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Introduction: For reference genomes and gene annotations are key materials that

can determine the limits of the molecular biology research of a species; however,

systematic research on their quality assessment remains insu�cient.

Methods: We collected reference assemblies, gene annotations, and 3,420 RNA-

sequencing (RNA-seq) data from 114 species and selected e�ective indicators

to simultaneously evaluate the reference genome quality of various species,

including statistics that can be obtained empirically during the mapping process

of short reads. Furthermore, we newly presented and applied transcript diversity

and quantification success rates that can relatively evaluate the quality of gene

annotations of various species. Finally, we proposed a next-generation sequencing

(NGS) applicability index by integrating a total of 10 e�ective indicators that can

evaluate the genome and gene annotation of a specific species.

Results and discussion: Based on these e�ective evaluation indicators, we

successfully evaluated and demonstrated the relative accessibility of NGS

applications in all species, which will directly contribute to determining the

technological boundaries in each species. Simultaneously, we expect that it will

be a key indicator to examine the direction of future development through relative

quality evaluation of genomes and gene annotations in each species, including

countless organisms whose genomes and gene annotations will be constructed

in the future.

KEYWORDS

reference genome, gene annotation, quality assessment, transcript diversity, next-
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Introduction

Next-generation sequencing (NGS) technology is applied in many ways to identify

the biological characteristics of various organisms, including livestock, at the molecular

level (1, 2). This technology is used in virtually all biomedical fields, such as research to

find genetic variants based on DNA sequencing (3, 4) and research to discover transcripts

related to life phenomena based on RNA-sequencing (RNA-seq) (5, 6). Recently, NGS

technology has been developed for data acquisition of molecular characteristics at the

level of single cells (7) or single nuclei (8), concurrently, long-read-based technologies

are continuously being developed to improve sequencing quality (9). Various technologies

are continuously being developed to measure various levels of molecular markers more
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accurately; however, all of them are strongly dependent on the

reference genome and gene annotation corresponding to the

biological species of the targeted subject in certain studies (10). As

of 2023, the fundamental and essential data of the NGS technique,

reference genomes and gene annotations, have been established

in the Ensembl database for 314 species (11). Moreover, it is

highly likely that the number of completed reference genomes

and gene annotations for more species will increase exponentially

in the near future through the vertebrate genome project (VGP)

(12). Thus, a relative comparison of relevant essential data is

necessary to increase the reliability of various applied studies in

more diverse species. Although the accuracy of the results of

each study utilizing NGS highly depends on the completeness

of the two key underlying data, there has been no systematic

evaluation of reference genomes and gene annotations among

diverse species simultaneously. Although, species have a common

genetic background, to some extent, the genome structure, number,

and type of transcripts differ considerably between organisms,

which makes comparisons across species quite challenging (13, 14).

To date, various attempts have been made to identify the

whole-genome sequence in a particular species by selecting the

optimal assembly from a number of draft assemblies. Various

methodologies such as, KAT (15), Merqury (16), and Inspector

(17), have been developed to compare the quality of different

versions of draft assemblies for a specific target species to determine

a representative genome. However, these methodologies require

whole genome sequencing (WGS) reads and/or a reference genome

of the target species, therefore, they cannot be directly applied

for the purpose of evaluating the quality of reference genomes

for multiple species. Among these tools, BUSCO (18, 19) can be

used to compare the quality of reference genomes for multiple

species based on the orthologous genes. However, since the optimal

assembly was already determined in the direction of optimizing the

BUSCO completeness in the process of completing the reference

assembly of each species, the difference in BUSCO completeness

of the published reference genome is very small among species.

Although we currently lack systematic methodologies that can

be used to directly and simultaneously compare the quality of

reference assemblies of various species, some indicators can be used

to compare species. First, the quality of the reference genome was

compared using a contiguity index, such as the N50 value obtained

based on the relative length of contigs or scaffolds generated during

the de novo assembly process (20–22). Another quality evaluation

index for the completed genome is the number and frequency

of gaps in the genome, and various attempts have been made to

reduce them (23–25). However, gene annotation quality assessment

methods remain poorly understood, owing to their transcriptome

diversity. Recently, software has been developed that can estimate

the annotation similarity of evolutionarily adjacent species based

on the gene annotations of species known to be nearly complete,

allowing a relative comparison of the gene annotations of the

two species (26). However, there is, to date, no known systematic

approach to compare gene annotations of multiple species.

Although long-read sequencing technology is continuously

being refined, NGS application research is still mainly based

on short-read sequencing technology. RNA-seq, a representative

application of NGS based on short reads, generally involves

a two-step analysis. The first step is an alignment process to

determine where the short-read fragmented sequences originate

from the genome, for which the quality of the reference genome

is important (27, 28). If the accuracy of the sequence of the

reference genome is low, the mapping rate is directly affected. If

the frequency of repeat sequences is high, the number of multiple

mapping reads increases, adversely affecting the entire process.

The second major step for processing RNA-seq data is to quantify

the mapped reads in the genome (29). At this time, performance

greatly depends on the quality of the gene annotation, which

defines the location of the transcripts in the genome (30, 31). If

all transcripts that can occur in a specific organism are included

in gene annotation, the quantification rate will increase; however,

the probability of overlapping other transcripts at a specific genome

location will correspondingly increase, resulting in quantification

failure due to ambiguity. Concurrently, inclusion of transcripts

that are too conservative in gene annotations to address this

ambiguity exacerbates quantification failures caused by the absence

of annotations. These issues are commonly considered when

developing reference genomes and gene annotations for various

species, thus the quality of the two fundamental types of data can

be measured indirectly through the corresponding indicators at the

alignment and quantification steps.

