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Genomic tools have shown promising results in maximizing breeding outcomes, 
but their impact has not yet been explored. This study aimed to outline the effect of 
the individual haplotypes of each component of the casein complex (αS1, β, αS2, and 
κ-casein) on zoometric/linear appraisal breeding values. A discriminant canonical 
analysis was performed to study the relationship between the predicted breeding 
value for 17 zoometric/linear appraisal traits and the aforementioned casein gene 
haplotypic sequences. The analysis considered a total of 41,323 zoometric/linear 
appraisal records from 22,727 primiparous does, 17,111 multiparous does, and 
1,485 bucks registered in the Murciano-Grandina goat breed herdbook. Results 
suggest that, although a lack of significant differences (p > 0.05) was reported 
across the predictive breeding values of zoometric/linear appraisal traits for 
αS1, αS2, and κ casein, significant differences were found for β casein (p < 0.05). 
The presence of β casein haplotypic sequences GAGACCCC, GGAACCCC, 
GGAACCTC, GGAATCTC, GGGACCCC, GGGATCTC, and GGGGCCCC, linked 
to differential combinations of increased quantities of higher quality milk in 
terms of its composition, may also be connected to increased zoometric/linear 
appraisal predicted breeding values. Selection must be performed carefully, given 
the fact that the consideration of apparently desirable animals that present the 
haplotypic sequence GGGATCCC in the β casein gene, due to their positive 
predicted breeding values for certain zoometric/linear appraisal traits such as 
rear insertion height, bone quality, anterior insertion, udder depth, rear legs side 
view, and rear legs rear view, may lead to an indirect selection against the other 
zoometric/linear appraisal traits and in turn lead to an inefficient selection toward 
an optimal dairy morphological type in Murciano-Granadina goats. Contrastingly, 
the consideration of animals presenting the GGAACCCC haplotypic sequence 
involves also considering animals that increase the genetic potential for all 
zoometric/linear appraisal traits, thus making them recommendable as breeding 
animals. The relevance of this study relies on the fact that the information derived 
from these analyses will enhance the selection of breeding individuals, in which 
a desirable dairy type is indirectly sought, through the haplotypic sequences in 
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the β casein locus, which is not currently routinely considered in the Murciano-
Granadina goat breeding program.
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1. Introduction

Goat farming now extends to almost all countries worldwide due 
to the competitive prices and the high nutritional value of the products 
(especially milk) derived from this species, attracting new investment 
companies and farmers (1). Developing countries account for the 
largest fraction of the world goat census (over 90%) due to the great 
adaptability potential of the species to marginal territories, and its 
ability to thrive under adverse climatic conditions and within low-tech 
farming systems (2). Such a scenario contrasts with that of Europe and 
North American countries, where highly developed and intensive 
conditions rule the goat industry. This defines a highly focused milk 
production industry supported by the exploitation of high-yielding 
breeds genetically managed under the scope of breeding schemes (3). 
However, the development of genetics, nutrition, and animal 
management in the goat is rather limited compared with the level of 
integration and technification of these methods in other ruminant 
species (4).

Thus, the casein cluster is a genomic region of great interest in the 
goat, and has shown significant genetic diversity and differentiation 
among small ruminant populations (5). This genetic variability can 
be explained by the effect of several mutations on gene expression 
levels (6). In goat species, the casein complex comprises a series of 
genes located on chromosome 6. Specifically, casein genes are encoded 
by four loci (CSN1S1, CSN1S2, CSN2, and CSN3) clustered within the 
250 kb segment of this chromosome (7). Casein single nucleotide 
polymorphisms (SNPs) act as genetic units that are closely linked 
through epistatic relationships (8). These markers are transmitted as 
haplotypes (9). The genetic polymorphism of the casein complex (αS1, 
β, αS2, and κ-casein genes), either in the form of SNPs, haplotypes, or 
haplogroups, associates with specific productive traits (milk yield, 
components, and lactation curve parameters) of interest from an 
economic and research point of view (10, 11).

The consideration of casein haplotypes rather than the use of a 
single gene or genetic marker has been suggested to maximize the 
comprehension of heritable mechanisms and how they affect the 
expression of functional traits related to milk yield, the production of 
its different components (protein, fat, dry extract, and/or lactose), 
cumulative milk production, and the greater or lesser presence of 
somatic cells (10, 12). Although SNP, haplotype, or haplogroup 
associations across casein genes and casein variants with milk 
production traits have been previously reported (10), the relationship 
of casein haplotype variants with morphometry and linear appraisal 
has not been investigated in depth.

In 1993, the American Dairy Goat Association introduced the 
Linear Appraisal System for dairy goats to improve production yields. 
However, the implementation of the Combined Goat Index and 
Morphological Index in the selective nucleus of the rustic Murciano-
Granadina goat breeders’ association (CAPRIGRAN) did not occur 

until 2010 (13, 14). The breed’s morphology has evolved toward dairy 
type, making it necessary to develop a specific zoometric/linear 
appraisal scale to represent the breed population accurately. This led 
to the optimization and validation of the scale, enabling comprehensive 
genetic evaluations of hereditary components and correlations across 
zoometric linear appraisal traits (15, 16). When evaluating breeding 
does, four areas—structure and capacity, dairy conformation, 
mammary system, and legs aplomb—are scored and weighted at 25, 
15, 40, and 20%, respectively. For breeding bucks and goats that have 
not given birth, only three areas—structure and capacity, dairy 
conformation, and legs aplomb—are evaluated, with relative weights 
of 50, 20, and 30%, respectively. The final score can range from 0 to 
100 points, based on the relative scores obtained by the animal in 
each area.

The phenotypic relationship between zoometrics and dairy 
production (either milk yield, components, or even transformed 
products, such as cheese) has been investigated (17–19) and tools 
seeking the optimal dairy goat type have been developed (13, 15, 16, 
20, 21). As a result, some methods have been developed for predicting 
daily milk production and the performance of milk components from 
morphometry and linear appraisal (22, 23). However, the role that 
dairy-linked genes, such as those in the casein complex, traditionally 
play in growth or zoometrics remains unexplored, especially in species 
other than cow.

In this context, the present study aims to develop a discriminant 
canonical analysis (DCA) tool that outlines the effect of the individual 
haplotypes of each component of the casein complex (αS1, β, αS2, and 
κ-casein) on zoometric/linear appraisal breeding values. The 
information derived from the present analyses will help to plan 
strategies that support the standardization and improvement of the 
productive capacity of this native goat breed to seek the consolidation 
of the breed in the international dairy goat panorama.

2. Materials and methods

2.1. Zoometric and linear appraisal 
breeding value prediction

2.1.1. Pedigree matrix and linear appraisal records
The Murciano-Granadina whole-pedigree data file comprised 

279,264 animals (266,793 does and 12,971 bucks) and was used as the 
pedigree matrix for genetic analyses. A total of 15 maximum 
generations and six complete generations were evaluated. Animals 
were born from June 1966 to November 2019. The linear appraisal was 
performed for 41,418 animals across the year. Animal records were 
collected from 76 farms in the south of Spain from 09/06/2010 to 
18/12/2019. All the farms considered in the study had received official 
National and International Sanitary Certificates. All farms were 
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controlled and officially declared tuberculosis-free (C3), brucellosis-
free (M4) (Order of 22 June 2018 and Directive 91/68/EEC), and 
scrapie RC free [Regulation (EC) No 999/2001 of the European 
Parliament and the Council]. Additionally, these farms followed 
voluntary control plans for caprine contagious agalactia (CCA) 
(National CCA Surveillance, Control, and Eradication Programme 
2018–2020) and caprine arthritis encephalitis (CAEV) (Order 
AYG/287/2019 of 28 February 2019). Goats were clinically examined 
by an official veterinarian, and individuals presenting signs of illness 
or disease were officially declared, removed from the herds, and 
discarded from the analyses. Permanent stabling practices were 
followed by all farms considered, and ad libitum water, forage, and 
supplemental concentrate were provided.

