AUTHOR=Ganda Erika , Chakrabarti Anirikh , Sardi Maria I. , Tench Melissa , Kozlowicz Briana K. , Norton Sharon A. , Warren Lori K. , Khafipour Ehsan TITLE=Saccharomyces cerevisiae fermentation product improves robustness of equine gut microbiome upon stress JOURNAL=Frontiers in Veterinary Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2023.1134092 DOI=10.3389/fvets.2023.1134092 ISSN=2297-1769 ABSTRACT=Introduction

Nutritional and environmental stressors can disturb the gut microbiome of horses which may ultimately decrease their health and performance. We hypothesized that supplementation with a yeast-derived postbiotic (Saccharomyces cerevisiae fermentation product-SCFP) would benefit horses undergoing an established model of stress due to prolonged transportation.

Methods

Quarter horses (n = 20) were blocked based on sex, age (22 ± 3 mo) and body weight (439 ± 3 kg) and randomized to receive either a basal diet of 60% hay and 40% concentrate (CON) or the basal diet supplemented with 21 g/d Diamond V TruEquine C (SCFP; Diamond V, Cedar Rapids, IA) for 60 days. On day 57, horses were tethered with their heads elevated 35cm above wither height for 12 h to induce mild upper respiratory tract inflammation. Fecal samples were collected at days 0, 28, and 56 before induction of stress, and at 0, 12, 24, and 72 h post-stress and subjected to DNA extraction and Nanopore shotgun metagenomics. Within sample (alpha) diversity was evaluated by fitting a linear model and between sample (beta) diversity was tested with permutational ANOVA.

Results

The SCFP stabilized alpha diversity across all time points, whereas CON horses had more fluctuation (P < 0.05) at 12, 24, and 72 h post-challenge compared to d 56. A significant difference between CON and SCFP was observed at 0 and 12 h. There was no difference in beta-diversity between SCFP and CON on d 56.

Discussion

Taken together, these observations led us to conclude that treatment with SCFP resulted in more robust and stable microbial profiles in horses after stress challenge.