Based on these rationales, in this study, we attempted to

evaluate the quality of reference genomes and gene annotations of

all species as much as possible, which has not yet been performed

because of technical issues. We attempted to measure the quality of

two key data essential in NGS from various angles by assessing the

effectiveness of new potential indicators along with the indicators

that have been used so far for quality evaluation. In addition, we

aimed to demonstrate a new integrated index for the simultaneous

quality evaluation of genome and gene annotation, by applying

selected quality effective indicators to RNA-seq data derived from

various species.

Materials and methods

Reference genome and gene annotation
collection

As of November 2022, the latest genome assembly (.fasta)

of each species and the corresponding gene annotation (.gtf)

were collected from the Ensembl database (Supplementary Table 1)

using Rcurl v1.98.1. Among all species, human, mouse, and

zebrafish species that had access to the primary assembly version

were used, and the toplevel version of the genome was used for the

rest of the species.

Collection of basic statistic on genome
assembly and gene annotation

Basic assembly information for all species was collected in xml

format through the API of ENA (European Nucleotide Archive)

(https://www.ebi.ac.uk/ena/browser/api/xml/Assembly accession).

The collected assembly basic statistics were tabulated using xml2
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(v1.3.3) and tidyverse (v1.3.2) R packages. We also collected

detailed information on gene annotation from Ensembl biomart

(32) using the biomaRt (v2.50.3) R package. Using the getBM

function, various information including ensemble gene id and

gene type were collected and tabulated from the gene annotation

of each species. The transcript types in gene annotation were

classified into 30 types according to the classification criteria

of Ensembl gene biotype (https://asia.ensembl.org/info/genome/

genebuild/biotypes.html) (Supplementary Table 2).

Estimation of repeat elements from
reference genomes

The Repeat Masker (v4.1.4) (33) with -pa 16 -qq options was

used to quantify repeat elements from reference genomes of various

species. RMBlast (v2.11.0) was used as the repetitive sequence

search algorithm, and the search was based on the Dfam (v3.6)

database (34). In addition, TRF (v4.09) (35) was used to find

tandem repeat sequences.

RNA-seq raw data collection

As of November 2022, among the species whose reference

genome and gene annotation are listed in the Ensembl database,

we searched for species that could secure RNA-seq data of more

than 30 samples. Using R (v4.1.2) language-based packages XML

(v3.99.0.12) and xml2 (v1.3.3), data corresponding to the following

conditions was retrieved from NCBI Esearch (https://eutils.ncbi.

nlm.nih.gov/entrez/eutils/esearch.fcgi) and 30 SRA IDs of each

species were randomly selected. In XML parsing with the GET

method, we consider the following four conditions: “biomol rna”,

“library layout paired”, “platform illumina”, and “Bulk”. After that,

we used the prefetch (v2.11.2) included in the SRAtoolkit (v2.11.3)

to import randomly selected sra files from the SRA database (36).

To convert the collected sra files into paired-end fastq format files,

parallel-fastq-dump was employed. The FastQC v.0.11.9 (37) was

used to check the quality of the collected raw sequencing data.

Preprocessing of RNA-seq data

All collected genomes were indexed using the full Hisat2-build

(v.2.2.1) (38). Paired-end RNA-seq files whose quality was checked

through FastQC (v.0.11.9) were mapped to each corresponding

genome. Alignment results were recorded in sorted bam format

through samtools view (v1.14), and mapping-related statistics

were collected through samtools stats. The mapped reads to each

genome were quantified using featureCounts (v2.0.1) (39) with the

corresponding gene annotation.

Quality evaluation indicators for reference
genome in diverse species

A total of 10 indicators used in this study are summarized

in Table 1. All indicators are scaled in the range of 0–1 for the

convenience of interpretation. Also, the closer the value is to 1,

showing the better the quality in all indicators.

As indicators for simultaneous relative evaluation of the

genomes of various species, three indicators were selected based

on the statistics derived from the assembly process. Based on the

N50 values of contig and scaffold, which are the continuity indices

of assembly, it was corrected to consider the different genome size

of various species. These corrected N50s were converted to have a

range of 0 to 1 by their percentile. Through this, two indicators,

AdjN50Contig and AdjN50Scaffold, were calculated respectively.

Next, to get the UngapRate, it was subtracted from 1 to adjust

the directionality after obtaining the ratio of spanned gaps in the

genome of each species compared to the species with the largest

spanned gaps among all species.

We selected three empirical indicators obtained through the

process of mapping actual NGS data as another measure to evaluate

the quality of the genome. First, UnimapRate is basically the

most important indicator in the mapping step, and represents

the ratio of reads uniquely mapped to a specific genomic region

among all reads. In addition, we additionally considered the

two typical causes of mapping failure: multi-region mapping

and no corresponding region. To match the direction as a

quality evaluation index,MapRate andMultiMapRate indexes were

constructed by subtracting the two failure rates from 1, respectively.

Based on these three empirical indicators, we construct a new

mapping quality evaluation index (MQI) for species i:

MQIi = (UnimapRate i + MapRate i + MultiMapRate i) / 3 (1)

The MQIi is the arithmetic mean of the three different

directional indices obtained empirically from the mapping

step, and is a relatively comparable indices across different

species. Additionally, the BUCSO completeness was calculated

using BUSCO (v5.4.2) with–auto—lineage-euk–cpu 16

options (18).