Records from 95 individuals were discarded due to missing or 
incomplete zoometric and linear appraisal observations. A total of 
41,323 records, belonging to 22,727 herdbook-registered primipara 
does, 17,111 multipara does, and 1,485 bucks, were considered in the 
analysis. The average ages for primipara, multipara does, and bucks in 
the sample were 1.61 ± 0.35 years, 3.96 ± 1.74 years, and 2.43 ± 1.49 years 
(μ ± SD), respectively. Descriptive statistics, kurtosis, and skewness for 
Murciano-Granadina Linear appraisal system (LAS) zoometric traits 
can be found in Fernández Álvarez et al. (13).

2.1.2. Murciano-Granadina linear appraisal system
Each observation comprises the rater’s score for each animal in 

the following four major categories for primipara and multipara does 
(three for bucks, young males, and yet-to-give-birth goats): structure 
and capacity, dairy structure, mammary system (except in males), and 
legs and aplomb. In primipara and multipara does, each record 
comprised information on 17 linear traits rated on a 9-point scale. 
Given that bucks were not scored for the mammary system major 
category, only 10 traits were scored for them following the 
aforementioned 9-point scale. Body depth from the structure and 
capacity major category and the dairy structure and legs and feet 
major categories followed the same criteria as the independence of sex 
and sexual status. The same trained rater scored all animals in 
the study.

Once all major categories are scored, the final score represents 
how close the overall animal comes to the optimal dairy standard. 
Murciano-Granadina LAS establishes that each major category 
contributes to the final score (25% for structure and capacity, 15% for 
dairy structure, 20% for legs and feet, and 40% for the mammary 
system) for primipara and multipara does (any doe that has ever 
produced milk). In bucks and young males, the percentages change to 
50% for structure and capacity, 20% for dairy structure, and 30% for 
legs and fee.

The rater’s scores are assigned one of the six category 
qualifications considered by CAPRIGRAN as follows: insufficient 
(IN) for animals that display less than 69% of the optimal standard 
for Murciano-Granadina dairy goats (a final score of 69 points or 
less); mediocre (R), 70–74% of the optimal standard (a final score 
between 70 and 74 points); good (B), 75–79% of the optimal 
standard (a final score from 75 to 79 points); quite good (BB), 
80–84% of the optimal standard (a final score from 80 to 84 points); 
very good (MB), 85–89% of the optimal standard (a final score from 
85 to 89 points); or excellent (E), when at least 90% of the optimal 
standard is displayed (a final score higher than 90 points). The 
scales used and the translation process from zoometric traits to LAS 

traits is described in detail by Sánchez Rodríguez et  al. (24) 
(Supplementary Table S1).

Age elements, for instance, the age of does and/or the lactation 
order condition the dairy linear or type appraisal-related traits (25). 
Hence, these elements, often considered and registered for does at 
appraisal, permit the adjustment of models for the outputs of linear or 
type appraisal records (26). The Pearson product–moment correlation 
coefficient between lactation stage and age in years was 0.705 
(p < 0.01), hence redundancies could be presumed for the outputs of 
linear or type appraisal if both age components were simultaneously 
considered. Thus, the lactation stage was considered and results for 
primipara and multipara goats were reported separately.

2.1.3. Preliminary assumption testing in 
zoometric and LAS traits

Common parametric assumptions were tested in the Murciano-
Granadina goat breed zoometric and LAS historical records collected 
up until December 2019. A Kolmogórov–Smirnov test and Levene’s 
test were used to evaluate normality and homoscedasticity, 
respectively, using SPSS Statistics for Windows (version 25.0). Given 
the large sample size used in this study, the non-parametric method 
proposed by Hoeffding (27), which uses joint ranks, was chosen to test 
for the independence of two random variables with a continuous 
distribution function (df). To this aim, the Hmisc package’s hoeffd 
function (28) of RStudio 1.1.463 by the R Studio Team (29) was used. 
value of ps are approximated by linear interpolation on the table in 
Hollander et al. (30), which uses the asymptotically equivalent Blum–
Kiefer–Rosenblatt statistic. For p < 0.0001 or > 0.5, p-values are 
computed using a well-fitting linear regression function in log P 
against the test statistic.

2.2. Genetic analyses

2.2.1. Model and genetic parameter estimation 
for zoometric and LAS traits

The estimation of phenotypic and genetic parameters is presented, 
developed, and discussed in the study by Fernández Álvarez et al. (31). 
However, we  summarized this process used for their estimation 
as follows.

The complete kinship matrix used for genetic analyses comprised 
all the 279,264 animals (266,793 does and 12,971 bucks) in the 
Murciano-Granadina goat breed pedigree. As the literature suggests, 
when bucks start rutting, male goats display behaviors associated with 
the urge to breed; they go through physical changes that even make 
specific variables, such as rump angle, decrease by 3 degrees (32). The 
breeding season for most goat breeds extends from August to January 
and they go into rut during Autumn (September, October, and 
November). The rut is characterized in bucks and the males of other 
species by an increase in testosterone, exacerbated sexual dimorphism, 
and increased aggression and interest in does (33). These cyclic 
changes over the year are the source of natural discrepancies in the 
definition and specific characteristics of zoometric traits between 
bucks and does, whose body changes are rather progressive during 
their lives across lactation stages. This, in turn, may lead to statistical 
biases; hence, we decided that the phenotype data set should only 
comprise those observations belonging to does, either primipara or 
multipara, when estimating genetic and phenotypic parameters.
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As a result, a total of 39,838 records, belonging to 22,727 
herdbook-registered primipara does and 17,111 multipara does, were 
considered in the genetic analysis. Animals were only scored once in 
their lifetime. Therefore, a multitrait animal mixed model with single 
measures was used to estimate (co) variance components, and the 
corresponding heritability, repeatability, phenotypic and genetic 
correlations, and standard errors of such correlations for the traits 
under examination. Pairs of two zoometric/linear appraisal variables 
were evaluated once each time until all possible pairwise combinations 
had been tested. In matrix notation, the following multitrait animal 
model with single measures was used:

  

Yijklmn Fari Ai LacStatjBj KMonk Ck

IntFarmxKYearl Dl b

= + + +
+ +
µ · · ·

· 11

2 3
2

DIMmEm

b An Fn b A Fn eijklmn

·

· · ,+ + +n

where Yijklmn is the vector of observations for each separate 
measure of each pair of zoometric or LAS traits 
(Supplementary Table S1) for a given animal; μ is the overall mean; 
Fari is the vector for the fixed effect of the ith farm/herd (i = 76 farms); 
LacStatj is the vector for the fixed effect of the jth lactation stage 
(j = primipara/multipara does); KMonk is the vector for the fixed effect 
of the kth kidding month (k = January to December); and IntFarm/
KYearl is the vector for the fixed effect of the lth level of interaction 
between farm/herd and kidding year (l = 400 interaction levels 
possibilities combining the 76 farms and kidding years from 2005 to 
2019); days in milk was considered a linear covariate, hence b1 is the 
linear regression coefficient on days in milk (DIMm), age in years was 
considered a linear and quadratic covariate, hence b2 and b3

2 are the 
linear and quadratic regression coefficients on the age of evaluation 
(An), eijklmn is the vector of random residual effects, and Ai, Bj, Ck, and 
Dl are incidence matrices relating records to their respective fixed 
effects, while Em and Fn are incidence matrices relating records to their 
respective random effects. Only the direct genetic effect (animal) was 
fitted in each model due to zoometric/LAS scores being recorded only 
once for each animal.

