigree

inbreeding coefficients reflects more realistic values, genomic

inbreeding coefficients estimated from imputation SNPwere biased

for the cows genotyped with MD SNP panels, because they were

less correlated to pedigree inbreeding coefficients compared to

inbreeding coefficients estimated only from genotyped SNP.

We wish to state that our analysis is not critical on the quality of

commercial SNP panels per se, but rather it highlights the effect that

the imputation pipeline and the overall genotyping management

might have on the genomic inbreeding coefficients. Our results

indicate that SNP panels that contain more informative SNP for

the population under study can have more genotyped SNP that

remain in the imputation data and thereby provide with more

robust results on the genomic inbreeding coefficients of the cows.

Cows that were genotyped with MD SNP panels that had few SNP

included in the final imputed SNP data were more likely to have

biased genomic inbreeding estimates for some groups of cows. In

such a concept, Froh can be considered as a more robust estimator,

reflecting identity-by-descent, compared to estimators summing

homozygosity over individual SNP, measuring identity-by-state.
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SUPPLEMENTARY FIGURE 1

SNP density per chromosome for the (A) imputed, (B) Illumina Infinium

BovineHD BeadChip, (C) GeneSeek Genomic Profiler HD-150K, (D)

GeneSeek Genomic Profiler 3, (E) GeneSeek Genomic Profiler 4, (F)

GeneSeek MD, and (G) Labogena MD.

SUPPLEMENTARY FIGURE 2

Comparison between genotyped and imputed SNP inbreeding coe�cients

for (A) Illumina Infinium BovineHD BeadChip, (B) GeneSeek

GenomicProfiler HD-150K, (C) GeneSeek Genomic Profiler 3, (D) GeneSeek

Genomic Profiler 4, (E) GeneSeek MD, and (F) Labogena MD.

SUPPLEMENTARY FIGURE 3

Pairwise Pearson correlations (above diagonal) between each pair of the

pedigree and the seven genomic inbreeding estimators analyzed for (A)
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Illumina Infinium BovineHD BeadChip, (B) GeneSeek Genomic Profiler

HD-150K, (C) GeneSeek Genomic Profiler 3, (D) GeneSeek Genomic

Profiler 4, (E) GeneSeek MD, and (F) Labogena MD. In gray color the overall

correlation, in red correlations estimated from the genotyped SNP in each

panel and in green correlations estimated from the

imputation SNP.
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