Quality evaluation indicators for gene
annotation in diverse species

To qualitatively evaluate the quality of gene annotation, the

proportion of each gene type was calculated based on the gene types

collected from Ensembl biomart (32). Based on a matrix with a

total of p gene type ratios for all species n, principal component

analysis (PCA) was applied that can secure a linear combination

of p gene type ratio random variables to convert to a nx1 vector

for comparing all species n. After examining the degree of the

variance explain based on the eigen values, the PC1 embedding

values were extracted and used as Transcript diversity. Additionally,

to further clarify the interpretation of PC1, another method of

summarizing variability, Shannon’s equability index (40, 41), was

calculated and compared.
As another criterion for evaluating the quality of the gene

model, we selected three empirical indicators obtained through
the process of quantifying reads mapped to the genome based
on actual NGS data. First, Quant.rate, which is the ratio of
reads successfully quantified as gene counts among mapped reads
derived from each sample, was selected with the highest priority.
Simultaneously, the absence and ambiguity of annotation, which
are two representative quantification failure rate factors that can
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TABLE 1 Selected 10 indicators for quality evaluation of reference genome and gene annotation in diverse species.

No. Abbreviation
of
indicators

Description Category Formula Scaling method Range of
values

1 AdjN50Contig Percentile of adjusted N50

by genome size in contig

Assembly stat. N50 value in

contigs/genome size

Percentile 0–1

2 AdjN50Scaffold Percentile of adjusted N50

by genome in scaffold

Assembly stat. N50 value in

scaffolds/genome size

Percentile 0–1

3 UngapRate Scaled non-spanned gaps

rate

Assembly stat. 1—[spanned gaps/max

(spanned gaps)]

NA 0–1

4 UnimapRate Uniquely mapped rate Mapping stat. Uniquely mapped

reads/total # of reads

NA 0–1

5 MapRate 1—unmapped reads’ rate Mapping stat. 1—(unmapped reads/total #

of reads)

NA 0–1

6 MultiMapRate 1—multiple mapped rate Mapping stat. 1—(multiple mapped

reads/total # of reads)

NA 0–1

7 Transcript

diversity

Scaled transcript diversity

calculated by PCA

Gene annotation PC1 obtained from PCA

analysis

{X—min (X)}/{max(X)—min (X)} 0–1

8 Quant.rate Quantification success rate

from the mapped reads on

the genome

Quantification stat. Quantification success

reads/total # of mapped

reads

NA 0–1

9 Quant.rate (Abs) 1—quantification failure

rate due to absence of

annotation

Quantification stat. 1—(unquantified mapped

reads due to absence of

annotation/total # of

mapped reads)

NA 0–1

10 Quant.rate (Amb) 1—quantification failure

rate due to ambiguity

Quantification stat. 1—(unquantified mapped

reads due to ambiguity /

total # of mapped reads)

NA 0–1

All indicators are scaled to have a value between 0 and 1 and the closer each index value is to 1 represents the better quality.

be determined by the gene model, were additionally considered.
To match the directionality, two indicators, Quant.rate (Abs) and
Quant.rate (Amb), were set by subtracting the two failure rates
from 1. Based on the three empirical indices obtained during
the quantification process, we constructed the comprehensive
quantification quality evaluation index (QQI) for species i:

QQIi = (Quant.ratei + Quant.rate(Abs)i+ Quant.rate(Amb)i) / 3

(2)

The QQIi is the average of the three indices obtained empirically

in the quantification stage of NGS data and is an indicator that

can simultaneously compare the general quality of gene models in

multiple species.

NGS applicability index

Based on a total of 10 effective indicators that can evaluate
the genome and gene model (Table 1), it was generalized as an
index representing the technical boundary of NGS technology in a
specific species. The formula consisting of the weighted arithmetic
mean of the 10 indicators for each species i is:

NGS applicability indexi =

w1AdjN50Contigi + w2AdjN50Scaffoldi + . . . + w10Quant.rate(Amb)i
∑10

i=1 wi

(3)

In this study, all 10 weights w1, w2, ..., w10 were considered as 1,

which means that all indicators are considered equally.

Results

Large-scale NGS data collection for quality
evaluation of reference genomes and gene
annotations of 114 species

We systematically collected data to evaluate the current

level of reference genomes and gene annotations for as many

species as possible, for which RNA-seq, among various NGS

technologies, could be directly applied (Figure 1A). There were

more than 30 publicly available RNA-seq datasets for 114 of the

314 species (Supplementary Table 1), whose reference genomes

and gene annotations are listed in the Ensemble database (11).

As a result of organizing the taxonomic categories for these

114 species compared in this study, it was confirmed that 1

fungus, 112 Metazoa, and 1 Viridiplantae were included at the

kingdom level (Supplementary Table 3). At the taxonomic level,

they were classified into 11 types, of which 47 Actinopteri, 43

Mammalia, and 12 Aves were the majority. In addition to collecting

the latest version of the reference genome and gene annotation

for these 114 species, 30 RNA-seq datasets per species were

randomly collected, resulting in a total of 3,420 RNA-seq datasets

(Supplementary Table 4). After the quality check, an average of

34 million reads and an average Phred score of 36.237 were
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observed, showing no technical issues in the collected RNA-

seq data (Supplementary Table 5). When the collected RNA-seq

data were mapped based on the reference genome representing

each species, an average overall alignment rate of 84.768% was

obtained (Supplementary Table 6). In quantification step, 55.807%

of mapped reads were successfully quantified to genes in average

(Supplementary Table 7).