The MTDFREML software package (34) was used to perform 
restricted maximum likelihood approach-based univariate analyses to 
compute heritabilities and variance components. The same software 
was used to carry out bivariate analyses to estimate covariates and 
genetic and phenotypic correlation. Genetic and phenotypic 
correlations between each individual conformation trait were 
estimated using a multivariate analysis including all traits. The 
iteration process used sought a convergence criterion level of 10−12. 
Link functions can be found in Boldman et al. (33). The standard 
errors for heritability and genetic and phenotypic correlations were 
computed using the same software.

As suggested by Navas González et  al. (35), we  used the 
phenotypical variance of each character and the existing phenotypical 
correlations between each possible pair combination for the estimation 
of the starting point to seek the convergence of additive genetic 
variance components (multiplying them by 0.2). Then, we did the 
same for environmental variances (multiplying them by 0.8) and 
genetic and phenotypic correlations to obtain specific variance 
components and estimates of fixed and random effects for each trait 
in multivariate analyses. To build the matrix of covariates among 
zoometric and LAS traits, the bivariate routine of the correlate 

procedure of the Analyze package in SPSS Statistics for Windows 
(version 25.0) was used. For this, users need to check the box next to 
cross-product deviations and covariances in the menu. Afterward, to 
obtain the covariance for each pairwise combination of variables, the 
sum of squares and cross-products must be divided by sample size (N).

2.3. Breeding value prediction (BLUPs, 
PBVs)

After convergence was reached, predicted breeding values were 
calculated through best linear unbiased predictors for random effects 
(BLUPs, PBVs) and their accuracies and reliabilities for zoometric and 
LAS traits for each animal in the matrix, using MTDFREML software. 
The standard errors for heritability and genetic and phenotypic 
correlations were computed by the same software. The fact that bucks 
were not considered for genetic evaluations and genetic parameter 
estimation must be considered. As a result, bucks’ breeding values 
were estimated from the female individuals connected to them 
through their genealogy. When the average difference in zoometric 
parameters between males and females is ignored, the estimate of 
heritability has been reported to reduce (36) as well, which may have 
also contributed to a reduction in BLUPs/PBVs.

2.3.1. BLUP standard error of prediction (SEP), 
reliability (RAP), and accuracy (RTi)

Standard error of prediction (SEP), reliability (RAP), and accuracy 
(RTi) were calculated. The aforementioned parameters relate to each 
other through their definition and equation determination 
[RAP = RTi2 = (1–SEP2/Va)2], from which Va is genetic additive variance.

First, reliability is the likelihood of someone repeating the 
experiment and getting the same result (repeatability), while accuracy 
measures how close a certain estimated value is to the real value. Their 
interpretation is, therefore, different. For example, for the evaluation 
of RTi, Scheme (37) suggests that less than 50% RTis mean PBVs are 
preliminary, thus calculated based on little information and hence 
very prone to change substantially as more direct information on the 
animal becomes available. RTis that range from 50 to 74% accuracy 
(medium) suggest that PBVs may have been calculated using the 
animal’s direct information and some limited indirect pedigree 
information. Medium/high RTis are denoted by 75–90% and may 
be calculated using the animal’s direct information together with the 
performance of a small number of its offspring. RTi values over 90% 
report estimates of the animal’s true breeding value, as it is unlikely 
that PBVs will change considerably even if additional information 
from offspring is added.

When reliability (RAP) is considered, the rule of thumb proposed 
by Horse (38) suggests that RAP values less than 30% are generally 
unreliable, values between 30 and 55% are poor, values between 55 
and 65% are sufficient, values between 65 and 75% are more than 
sufficient, values between 75 and 90% are good, and values higher 
than 90% are very reliable and repeatable; values around 60% suggest 
the information strongly relies on offspring information, which would 
be undesirable.

Last but not least, the standard error of prediction (SEP) measures 
how large prediction errors (residuals) are for the data set measured 
in the same unit for each of the zoometric or LAS traits measured; 
therefore, it provides a direct measure of possible change, i.e., the risk 
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of the true breeding value of the animal (TBV) not to be aligned on 
the PBV.

Van Vleck (39) suggested that possible change is the risk in units 
of the trait breeding value not being true and can be “positive” or 
“negative.” This means the likelihood of true BV being higher than 
PBV by a certain amount (possible gain) is the same as the likelihood 
of the true BV being lower than the PBV by the same amount (possible 
loss). Contextually, confidence intervals are normally used to 
determine the likelihood of possible change assuming a normal 
distribution of the TBV around the PBV.

The first half of the TBV would be expected to be higher than the 
PBV, while the second would be  expected to be  lower than the 
PBV. The interval range from PBV – (1) SEP to PBV + (1) SEP 
corresponds to a 68% probability that the TBV for an animal is 
centered on the PBV for the animal. Such an interval can be narrowed 
or widened corresponding to the probability of the TBV in the 
interval. For instance, one could expect the interval from PBV – (2) 
SEP to PBV + (2) SEP to contain 95% of the TBV. Units of SEP other 
than (1) or (2) would correspond to other confidence intervals. With 
a 68% confidence interval, 32% would be half over and half below the 
intervals’ ends, while with the 95% interval, the percentage placed out 
of the interval would be 5% (again half over and half below each end). 
Ranges for many combinations of PBV and SEP may overlap 
considerably. Then, by observing which PBV centers the interval and 
comparing intervals, a rather direct measure of risk compared with 
that of accuracy (RTi) is obtained.

2.3.2. Descriptive statistics and differences in 
zoometric/linear appraisal PBVs across casein 
haplotypes

Maximum and minimum for zoometric/linear appraisal traits 
predicted breeding values (PBVs) and standard error of prediction 
(SEP). Accuracy (RTi) and reliability (RAP) were calculated using the 
Descriptive statistics routine of the Analyze set of SPSS (version 26.0). 
Afterward, a Kruskal–Wallis H test was used to study the potential 
existing differences between predicted breeding values for zoometric/
linear appraisal traits across haplotypes of the same casein gene, as 
three or more possibilities were available using the independent 
samples routine of the Nonparametric tests package within the Analyze 
set of SPSS (version 26.0).

2.3.3. Casein haplotyping

2.3.3.1. Haplotyping animal samples and the selection 
process

Given the costs involved in genotyping, a selection process of 
goats that had been considered for milk yield standardization and 
composition analysis was implemented. This sample selection process 
aimed at genotyping a representative sample of animals for 48 SNPs 
in the casein complex from which complete records for several 
lactations existed. Hence, animals present in the herdbook of the 
National Association of Breeders of Goats of the Murciano-Granadina 
breed (CAPRIGRAN) were ranked considering the most recent and 
updated official breeding values for milk yield and composition 
reported for all the animals published in 2015. Provided multiple traits 
were considered, we  developed combined selection index (ICO) 
procedures following the premises in Van Vleck (40) to summarize 
the value of each individual comprising each of its partial values for 

milk yield and composition; these procedures were computed for each 
animal using MatLab r2015a (41). We decided not to include the dry 
matter in the ICO, as redundancies may occur deriving from the 
relationship between this trait and fat or protein content. To determine 
the weights to apply to each trait, we  considered the phenotypic 
relationship across milk yield and composition traits (except for dry 
matter), scoring their relevance as selection criteria when the breeding 
goal was milk yield and quality. In matrix notation, the weights to 
be applied on the selection index combining the partial scores of each 
modality were obtained as b P g= −1 , where b is the vector of the 
weights to be applied to each production or content trait, P is the 
phenotypic (co)variance matrix, and g is the vector of genetic (co)
variances of every trait with each other. As a result and considering 
the market demands, the weights for milk yield, fat, protein, and 
lactose followed the proportion of 1:1:1:1, respectively. The combined 
index used (ICO) was as follows:

 
ICO

PBV W PBV W PBV Wmilkyield

milkyield

fat

fat

protein

pro
= + +1 2 3

µ µ µ ttein

lactose

lactose

PBV W
+ 4

µ
,

where PBV is the predicted breeding value for each of the traits 
and animals included in the matrix; W1 is the weight for milk yield, 
W2 is the weight for fat, W3 is the weight for protein, and W4 is the 
weight for lactose in kg and normalized at 210 days; and ∝  is the 
mean for each of the traits included in the ICO computed in kg and at 
210 days. After the ICO was computed for each of the animals 
included in the matrix, we sorted a total of 200 animals from the 
whole routine milk recording of the Murciano-Granadina goat breed 
in a ranking considering their ICO value obtained at the previous 
genetic evaluation. Animals with extreme PBVs may be less efficient 
and less balanced than expected at first. Furthermore, not all traits are 
affected to the same degree by selection for these extremes. For these 
reasons, 200 animals were ranked as follows: we chose 67 females 
presenting the lowest ICO values in the rank, 66 females with values 
around percentile 50, and 67 females presenting the highest ICO 
values in the rank to perform an adjusted representative sampling of 
the genotype distribution in the population. The samples belonging to 
animals with missing or incomplete phenotype registries were 
discarded, hence the final set for genotyping consisted of blood 
samples from 108 stud book-registered goats out of the 200 animals 
that were initially selected. The records were collected from 28 
southern Spanish farms, the records of which were collected in 
random periods from October 2006 to June 2018. The mean age of the 
animals in the sample was 1.39 years old (from 1 to 9.15 years).

2.3.4. Genotyping and linkage disequilibrium
A modification of the procedure described by Miller et al. (42) was 

performed for DNA isolation. To this aim, 16 non-related does were 
randomly chosen from the herdbook of the breed. Oligonucleotide 
sequences, SNP promoters, UTRH3’ regions, and polymorphic exons 
have been described by Pizarro Inostroza et al. (43). A Platinum High 
Fidelity (LifeTechnology, CA) PCR kit was used to amplify 
polymorphic regions. MACROGEN sequencing service (Macrogen 
Inc., Korea) sequenced the PCR product, and MEGA7 software and 
Ensembl Genome Browser 97 database were used to analyze 
pherograms and evaluate previous annotations for SNPs (44). 
Genotyping was performed using a KASP assay (LGC Limited, 
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Fordham, United  Kingdom) and KlusterCaller software (LGC 
Limited, Fordham, United  Kingdom). Heterozygosity values of 
approximately 40% suggested that the number of SNPs used as 
genomic controls was sufficient (45) to prevent the effects of 
population stratification.

Minor allele frequency (MAF) was calculated to differentiate 
between common and rare variants (MAF < 0.05) using PLINK v1.90 
(46). The linkage disequilibrium extent (LD) of casein complex SNPs 
was calculated using HaploView software (11), scoring LD through D′ 
(normalized linkage disequilibrium coefficient) and r2 (linkage 
disequilibrium coefficient of determination) (Supplementary Table S2). 
The total length of casein loci and distances between adjacent loci 
were determined following the premises presented by Dagnachew 
et al. (47).

2.3.5. Haplotyping
Phasing (or haplotyping) describes the process of determining 

haplotypes from the genotype data (47). As suggested by Glusman 
et al. (48), haplotypes are more specific than less complex variants 
such as single nucleotide variants (SNP variants). A haplotype-based 
empirical model inherited from an SNP-based method was followed 
as suggested by Chen et al. (49). We identified 48 single nucleotide 
polymorphisms (SNPs) present in the casein complex of 159 unrelated 
individuals of diverse ancestry, which organized the SNPs into 86 
different haplotypes. Haplotype sequences and the maximum and 
minimum values for the predicted breeding values of each zoometric/
linear appraisal trait are shown in Supplementary Table S3. The results 
from the analyses of epistatic relationships in Pizarro Inostroza et al. 
(50) were also considered for validating haplotyping.

2.4. Canonical discriminant analysis

If protein levels in milk have been associated to certain zoometric 
variables at a phenotypic level, it is reasonable to think that a genetic 
connection may exist between such zoometric traits and specific 
regions in the genome encoding for the expression of some of those 
proteins in milk. Haplotypes act as categorical variables, while PBVs 
act as numeric traits, hence DCA is appropriate for testing differences 
exhaustively. Canonical discriminant analyses (CDAs) were performed 
to design a tool that enables the classification of goats while 
determining whether linear combinations of predicted breeding 
values for zoometric/linear appraisal traits [stature (height to withers), 
rump width, rear insertion height, rump angle, angulosity, chest 
width, udder width, nipple placement, nipple diameter, bone quality, 
anterior insertion, median suspensor ligament, mobility, body depth, 
udder depth, rear legs side view, and rear legs rear view] describe 
within-and between-population αS1, αS2, β, and κ casein haplotypes 
and haplogroups clustering patterns. The explanatory variables used 
for the present analyses were the predicted breeding values for each of 
the zoometric/linear appraisal-related traits presented in 
Supplementary Table S1. The haplotype and haplogroups for each of 
the four caseins (αS1, αS2, β, and κ) were considered the 
clustering criterion.

Canonical relationships with traits were plotted to depict the 
group differences in an easily interpretable territorial map. Regularized 
forward stepwise multinomial logistic regression algorithms were 
used to perform the variable selection. Priors were regularized 

according to the group sizes calculated using the prior probability of 
commercial software (SPSS Version 26.0 for Windows, SPSS, Inc., 
Chicago, IL) instead of considering them the same to avoid groups 
with different sample sizes affecting the quality of the classification (51).

The same sample size contexts as those used in this study across 
groups have been reported to be robust. In this regard, some authors 
have reported a minimum sample size of at least 20 observations for 
every four or five predictors, and the maximum number of 
independent variables should be n-2, where n is the sample size, to 
palliate possible distortion effects (51, 52). Consequently, the present 
study used a four or five times higher ratio between observations and 
independent variables than those described above, which renders 
discriminant approaches efficient. Multicollinearity analysis was run 
to ensure independence and a strong linear relationship across 
predictors. Variables chosen by the forward or backward stepwise 
selection methods were the same. Finally, the progressive forward 
selection method was performed since it requires less time than the 
backward selection method.

The discriminant routine of the Classify package of SPSS (version 
26.0) and the canonical discriminant analysis routine of the 
Analyzing Data package of XLSTAT (Addinsoft Pearson Edition 
2014, Addinsoft, Paris, France) were used to perform canonical 
discriminant analysis.

2.4.1. Multicollinearity preliminary testing
Multicollinearity refers to the linear relationship between two or 

more variables, which also means a lack of orthogonality between 
them. Different methods are available to detect multicollinearity, and 
the most widely used are variance inflation factor (VIF) and 
tolerance (53). VIF is a ratio of variance in a regression model with 
multiple attributes divided by the variance of a model with only one 
attribute (54). Explained more technically and exactly, 
multicollinearity occurs when k vectors lie in a subspace of 
dimension less than k. Multicollinearity can explain a data-poor 
condition, which is frequently found in observational studies in 
which the researchers do not interfere with the study. Thus, many 
investigators often confuse multicollinearity with correlation. 
However, correlation is the linear relationship between just two 
variables; multicollinearity can exist between two variables or 
between one variable and the linear combination of the others. 
Therefore, correlation is considered a special case of multicollinearity. 
A high correlation implies multicollinearity, but not the other way 
around. Before performing the statistical analyses per se, a 
multicollinearity analysis was run to discard potentially strong linear 
relationships across explanatory variables and ensure data 
independence. In this way, before data manipulation, redundancy 
problems can be detected, which limits the effects of data noise and 
reduces the error term of discriminant models. The multicollinearity 
preliminary test helps to identify unnecessary variables that should 
be excluded, preventing the overinflation of variance explanatory 
potential and type II error increase (55). The variance inflation 
factor (VIF) was used to determine the occurrence of 
multicollinearity issues. The literature reports a recommended 
maximum VIF value of 5 (56). On the other hand, tolerance (1 − R2) 
concerns the amount of variability in a certain independent variable 
that is not explained by the rest of the dependent variables 
considered (tolerance >0.20) (57). The multicollinearity statistics 
routine of the describing data package of XLSTAT (Addinsoft 
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Pearson Edition 2021, Addinsoft, Paris, France) was used. The 
following formula was used to calculate the VIF:

 
VIF R= −( )1 1 2/ ,

where R2 is the coefficient of determination of the 
regression equation.