To independently compare the quality of all 114 collected

reference genomes, genome assembly statistics were compiled from

the European Nucleotide Archive (42) and the corresponding

information was missing for five species. The remaining 109

available species were systematically collected, and assembly related

statistics were obtained from the collected data, resulting in an

average length of 1,689,594,967 bp and a contig average N50 of

7,154,707 bp (Supplementary Table 8). We also collected data from

Ensembl Biomart (32) to evaluate the quality of gene annotations

that indicated the location of genic regions in the reference

genome of each species; however, the information could not be

collected for 12 out of 114. For the remaining 102 species, gene

annotation was collected and classified as a total of 30 types of

RNAs, including long non-coding RNA (lncRNAs) andmicroRNAs

(miRNAs) (Supplementary Table 9). We found that an average of

22,915 protein-coding genes were annotated across all 102 species,

while a significantly small number of average 2,340 lncRNAs were

not annotated in 37 species.

Based on the collected data at various levels, an experimental

design was established that measures the quality of the genomes

and gene models in various species (Figure 1B). In this current

study, we focused on quality measures for eight species of livestock

designated according to the Food and Agriculture Organization of

the United Nations (FAO).

Comparison of assembly statistics and
frequency of repeat elements for reference
genome quality evaluation in 109 species

Officially published reference genomes of various species are

generally expected to show minimal difference in quality owing

to the robustness of DNA; however, limitations exist due to the

frequency of repetitive sequences in the genome and/or sequencing

technology based on short reads. To investigate this, we collected

and compared representative quality statistics of 109 genome

assemblies, which were largely clustered into four characteristics

(Figure 2A). While an average of 37,580.454 spanned gaps were

found in all species, only 204 and 661 spanned gaps were found

in the human and mouse genomes, respectively, which are known

to be of high quality (Figure 2B). In addition, a significantly

lower number of spanned gaps was observed in representative

model organisms such as Saccharomyces cerevisiae (S.cerevisiae),

Arabidopsis thaliana (A.thaliana), and Drosophila melanogaster

(D.melanogaster) (Figure 2B, Supplementary Figure 1).While a low

number of spanned gaps was found in most of the eight livestock

animals, it was confirmed that a relatively large number of spanned

gaps were present in the genomes of Ovis aries (125,067 gaps) and

Equus caballus (6,286 gaps).

Furthermore, we found that the number of spanned gaps was

strongly correlated with the number of contigs generated during the

de novo assembly process, which revealed that in the case of species

with many spanned gaps, relatively short contigs occurred during

the assembly process (Figure 2A, Supplementary Figure 2). In other

words, various technical issues derived from short sequence read

assembly intensify depending on the number of spanned gaps

ultimately affecting the quality of the completed genome assembly,

which suggests that the genome quality of various species can be

evaluated based on these statistics. Further evidence for this claim

can be found in the negative correlations between the number of

spanned gaps and adjusted N50, N75, and N90 values by genome

size in both contigs and scaffolds (Figure 2A). These values are

representative indicators used when evaluating the quality of the

genome completed through de novo assembly, and significantly

higher values were observed in representative model organisms at

both the scaffold and contig levels (Figures 2C, D). It was confirmed

that at least one model animal in representative species at each class

taxonomic level, such as yeast, Drosophila, chicken, and frog, has an

extremely high complete genome.

Since various types of repeat elements widely spread across

the genome are a representative cause of difficulty in the genome

assembly process, we further investigated the frequency of repeat

sequences in the genome of each species to evaluate the quality

of each reference genome. We hypothesized that genome repeat

frequencies in each species could help assess the quality of the

reference genomes; however, there was no association with various

genome quality indicators (Figure 2A). We found that one of the

primary reasons for this observation is that the genome size varies

across species, depending on the class taxonomic level, and that

genome size determines the types of repeat elements that can be

found (Figure 2E). A correlation of 0.924 was observed between

the length occupied by all repeat elements in the genome and

the length of the genome, supporting this claim. In addition, it is

further evidence that the length of the region occupied by the repeat

sequence in the entire genome is mostly dependent on long repeat

sequences such as LINE1 and LINE2 (Figure 2F). Although all

species had a consistent linear pattern in their genome size and ratio

of repeat elements, we found that species such as Leptobrachium

leishanense had a high ratio of repeat elements to genome size

(Figure 2E). However, since we cannot be sure whether these results

are due to the characteristics of the genome of the species, we

ultimately concluded that it is difficult to use the ratio of repeat

elements as an effective measure to evaluate the quality of the

genome. Additionally, we used BUSCO to compare the quality of

reference assemblies of multiple species based on the orthologous

genes. In result, all BUSCO completeness in 109 species had high

values (97.255 in average) with no significant differences, which

means that there is no value as an effective indicator for comparing

multiple species with reference genomes (Supplementary Figure 3).

Demonstration of change in the mapping
quality of RNA-seq data according to the
completeness of the reference genome

We demonstrated whether the representative indicators used

to evaluate the quality of the reference genome affect the mapping

step of RNA-seq data processing. For the remaining 108 species,

excluding Salmo trutta, for which repeat elements were not

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2023.1128570
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Park et al. 10.3389/fvets.2023.1128570

FIGURE 1

Collected data structure and schematic diagram for benchmarking comparison. (A) Overall structure of data collected for quality evaluation of

reference genome and gene annotation for 114 species. (B) A systematic workflow to select e�ective indexes for relative quality assessment from

collected data. The red line represents a pipeline that selects e�ective indicators from assembly statistics for relative evaluation of the reference

genome. The blue line represents the process of empirically evaluating the quality of the genome by mapping the actual NGS data in the alignment

step. The green line represents the process of calculating the transcript diversity index, and the yellow line represents the pipeline that empirically

finds e�ective indicators for quality evaluation of gene annotations in the quantification process.

identified among 109 species, 3,240 RNA-seq data were mapped

to their corresponding reference genome in a non-repeat masked

version. Although no clear linear relationship was observed

when the characteristics of different species were considered

simultaneously, we found that the mapping failure rate increased,

and the unique mapping and total alignment rates decreased as

the number of spanned gaps increased (Figure 3A). Similarly,

in another assembly contiguity index, with N50, N75, and N90

adjusted by genome size, it was demonstrated that the mapping

failure rate decreased, and the mapping success rate increased

when longer contig or scaffold values were observed. These results

provide evidence that the quality of the mapping step is directly

affected by the genome completeness.