2.4.2. Canonical correlation dimension 
determination

The maximum number of canonical correlations between two sets 
of variables is the number of variables in the smaller set. The first 
canonical correlation usually explains most of the relationships 
between different sets. In any case, attention should be given to all 
canonical correlations, despite reporting only the first dimension as 
common in previous studies (58). When canonical correlation values 
are 0.30 or higher, they correspond to approximately 10% of the 
variance explained.

2.4.3. Canonical correlation analysis efficiency
Wilks’ lambda test evaluates which variables may significantly 

contribute to the discriminant function. When Wilks’ lambda 
approximates 0, the contribution of that variable to the discriminant 
function increases. χ2-tests the Wilks’ lambda significance. If the 
significance is below 0.05, it can be concluded that the function can 
explain the group adscription well (59). Discriminant loadings for 
predicted breeding values for zoometric/linear appraisal traits 
determining the relative weight of each trait on each canonical 
discriminant function are shown in Figure 1.

2.4.4. Canonical discriminant analysis model 
reliability

Pillai’s trace criterion, as the only acceptable test to be used in 
cases of unequal sample sizes, was used to test the assumption of equal 
covariance matrices in the discriminant function analysis (60). Pillai’s 
trace criterion was computed as a subroutine of the canonical 
discriminant analysis routine of the Analyzing Data package of 
XLSTAT (Addinsoft Pearson Edition 2014, Addinsoft, Paris, France). 
A significance of ≤0.05 is indicative of the set of predictors considered 
in the discriminant model being statistically significant. Pillai’s trace 
criterion is argued to be the most robust statistic for general protection 
against departures from the multivariate residuals’ normality and 
homogeneity of variance. The higher the observed value for Pillai’s 
trace is, the stronger the evidence that the set of predictors has a 
statistically significant effect on the values of the response variable, i.e., 
Pillai’s trace criterion shows potentially linear differences in the 
predicted breeding values for zoometric/linear appraisal traits across 
β casein haplotype clustering groups (61).

2.4.5. Canonical coefficients, loading 
interpretation, and spatial representation

When CDA is implemented, a preliminary principal component 
analysis is used to reduce the overall variables into a few meaningful 
variables that contributed most to the variations across haplotypes. 
The use of the CDA determined the percentage assignment of does 
within their casein haplotypic group. Variables with a discriminant 
loading of ≥|0.40| were considered substantive, indicating substantive 
discriminating variables. The stepwise procedure technique was used 

to prevent non-significant variables entering the function. Coefficients 
with large absolute values correspond to variables with greater 
discriminating ability. Data were standardized following procedures 
reported by Manly and Alberto (62). Then, squared Mahalanobis 
distances and principal component analysis were computed using the 
following formula:

 
( ) ( )2 1

i j i jijD COV ,−= ϒ − ϒ ϒ − ϒ

where Dij
2 is the distance between population i and j; COV−1 is the 

inverse of the covariance matrix of measured variable x; and ϒi  and 
ϒ j  are the means of variable x in the ith and jth populations, 
respectively.

The squared Mahalanobis distance matrix was converted into a 
Euclidean distance matrix, and a dendrogram was built using the 
underweighted pair-group method arithmetic averages (UPGMA; 
Rovira i  Virgili University, Tarragona, Spain) and the phylogeny 
procedure of MEGA X 10.0.5 (Institute of Molecular Evolutionary 
Genetics, The Pennsylvania State University, State College, PA, 
United States).

2.4.6. Discriminant function cross validation
Afterward, to determine the probability that a goat presenting an 

unknown haplotype belongs to a particular haplotypic group (63), the 
hit ratio parameter was computed. For this, the relative distance of the 
problem observation to the centroid of its closest group was used. The 
hit ratio is the percentage of goats that are correctly ascribed to the 
casein haplotype form that they present. A leave-one-out cross-
validation procedure is used as a form of significance to consider 
whether the discriminant functions can be validated. Classification 
accuracy is achieved when the classification rate is at least 25% higher 
than that obtained by chance.

Press’ Q statistic can support these results as it can be used to 
compare the discriminating power of the cross-validated function, 
as follows:

 
Press Q

n n K

n K
′ =

− ′( ) 
−( )

2

1
,

where n is the number of observations in the sample; n’ is the 
number of observations correctly classified; and K is the number 
of groups.

The value of Press’ Q statistic must be compared with the critical 
value of 6.63 for χ2 with a degree of freedom at a significance of 0.01. 
When Press’ Q exceeds the critical value of χ2 = 6.63, the cross-
validated classification can be  regarded as significantly better 
than chance.

3. Results

3.1. Genetic parameters estimation, 
breeding value prediction, and comparative 
descriptive analysis

The estimation of genetic parameters was performed as a 
necessary intermediate stage for the prediction of breeding values. 
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The estimation, presentation of results, and a deep discussion can 
be accessed in Fernández Álvarez et al. (31). A summary of the 
maximum and minimum predicted breeding values (PBV), 
standard error of prediction (SEP), accuracy (RTi), and reliability 
(RAP) for zoometrics and LAS traits sorted by sex and lactation 
stage is shown in Table  1. Maximum and minimum PBVs for 
almost all traits were slightly to moderately higher in bucks, except 
for stature [height to withers, anterior insertion, and nipple 
diameter, which otherwise reported the broadest ranges for RAP in 
bucks (0.000–0.980) when compared to primipara (0.000–0.672) 
or multipara does (0.000–0.740)]. The lowest RAP was reported for 
the PBVs for zoometric or LAS traits in either multipara or 
primipara does, while the highest was again reported for stature 
(height to withers, anterior insertion, and nipple diameter 
in bucks).

The RTi scores confirmed a similar pattern, and the Pearson 
product–moment correlation analysis revealed a correlation 
coefficient of approximately 1, indicating a high level of consistency 
in the genetic parameters between the PBVs for zoometric and LAS 
traits. Additionally, this correlation was statistically significant 

(p < 0.001), suggesting that the translation of zoometry to LAS was 
nearly flawless.

3.2. Differences in zoometric/linear 
appraisal trait predicted breeding values 
across casein haplotypes

The only significant differences revealed after the performance of 
the Kruskall–Wallis H test (p < 0.05) were found across the haplotypes 
of the β casein gene for the predicted breeding values of stature (height 
to withers), rump width, rump angle, median suspensor ligament, and 
body depth.

3.3. Canonical discriminant analysis model 
reliability

PBVs for stature (height to withers) and rump width were discarded 
from the analyses because they presented VIF values over 5 (Table 2). A 

FIGURE 1

Discriminant loadings for the predicted breeding values (PBVs) for zoometrics/linear appraisal traits determining the relative weight of each trait on 
each canonical discriminant function.
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significant Pillai’s trace criterion determined that discriminant canonical 
analysis was only feasible in β casein (Table 3). As reported in Table 4, only 
one out of the nine discriminant functions designed after the analyses 
presented a significant discriminant ability. The discriminatory power of 
the F1 function was high (eigenvalue of 0.5773; Figure  2), with 
approximately 50% of the variance explained by F1 and F2.

3.4. Canonical coefficients, loading 
interpretation, and spatial representation

Variables were ranked depending on their discriminating 
properties. For this, a test of equality of group means across β casein 
haplotypes was used (Table 5). Lower values of Wilks’ lambda and 

TABLE 1 Minimum and maximum predicted breeding values and standard error of prediction (SEP).