We also demonstrated that the multiple mapping problem

intensifies depending on the ratio of the repeat elements in

the genome. It was demonstrated that the rate of multiple

mapping reads increased (r2:0.394) in genomes with a high

frequency of repetitive sequences across all species (Figures 3A, B).
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FIGURE 2

Comparison of assembly statistics for selection of e�ective indicators for genome quality evaluation of various species relatively. (A) Investigation of

correlation between various assembly statistics and repeat elements that are presumed to be related to genome quality evaluation. Pearson’s

correlation coe�cients were used to pairwise investigation. Four major types of indicators showed strong correlations. (B) The number of spanned

gaps remaining in the genomes of 109 species. (C) Comparison of adjusted N50 in sca�old level by genome size. (D) Comparison of adjusted N50 in

contig level by genome size. (E) Strong correlation between genome size and total length of repeat elements in each species. R2 and r2 represents

coe�cient of determination and correlation coe�cient, respectively. (F) Correlation between the assembly statistics and the amount of various types

of repeat elements found in the genome of 108 species. (B–E) The colors in the figure share group information separated by class taxonomic level,

except for human-mouse and eight livestock animals.

This is because the genome used in this experiment was an

unmasked version of the repeat elements. If the genome utilized

repetitive masked versions commonly used in RNA-seq, the

multiple mapping rate would not increase, but the overall mapping

rate would decrease. The average multi-mapping rate in all

species was 5.68%, whereas a multi-mapping rate of 22.512%

was observed in Xenopus tropicalis. High multi-mapping rates

were also observed in model organisms such as D. melanogaster

(15.068%) and A. thaliana (13.034%). These results demonstrate

that multi-mapping of reads intensifies according to the ratio of

repeat sequences in the genome, however this could be because

of the characteristics of the species, not the quality of the

genome (Figure 3B).

Finally, we compared all species with MQI based on valid

indicators generated in the mapping step. An average MQI of

0.829 was observed across all species, indicating that there are very

few species with genomes that perform poorly enough to affect

mapping in most publicly available reference genomes (Figure 3C).

Qualitative evaluation of gene annotations
from 102 species through comparison of
transcript diversity

Based on 30 different types of genes included in the

gene annotation collected from a total of 102 species

(Supplementary Table 9), we evaluated the relative level of

gene annotation in various species, including livestock. We

hypothesized that the gene annotations for humans and mice,

which have been frequently and continuously revised through the

efforts of many researchers, would be at the highest level. The

fact that 24 of the 30 classification criteria of the transcript types

in gene annotation were observed in human and mouse species

demonstrates that this is the most subdivided gene annotation

when compared to other species, as we hypothesized (Figure 4A).

Therefore, it was further hypothesized that by measuring the

transcript diversity of gene annotation within a specific species, it

would be possible to measure the relative level of gene annotation
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FIGURE 3

Investigation of association relationship between assembly statistics and empirical e�ective indicators obtained in the mapping step for genome

quality evaluation. (A) Pairwise correlation between selected assembly statistics and empirical e�ective indicators obtained in the mapping step for

genome quality assessment. (B) Linear relationship between the ratio of multiple mapped reads and proportion of repeat elements on the genome in

108 species. r2 represents correlation coe�cient, respectively. (C) Di�erences in newly proposed MQI values in 108 species. To evaluate the relative

quality of the genome, valid empirical indicators were integrated and configured in the mapping stage. The horizontal line represents the average

MQI value across all 108 species.

of that species compared to humans or mice, which have relatively

well-organized gene annotations.

As a result of investigating gene diversity in annotations

using a dimensionality reduction algorithm based on the ratio of

30 different types of genes derived from 102 gene annotations,

no species has yet reached the level of human or mouse

gene annotation (Figure 4B). The PC1 values obtained from

dimensionality reduction analysis explained 77.92% of the total

transcript diversity in gene annotations, and the strong correlation

with Shannon’s equitability calculated based on mouse species

supports our claim (Figure 4C). We evaluated the diversity of

transcripts in each of the 102 gene annotations and found

the highest diversity in human (Figure 4D). Based on human’s

transcriptome diversity, mouse gene annotation followed with

87.996%. In the case of mammals, the average diversity of gene

annotations was generally higher than that of other classes.

Livestock were confirmed to have approximately 39.463% diversity

compared to that of the human gene annotation. Of the eight

livestock species highlighted in this study, only 12.099% of

the human gene annotation complexity was annotated in the

mallard duck (Anas platyrhynchos; A. platyrhynchos). While gene

annotations with more than 50% transcript diversity were rare in

other classes, relatively high gene annotation diversity levels of

48.095% and 47.999% were found in D. melanogaster and Salmo

salar, respectively.