Bucks Primipara Multipara

Major area Zoometric/
LAS trait Parameter Minimum Maximum Minimum Maximum Minimum Maximum

Structure and 

capacity

Stature (height 

to withers)

PBV −1.862 1.814 −1.850 2.513 −2.076 2.548

SEP 0.110 0.790 0.400 0.720 0.350 0.750

RAP 0.000 0.980 0.000 0.672 0.000 0.740

Rti 0.000 0.990 0.000 0.820 0.000 0.860

Chest width

PBV −1.158 1.589 −1.089 1.382 −1.370 1.373

SEP 0.110 0.620 0.370 0.570 0.320 0.590

RAP 0.000 0.960 0.000 0.593 0.000 0.672

Rti 0.000 0.980 0.000 0.770 0.000 0.820

Body depth

PBV −0.697 0.680 −0.486 0.506 −0.661 0.581

SEP 0.080 0.290 0.210 0.270 0.190 0.270

RAP 0.000 0.903 0.000 0.436 0.000 0.490

Rti 0.000 0.950 0.000 0.660 0.000 0.700

Rump width

PBV −0.838 0.911 −0.924 0.826 −1.024 0.911

SEP 0.070 0.410 0.240 0.380 0.210 0.390

RAP 0.000 0.960 0.000 0.608 0.000 0.689

Rti 0.000 0.980 0.000 0.780 0.000 0.830

Rump angle

PBV −0.693 0.886 −0.597 0.713 −0.862 0.775

SEP 0.080 0.370 0.250 0.340 0.220 0.350

RAP 0.000 0.941 0.000 0.504 0.000 0.578

Rti 0.000 0.970 0.000 0.710 0.000 0.760

Dairy structure

Angulosity

PBV −1.194 1.504 −1.351 1.184 −1.239 1.295

SEP 0.110 0.580 0.360 0.530 0.310 0.550

RAP 0.000 0.960 0.000 0.578 0.000 0.640

Rti 0.000 0.980 0.000 0.760 0.000 0.800

Bone quality

PBV −1.418 1.206 −1.131 1.060 −1.167 1.170

SEP 0.070 0.430 0.250 0.390 0.220 0.410

RAP 0.000 0.960 0.000 0.608 0.000 0.689

Rti 0.000 0.980 0.000 0.780 0.000 0.830

Mammary 

system

Anterior 

insertion

PBV −1.937 2.690 −1.676 2.418 −2.083 2.763

SEP 0.150 1.050 0.550 0.960 0.480 0.990

RAP 0.000 0.980 0.000 0.656 0.000 0.740

Rti 0.000 0.990 0.000 0.810 0.000 0.860

Rear insertion 

height

PBV −0.949 1.048 −0.958 0.798 −1.059 1.172

SEP 0.080 0.460 0.290 0.420 0.250 0.440

RAP 0.000 0.960 0.000 0.563 0.000 0.640

Rti 0.000 0.980 0.000 0.750 0.000 0.800

(Continued)
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greater values of F indicate a better discriminating power, which 
translates into a better position in the rank.

Standardized discriminant coefficients measure the relative weight 
of each predicted breeding value for zoometric/linear appraisal traits 
in the discriminant functions (Figures 1, 3). Out of the nine significant 
discriminant functions (Table 4), only the two most relevant functions 
were used to build a standardized discriminant coefficient biplot, 
capturing the highest fraction of variance (Figure 1). In this regard, 
those variables that have a vector extending further apart from the 
origin most relevantly contributed to the first (F1) and second (F2) 
discriminant functions. Figures  3, 4 suggest clear differentiation 
among Murciano-Granadina goats across the β casein haplotypes 
considered in the analyses. The relative position of centroids was 
determined through the substitution of the mean value for 
observations in each term of the first two discriminant functions (F1 

and F2). The larger the distance between centroids, the better the 
predictive power of the canonical discriminant function in classifying 
observations. Supplementary Tables S2, S3 report the results obtained 
in the classification and leave-one-out cross-validation. A Press’ 
Q-value of 210.19 (N = 108; n = 56; K = 10) was obtained. Therefore, it 
can be  considered that predictions were significantly better than 
chance at 95% (64).

Additionally, to evaluate the proximity between β casein haplotypes, 
Mahalanobis distances were represented (Figure 4). Two main clusters 
were formed, the first represented by GAAACCCC, which was the most 
distant haplotype from the rest (Mahalanobis distance of 10.5620) when 
zoometrics/linear appraisal predicted breeding values were considered 
and the second subcluster comprising the nine remaining β casein 
haplotypes. A progressive segregation of haplotypes occurred within the 
second cluster, first derived from the changes from G→A and from T→C 

TABLE 1 (Continued)

Bucks Primipara Multipara

Median 

suspensor 

ligament

PBV −1.201 1.688 −1.138 1.281 −1.390 1.556

SEP 0.110 0.690 0.390 0.630 0.340 0.650

RAP 0.000 0.960 0.000 0.608 0.000 0.689

Rti 0.000 0.980 0.000 0.780 0.000 0.830

Udder width PBV −0.545 0.592 −0.429 0.487 −0.435 0.497

SEP 0.070 0.260 0.180 0.240 0.170 0.240

RAP 0.000 0.903 0.000 0.423 0.000 0.490

Rti 0.000 0.950 0.000 0.650 0.000 0.700

Udder depth PBV −1.288 2.001 −1.165 1.441 −1.970 1.761

SEP 0.000 0.710 0.000 0.650 0.000 0.670

RAP 0.000 0.960 0.000 0.593 0.000 0.672

Rti 0.000 0.980 0.000 0.770 0.000 0.820

Nipple 

placement

PBV −0.781 1.056 −0.939 0.685 −0.955 0.953

SEP 0.080 0.440 0.270 0.400 0.230 0.420

RAP 0.000 0.960 0.000 0.578 0.000 0.656

Rti 0.000 0.980 0.000 0.760 0.000 0.810

Nipple diameter PBV −1.940 2.691 −1.668 2.405 −2.097 2.768

SEP 0.150 1.050 0.550 0.960 0.480 0.990

RAP 0.000 0.980 0.000 0.656 0.000 0.740

Rti 0.000 0.990 0.000 0.810 0.000 0.860

Legs aplomb Rear legs rear 

view

PBV −0.735 0.643 −1.096 0.547 −0.981 0.589

SEP 0.060 0.330 0.210 0.300 0.190 0.310

RAP 0.000 0.960 0.000 0.548 0.000 0.608

Rti 0.000 0.980 0.000 0.740 0.000 0.780

Rear legs side 

view

PBV −0.389 0.385 −0.366 0.248 −0.360 0.376

SEP 0.060 0.220 0.160 0.210 0.150 0.210

RAP 0.000 0.903 0.000 0.410 0.000 0.476

Rti 0.000 0.950 0.000 0.640 0.000 0.690

Mobility PBV −0.488 0.536 −0.357 0.375 −0.478 0.511

SEP 0.060 0.220 0.160 0.210 0.140 0.210

RAP 0.000 0.922 0.000 0.436 0.000 0.504

Rti 0.000 0.960 0.000 0.660 0.000 0.710

Accuracy (RTi) and reliability (RAP) of zoometric and LAS traits obtained in bivariate analyses through REML methods sorted by sex and lactation stage.
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at the third and fifth SNP positions in the β casein haplotype, and second, 
derived from the change back to the former position of C→T at the fifth 
SNP in the β casein haplotype. The third segregation step undid the 
changes from G→A and from T→C at the third and fifth SNP positions 
in the β casein haplotype.

Afterward, a complex fourth cluster was formed that presented 
two main branches. The first one developed around the presence of 
GGG at the first, second, and third positions in the β casein haplotype, 
and the second one was based upon the alternating change from G→A 

at the second and third SNPs within the β casein haplotype and the 
change of C→T, even if the latter did not appear to be a source for β 
casein haplotype differences.