We further investigated whether the transcript diversity index

was significantly affected by which of the 30 transcript types

(Supplementary Table 10). It was found that lncRNA had a

correlation of 0.841 with the transcript diversity obtained from

the dimensionality reduction analysis. We found that lncRNAs

in 37 species, including D. melanogaster, were not classified in

the annotation (Figure 4E, Supplementary Table 9). Among the 8

livestock animals, 11,944 and 10,965 lncRNAs were annotated in

Gallus gallus and Sus scrofa, respectively. In contrast, relatively

low numbers of 1,480 and 786 lncRNAs were annotated in

Bos taurus and A. platyrhynchos. We presumed that protein-

coding genes would contribute considerably to the diversity

of gene annotation, but correlation of −0.126 with transcript

diversity was found (Supplementary Table 10). In addition, the

average proportion of protein-coding genes was 81.69% in all

102 species (Figure 4F). These results demonstrated that when

constructing gene annotations across all species, protein-coding

genes are usually annotated as primary targets; thus, they did not

significantly contribute to the classification of the 102 species based

on the diversity of transcripts within the annotations. However,

we identified relatively low proportions of protein-coding genes

in model organisms such as humans (33.041%), mice (38.538%),

chickens (56.487%), and D. melanogaster (58.365%). Concurrently,

we found that various small RNAs, such as small nuclear RNA

(snRNA), small nucleolar RNA (snoRNA), small Cajal body-

specific RNA (scaRNA), and miRNA, also play an important role

in determining the level of transcript diversity for gene annotations

in 102 species (Supplementary Figure 4). This implies that as

non-coding genes other than protein-coding genes are included
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FIGURE 4

Qualitative evaluation of gene annotation based on transcript diversity. (A) Comparison of the number of types found in each species out of a total of

30 transcript types annotated in gene annotations of 102 species. (B) Dimensional reduction results for the ratio of 30 transcript types in gene

annotation of each species through principal component analysis. About 77.92% of the total variance in the original data was explained by the first

principal component. (C) Results of correlation investigation between two methods of estimating transcript diversity: Shannon’s equitability and PC1

obtained through PCA. R2 and r2 represents coe�cient of determination and correlation coe�cient, respectively. (D) Comparison of transcript

diversity index for all 102 species. (E) Comparison of the proportion of annotated lncRNAs in the gene annotations of each species. Purple indicates

species with no lncRNA annotated at all. (F) Correlation between the proportion of lncRNAs and the proportion of protein-coding genes. R2 and r2

represents coe�cient of determination and correlation coe�cient, respectively. (G) Comparison of the proportion of annotated pseudogenes in the

gene annotations of each species. (A–E) The colors in the figure share group information separated by class taxonomic level, except for

human-mouse and eight livestock animals.

in the gene annotation, the proportion of protein-coding genes

decrease, suggesting that this can be another indicator of the

degree of development of gene annotation. Finally, we observed

a correlation of 0.545 between transcript diversity and the ratio

of pseudogenes (Supplementary Table 10). Excluding human and

mouse gene annotations, the average proportion of genes classified

as pseudogenes in the gene annotations of the remaining 100

species was only 1.523% (Figure 4G). In contrast, in humans and

mice, a significant number of annotated genes were classified

as pseudogenes, at 24.571 and 23.961%, respectively. This result

indicates that the level of gene annotation is generally higher,

as pseudogenes are additionally considered in gene annotation

beyond the level of simple classification of protein-coding genes,

lncRNAs, and some small RNAs whose functions are known or are

of common interest to scientists.

Demonstration of change in mapped reads
quantification performance according to
the quality of gene annotation in 102
species

Quantification of reads generated from RNA-seq data is a

crucial process for measuring gene expression levels and is most

frequently applied to various biomedical fields. In the process of

quantifying the reads mapped to the genome, we speculated that

the quantification success rate would be affected by the structure

and completeness of the gene annotation of various species. Based

on RNA-seq data from all 102 species, we found that the proportion

of annotated exon (r2 = 0.45) or gene (r2 = 0.473) in the genome

correlated most with the proportion successfully assigned to a
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FIGURE 5

Selection of empirical e�ective indicators in the quantification process and investigation of correlation with complexity of transcripts in annotation

for quality evaluation of gene annotation in diverse species. (A) Correlation between 12 characteristics of gene annotation and 3 quality evaluation

indicators obtained empirically in the quantification process. (B) Scatter plot between average gene length and quantification success rate. (C)

Association between the proportion of annotated genic regions in the genome and the rate of quantification failure due to ambiguity. (D) Correlation

between the percentage of annotated genic regions in the genome and the rate of quantification failure due to the absence of annotation. (E)

Independence between transcript diversity index, a proposed qualitative quality evaluation metric, and quantification rate, a quantitative quality

evaluation index. (F) Di�erences in QQI, an empirical quality index obtained at the quantification stage, in all species. (B–F) The colors in the figure

share group information separated by class taxonomic level, except for human-mouse and eight livestock animals.

specific gene during the quantification process (Figure 5A). We

found patterns clearly differentiated by average gene length in 102

species at the class taxonomic level and identified the quality of

gene annotation within each class in terms of the quantification rate

for mapped reads on the genome (Figure 5B). For example, human

(0.745) and mouse (0.738) gene models are of outstanding quality

in mammals; however, the quantification rates were significantly

low inMacaca nemestrina (0.293) and Pan troglodytes (0.279). High

quantitative success rates were observed in G. gallus (0.734) and

A. thaliana (0.722), which are representative model bird and plant

species, respectively. However, in Petromyzon marinus (0.268),

which represents the Hyperoartia class, it was confirmed that

RNA-seq application research is not yet possible in terms of the

quantification rates of mapped reads.

While genomic features were distinct for each class

taxonomic level, we found a common pattern across 102

species in two representative causes of mapped reads for which

quantification failed (Figures 5C, D). The first representative cause

of quantification failures caused by gene annotation was ambiguity

due to redundant annotations at genomic locations (Figure 5C).

We demonstrated that a higher percentage of genes annotated in

the genome of a particular species, led to increased ambiguity (r2

= 0.552) in the quantification step (Figures 5A, C). Interestingly,

it was also found that human and mouse gene annotations,

which had a high quantification success rate, were not free from

redundancy problems, suggesting that short-read-based NGS

technology continue to have difficulties in accurate quantification.

We further investigated the absence of gene annotation, which is

another representative cause of quantification failure for mapped

reads caused by gene annotation. As a result, we identified a

common pattern in which higher frequency of genes annotated in

the genome, led to the lower quantification failure rate (r2:−0.638)

due to the absence of annotation (Figure 5D). We demonstrated

that in most model organisms, including humans (0.065) and mice

(0.035), the rate of quantification failure caused by the absence

of gene annotation was relatively low compared to that in other

species. We also demonstrated that these two representative

quantification errors (Figures 5C, D), caused by the characteristics

of gene annotation, were opposed to each other in 102 species

through actual RNA-seq data. For example, human and mouse

annotations include annotations for many genes compared to

other species, reducing errors due to the absence of annotations;

however, errors due to redundancy of annotations are relatively

high. In this regard, we additionally investigated the association
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FIGURE 6

Quality evaluation results of 97 species through the proposed NGS applicability index based on the 10 quality evaluation indicators verified through

this study. (A) Heatmap for a total of 10 quality evaluation indicators selected through this study. The heatmap includes three assembly evaluation

indicators and three performance indicators derived from the mapping process, which can relatively evaluate the quality of genomes. In addition,

transcript diversity and three performance indicators derived from the quantification process are included to relatively evaluate the gene models.

Finally, all 97 species were sorted in descending order through the NGS applicability index, which is the result of the weighted sum of these 10 quality

evaluation indicators. All values have a scale of 0.0 to 1.0, and the closer to 1, the higher the quality. (B) Results of benchmarking quality evaluation of

reference genome and gene annotation for 8 livestock animals.
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FIGURE 7

Technical validation of the NGS applicability index based on the di�erent genome builds. Comparison between NGS applicability index and BUSCO

completeness for di�erent version of reference genome and gene annotation. Polygonal charts represent values for each of the 10 e�ective

indicators that make up the NGS applicability index. The larger the polygon area represent the higher the NGS applicability index.

between the diversity of annotated transcript types and the success

rate of quantification, but no association was observed (Figure 5E).

This result demonstrated that the transcript diversity index does

not affect the quantification success rate index, as it does not affect

the exon or gene structure in gene annotation. In addition, the

transcript diversity index has been demonstrated to be another

independent index that can evaluate gene annotation qualitatively

in a different direction than the quantification success rate index.

We finally compared a QQI for 102 species based on the

quantification success rate and two quantification failure rates,

which are determined by the quality of gene annotation (Figure 5F).

As a result, it was found that the average QQI was high in the

order of A. thaliana (0.89), mouse (0.887), C.variegatus (0.871),

S.cerevisiae (0.866) and chicken (0.863). This result demonstrates

that most model organisms whose gene annotations have been

frequently updated are of markedly high quality compared to other

species through the quantification process with real 3,060 RNA-

seq data from 102 species. In contrast, this suggests that there are

still practical problems with accurate quantification due to quality

problems of gene annotation in species belonging to Mammalia,

such as Camelus dromedarius (0.644), Macaca nemestrina (0.585)

and Pan troglodytes (0.557).

Application and validation of NGS
applicability index

Finally, we proposed the NGS applicability index by integrating

10 validated effective indicators that can evaluate the reference

genome and gene annotation (Figure 6A, Supplementary Table 11).

As a result, mice (0.882), chickens (0.874), humans (0.872) and

Arabidopsis (0.847) species were observed in the order of highest

scores (Figure 6A), which revealed that the NGS applicability

index is valid for relative quality assessment in diverse species.

We expected that through this NGS applicability index, we could

evaluate the boundaries of NGS application research and the

direction of development to improve the quality of the genome

and gene annotation for a specific species. For example, although

Arabidopsis and turbot showed extremely high NGS applicability

indices, transcript diversity was 0.233 and 0.46, respectively,

compared to other high-ranking species. From this, there is

no technical problem in performing applied NGS technologies,

such as whole genome resequencing or RNA-seq, but it is not

possible to study various types of transcripts, including lncRNAs

and various small ncRNAs. Simultaneously, it can be understood

that these species will improve the direction of increasing the

transcript diversity of gene annotations, such as diverse ncRNAs.

An integrated quality index of 0.751 on average was observed in

all eight livestock animals, it has not yet reached the level of other

model animals except for chickens, suggesting that it has stable

quality compared to other species (Figure 6B). Because relatively

low quantification success rates are observed in goats, yaks, and

sheep, gene annotation must be improved soon.

Generally, when an assembly build is upgraded, a significant

increase in the quality of the reference genome and/or gene

annotation is expected. Taking this into account, we additionally

compared different assembly builds from four species with a high

NGS applicability index (human, mouse, chicken, and pig) to

verify the validity of the proposed NGS applicability index. As

expected, as the genome build increased in all four species, the

NGS applicability index improved significantly (Figure 7), which

is direct evidence supporting the validity of our proposed quality
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indicator. The BUSCO completeness, a representativemethodology

for evaluating genome assembly, also showed a tendency to

increase as the assembly build improved, but it was observed that

the difference was relatively insignificant. In particular, the NGS

applicability index showed a clear increase in the order of 0.624,

0.745, and 0.912 for the mouse, but the BUSCO Completeness

was the same at 0.996. This result is direct evidence that the NGS

applicability index can show higher quality assessment discernment

by simultaneously considering more diverse aspects than the

BUSCO method, which focuses only on the completeness of

genome assembly (Supplementary Figure 5).