As denoted by Figures  3, 4, the results in the territorial map 
depicting the goats considered in the canonical discriminant analysis 
sorted across β casein in Murciano-Granadina goats suggest the 
extreme possibilities may be  marked by the haplotypic sequences 
GGAACCCC and GGGATCCC, which was also revealed in 
Supplementary Table S2, with GGAACCCC reporting the largest 

TABLE 2 Multicollinearity analysis of predicted breeding values for zoometric/linear appraisal traits in Murciano-Granadina goats.

αS2 
casein

Tolerance VIF αS1 
casein

Tolerance VIF β 
casein

Tolerance VIF κ 
casein

Tolerance VIF

PBV 

Nipple 

diameter

0.85 1.18 PBV nipple 

diameter

0.78 1.28 PBV rear 

legs side 

view

0.81 1.23 PBV nipple 

diameter

0.82 1.23

PBV rear 

legs side 

view

0.81 1.23 PBV rear 

legs side 

view

0.75 1.33 PBV nipple 

diameter

0.80 1.25 PBV rear 

legs side 

view

0.79 1.26

PBV 

median 

suspensor 

ligament

0.80 1.26 PBV 

median 

suspensor 

ligament

0.72 1.38 PBV 

median 

suspensor 

ligament

0.76 1.32 PBV 

median 

suspensor 

ligament

0.78 1.29

PBV udder 

depth

0.71 1.41 PBV udder 

depth

0.66 1.52 PBV udder 

depth

0.65 1.53 PBV udder 

depth

0.61 1.63

PBV 

mobility

0.60 1.68 PBV nipple 

placement

0.60 1.66 PBV nipple 

placement

0.60 1.67 PBV 

mobility

0.61 1.64

PBV nipple 

placement

0.59 1.68 PBV 

mobility

0.57 1.74 PBV 

mobility

0.58 1.74 PBV body 

depth

0.55 1.83

PBV body 

depth

0.58 1.73 PBV body 

depth

0.54 1.84 PBV body 

depth

0.57 1.74 PBV 

angulosity

0.54 1.85

PBV 

angulosity

0.57 1.75 PBV 

angulosity

0.54 1.85 PBV 

angulosity

0.55 1.81 PBV 

anterior 

insertion

0.54 1.86

PBV 

anterior 

insertion

0.54 1.86 PBV 

anterior 

insertion

0.48 2.06 PBV 

anterior 

insertion

0.53 1.90 PBV nipple 

placement

0.53 1.90

PBV bone 

quality

0.48 2.07 PBV bone 

quality

0.48 2.07 PBV bone 

quality

0.49 2.05 PBV bone 

quality

0.50 2.00

PBV udder 

width

0.46 2.17 PBV rear 

legs rear 

view

0.43 2.32 PBV udder 

width

0.44 2.25 PBV rear 

legs rear 

view

0.48 2.08

PBV rear 

insertion 

height

0.44 2.28 PBV udder 

width

0.43 2.33 PBV rear 

legs rear 

view

0.43 2.31 PBV Rear 

insertion 

height

0.47 2.14

PBV rear 

legs rear 

view

0.41 2.43 PBV rear 

insertion 

height

0.38 2.67 PBV rear 

insertion 

height

0.43 2.34 PBV udder 

width

0.46 2.17

PBV rump 

width

0.30 3.36 PBV rump 

width

0.29 3.47 PBV rump 

width

0.29 3.40 PBV rump 

width

0.30 3.28

PBV chest 

width

0.28 3.60 PBV chest 

width

0.25 3.98 PBV chest 

width

0.27 3.74 PBV chest 

width

0.27 3.77

Interpretation thumb rule: VIF = 1 (not correlated); 1 < VIF < 5 (moderately correlated); VIF ≥ 5 (highly correlated).
PBV, predicted breeding value; tolerance, 1 – R2.
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maximum values for predicted breeding values for zoometric/linear 
appraisal traits, while the lowest maximum values were reported for 
GGGATCCC. GGAACCCC reported positive maximum predicted 

breeding values for all traits, while the opposite situation was 
described by GGGATCCC, for which negative maximum predicted 
breeding values were reported for all zoometric/linear appraisal traits 
except rear insertion height, bone quality, anterior insertion, udder 
depth, rear legs side view, and rear legs rear view.

4. Discussion

To maintain the quality and productivity of the Murciano-
Granadina breed, it is essential to carefully select breeding individuals 
based on certain traits. Among the possible approaches to selecting 
breeding individuals, we have the evaluation of the zoometric/linear 
appraisal traits of individuals. These traits refer to specific characteristics 
of the animal, such as height, weight, and body shape, that are indicative 
of their production potential. Similarly, bone quality and leg structure 
are crucial for the overall health and longevity of the animal (13).

To assess these traits accurately, breeders often rely on PBVs, 
which are calculated based on the animal’s genetic information and 
their phenotypic traits. PBVs allow breeders to identify animals with 
desirable genetic traits, even if those traits are not readily measurable 
in the animal (14).

Extensive studies have shown that there is a strong phenotypic 
and genetic relationship between morphological measurements and 
growth, reproduction, and milk production parameters. 
Morphometric traits provide explicit baseline information for 
characterizing goat and sheep breeds, which can be  used in 
conventional animal breeding schemes, particularly in developing 
countries. Morphological traits can be incorporated into community-
based animal breeding performance recording schemes, as they 
correspond to the functionality of animals for the purpose of 
production and partly confirm a possible but initial appraisal of the 
selection of animals’ reproductive and/or milk production capacity.

The testicular (male), pelvic (female), and udder morphometry 
have been the basis of application of morphological indices in 

FIGURE 2

Canonical variable functions and percentages of self-explained and cumulative variance for β casein.

TABLE 3 Pillai’s trace criterion for predicted breeding values for 
zoometrics/linear appraisal traits across casein haplotypes in Murciano-
Granadina goats.

Statistics/
haplotypes

αS2 
casein

αS1 
casein

β casein κ casein

Pillai’s trace 

criterion

1.441 1.017 1.506 1.734

F (Observed value) 0.914 0.854 1.220 1.023

F (Critical value) 1.207 1.246 1.230 1.209

DF1 165.000 120.000 135.000 165.000

DF2 1001.000 704.000 819.000 902.000

p-value 0.763 0.858 0.050 0.415

TABLE 4 Canonical discriminant analysis efficiency parameters for 
determining the significance of each canonical discriminant function.

Test of 
function(s)

Wilks’ 
lambda

Chi-
square

df p-value

1 through 9 0.18 161.67 135 0.05

2 through 9 0.28 119.25 112 0.30

3 through 9 0.40 85.50 91 0.64

4 through 9 0.51 62.47 72 0.78

5 through 9 0.65 41.07 55 0.92

6 through 9 0.75 26.43 40 0.95

7 through 9 0.84 16.33 27 0.95

8 through 9 0.92 8.17 16 0.94

9 through 9 0.98 1.87 7 0.97

df, degrees of freedom.
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reproductive and milk production performance assessment of type 
and function in goat and sheep production. Udder morphological 
characteristics values are significant indicators of the milking capacity 
of individual animals in dairy goat and sheep enterprises, and udder 
size is strongly and positively correlated with milk yield. The review 
recommends the incorporation of highly correlated linear type traits 
through the development of genotypic characterization in community-
based breeding schemes. This will feed into genetic improvement 
strategies and productivity schemes. In most cases, the number of 
conformation traits recorded in conventional breeding schemes is 
relatively small because it might be expensive. Therefore, there is a 
need to focus on developing methods to measure morphological traits 
that are rapid and accurate at quantifying multiple conformation 
measurements while minimizing costs.

Our study moves from the investigation of the mere relationship 
between zoometry and milk production and composition to the 
relationship between breeding values for zoometric/linear appraisal 
breeding values and casein haplotypes. The casein haplotype structure 
varies greatly across breeds. However, its study is still scarce, 
particularly in species other than the cow. This translates into a patent 
lack of documents to compare with. Our results suggest that no 
differences in zoometric/linear appraisal related traits may be ascribed 
to the different haplotypic forms of the αS1, αS2, and κ Casein genes 
(Supplementary Table S2).

Particularly, some authors, such as Pizarro Inostroza et al. (10), 
reported that the expression of certain β casein haplotypes, together 
with specific haplotypes from the other casein loci, may indeed 
be linked to differential expressions of milk yields and composition 
and somatic cell counts. Certain sequences of αS1 casein and β casein 
loci were found to be associated with higher milk yields in Murciano-
Granadina goats, with variations in fat, protein, dry matter, and lactose 
percentages. The haplotypic sequences GGGACCCC, GGAACCCC, 

and GGGATCTC had milk yields of 2.34, 2.45, and 2.45 kg, 
respectively. The combination of αS1 casein sequence 
GAGAAATCGAGAGAGCGA with β casein locus sequence 
GGGATCTC had the highest milk yield of 2.63 kg, but with lower fat, 
protein, and dry matter percentages. The combination of the αS1 
casein sequence GAGGAATTAAAAGAGCAA with the β casein 
sequence GGGACCCC characterized an average milk yield of 3.73 kg, 
with lower fat, protein, and dry matter percentages and an increased 
lactose percentage of 4.88%. These sequences differed in the change of 
the alleles A → G, A → G, T → C, and T → C at SNPs 34, 35, 36, and 37, 
respectively (11). The presence of β casein haplotypic sequences 
GAGACCCC, GGAACCCC, GGAACCTC, GGAATCTC, 
GGGACCCC, GGGATCTC, and GGGGCCCC, linked to differential 
combinations of increased quantities of higher quality milk in terms 
of its composition, may also be connected to increased zoometric/
linear appraisal predicted breeding values. To the best of our 
knowledge, no study has yet approached the relationship between 
casein haplotype and zoometric/linear appraisal traits from a genetic 
perspective. Our results suggest that haplotypic sequences within the 
β casein gene, such as GAGACCCC, GGAACCCC, GGAACCTC, 
GGAATCTC, GGGACCCC, GGGATCTC, and GGGGCCCC, which 
have been reported to be  linked to differential combinations of 
increased quantities of higher quality milk in terms of its composition, 
are also linked to increased breeding values for zoometric/linear 
appraisal traits. An insufficient representativity of the animals 
presenting the GGAATCCC and GGAATTTT haplotypes was found, 
hence the lack of possibilities to determine the association between 
their presence and increased predicted breeding values for zoometric/
linear appraisal traits. For those sequences for which no relevant 
associations with milk yield and component traits had been reported 
in the literature, such as GGAACCTT and GGGATCCC, maximum 
predicted values were low and even negative for important 

TABLE 5 Results of the tests of equality of the β casein haplotype group means to test for differences in the means across Murciano-Granadina goats 
once redundant variables have been removed.

Predicted breeding 
value

Wilks’ lambda F df1 df2 p-value Rank

Stature (height to withers) 0.87 1.65 9 97 0.11 NS

Rump width 0.81 2.56 9 97 0.01 1

Rear insertion height 0.87 1.58 9 97 0.13 NS

Rump angle 9 97 NS

Angulosity 0.94 0.74 9 97 0.67 NS

Chest width 0.85 1.92 9 97 0.05 4

Udder width 0.87 1.57 9 97 0.13 NS

Nipple placement 0.87 1.67 9 97 0.11 NS

Nipple diameter 0.94 0.70 9 97 0.71 NS

Bone quality 0.89 1.34 9 97 0.22 NS

Anterior insertion 0.92 1.00 9 97 0.44 NS

Median suspensor ligament 0.83 2.19 9 97 0.03 3

Mobility 0.92 0.89 9 97 0.54 NS

Body depth 0.82 2.39 9 97 0.02 2

Udder depth 0.87 1.60 9 97 0.13 NS

Rear legs side view 0.88 1.41 9 97 0.19 NS

Rear legs rear view 0.88 1.47 9 97 0.17 NS

NS, non-significant.
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FIGURE 3

Territorial map depicting the goats considered in the canonical discriminant analysis sorted across β casein in Murciano-Granadina goats.

FIGURE 4

Dendogram constructed from Mahalanobis distances across β casein haplotypes.

dairy-type-related traits. For certain haplotypic sequences, such as 
GGGACCTC, evaluation may be  rather complex given they may 
participate in a rather conjoint effect together with the haplotypic 
sequences for other genes, such as αS1 and αS2 casein gene haplotypes. 
Indeed, it is the differential combinations that can appear that 
determine the wide range of milk yield and composition levels, from 
low to very high, as found by Pizarro Inostroza et al. (10).

The different haplotype combinations can be determined when 
the β casein locus is considered to exert a strongly favorable effect on 
milk yield and composition, in which the presence of the alleles A, G, 
T, and C is related to higher production and composition percentages. 
Contrastingly, G and T alleles may imply a reduction in somatic cell 
counts. However, this contrasts the finding by Baltrėnaitė et al. (65), 
who did not find statistically significant differences in milk 
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performance across the different allelic combinations within the β 
casein locus. In this context, Chessa et al. (66) reported C may be the 
most frequent allele to appear within the β casein locus.

Pizarro Inostroza et  al. (10) reported the effect of β casein 
haplotypes on milk yield and composition, rather than an isolated 
effect that should be considered in combination with the haplotypic 
sequences of other casein genes. In this regard, conjoined actions seem 
to be exerted that, in turn, not only modify the expression for milk 
performance and composition, as was also suggested by other authors 
(67), but also may condition dairy morphology type.

Consequently, the GGGATCCC haplotype may indeed be linked 
to reduced PBVs for several zoometric/linear appraisal traits, including 
those for rear insertion height, bone quality, anterior insertion, udder 
depth, rear legs side view, and rear legs rear view. This, in turn, means 
that goats carrying this haplotype may not be ideal for breeding if the 
goal is to improve these specific traits. However, it is important to note 
that the relationship between the GGGATCCC haplotype and these 
traits is not fully understood. Further research is needed to clarify the 
genetic basis of this association and to determine whether it is a causal 
relationship or simply a correlation.

By contrast, the GGAACCCC haplotype has been associated with 
increased PBVs for several zoometric/linear appraisal traits, including 
rear insertion height, bone quality, anterior insertion, udder depth, rear 
legs side view, and rear legs rear view. This makes goats carrying this 
haplotype highly desirable for breeding if the goal is to improve 
these traits.

Given the importance of the β casein gene in milk production and 
the potential impact of these haplotypes on zoometric/linear appraisal 
traits, the inclusion of genotype or haplotype for β casein in the stud 
catalogs of the Murciano-Granadina breed is recommended, alongside 
those of αS1 and κ casein, which are routinely tested for in merit 
bucks. By routinely testing for these haplotypes, breeders would 
be  able to identify animals that have the potential to genetically 
transmit desirable traits to their offspring and avoid breeding animals 
that may have negative effects on certain traits. This can help maintain 
the overall quality and productivity of the Murciano-Granadina breed 
and ensure that it remains a valuable contributor to the dairy industry.

5. Conclusion

In conclusion, although the relationship between β casein 
haplotypes and zoometric/linear appraisal traits in Murciano-
Granadina goats is not fully understood, inclusion of the genotype or 
haplotype for β casein in stud catalogs is highly recommended. This 
will enable breeders to identify animals that have the potential to 
genetically transmit desirable traits to their offspring and avoid 
breeding animals that may have negative effects on certain traits. 
Ultimately, this can help to maintain the overall quality and 
productivity of Murciano-Granadina goats.
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