Discussion

To date, various studies have been conducted to compare

and evaluate the quality of genomes and gene annotations;

however, most have been used to compare evolutionarily close

species (10, 43) or assembly methods (44, 45). Since most

studies have aimed at comparing adjacent minority species, the

quality evaluation indicators that have been used are limited, and

discussion on the methodology to compare genomes and gene

annotations of multiple species is lacking. However, reference

genomes and gene annotations are essential data for various

NGS application technologies, including RNA-seq data, and have

been known to directly affect the performance of essential

steps, such as alignments and quantification processes (28, 31).

While the application of NGS technology in various species

is becoming increasingly common, the quality of these key

data can influence the accuracy of the research outcome itself;

therefore, it must be evaluated. In this study, genomes and

gene annotations of 114 species, including eight livestock species,

were obtained from the Ensembl database, and 3,420 RNA-

Seq data were collected to attempt diversified quality evaluation

in various species (Figure 1). We conducted research to find

novel effective indicators for quality assessment, and to select

effective indicators among existing quality assessment indexes that

can objectively evaluate the genome and gene annotation of a

specific species.

Among the indicators generated in the de novo assembly

process, which is used for quality evaluation of reference genomes,

the validity of the N50 values of contig and scaffold levels was first

examined (Figure 2). This N50 value, called the contiguity index,

refers to the length at which contigs or scaffolds are sorted in

length order and reach 50% of the target length of the complete

assembly (20). However, this value fluctuates depending on the

final target length; therefore, it is not suitable for comparing

multiple species with different genome lengths (46). Therefore, in

most studies using the N50 index, the genome size of the target

species is usually unknown, and has been used to compare the

quality of the genome assembly by estimation based on the genome

size of evolutionarily close species (21, 22). Because the genome

sizes were fixed for the purpose of our study, we converted the

N50 value to an effective index that can be compared between

multiple species by correcting it with the genome size of the species.

As a result, we identified an association with the quality index

that directly indicates the quality of the reference genome, such

as the number of gaps in the genome (Figure 2A). This gap is

the primary target in all reference genome construction studies,

and various attempts have been made to minimize it (23–25).

We additionally assumed that the repeat elements spread on the

genome could be considered as quality indicators; however, the

distribution of repeat elements is determined by the characteristics

of the species (47) and thus could not be employed as another

objective quality indicator (Figures 2E, F). Going one step further,

we demonstrated that the three selected genome quality evaluation

indicators directly affected the mapping stage of the actual NGS

application (Figure 3A). In addition, the genome quality of various

species can be evaluated from another perspective through the

MQI score, which was created by composing indicators empirically

obtained in the mapping step, such as alignment success and

failure rate, and failure rate due to multiple mapping (Figure 3C).

In conclusion, we selected adjusted N50 values in contig and

scaffold levels, number of spanned gaps, and MQI, which are

effective indicators for evaluating the quality of reference genomes

of various species.

Multiple methods exist for measuring the quality of a reference

genome, but the only way to measure the completeness of

annotated transcripts in the genome is to compare them with

the annotations of evolutionarily similar species (18, 48). In other

words, because there is no objective indicator for the quality

evaluation of gene annotation, it was not possible to evaluate

the quality of various species. In this context, we proposed a

novel metric, transcript diversity, to evaluate the completeness

of gene annotation in various species (Figure 4). We calculated

the diversity of this transcript under the assumption that gene

models frequently developed by multiple scientists, such as

humans or mice, would eventually be of the highest quality.

As evidence for this, we demonstrated that gene annotations

in humans and mice are fine-grained for lncRNAs (Figure 4E),

various small RNAs, and pseudogenes (Figure 4G). In the past,

the elucidation of protein-coding genes has been a major goal,

even in representative gene models, including humans and mice

(49). However, as it was revealed that non-coding genes such as

various types of lncRNA (50), snRNA (51), snoRNA (52), scaRNA

(53), and miRNA (54) are also involved in various functions

in living organisms, more diverse transcript types have been

included in gene annotation of human and mouse. Considering

the developmental history of this representative gene model, we

believe that our newly proposed transcript diversity has sufficient

value as a new index to measure the quality of gene annotation.

In addition, we showed that transcript diversity, a qualitative

quality indicator, was independent of QQI, a quantitative quality

indicator of gene annotation (Figure 5A). Like the MQI, an

empirical quantitative index that can evaluate the quality of the

genome in the mapping stage, we proposed QQI as a novel

indicator, which can evaluate the quality of gene annotation in the

quantification process. We demonstrated that the success rate of

quantification of mapped reads and both failure rates depended

on the complexity of each gene annotation (Figure 5). This is

strong evidence to show that the QQI, which is the sum of these

three empirical indicators, is also an indicator that can evaluate

gene annotation from a different perspective than the transcript

diversity index (Figure 5F). In conclusion, we present a novel

transcript diversity index, a qualitative index that can evaluate the

gene annotations of various species, and the QQI, a quantitative
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index that can be empirically evaluated. We also demonstrated that

they can be used to evaluate the quality of gene annotation in

diverse species.

In this study, we attempted a novel approach to compare the

quality of reference genomes and gene annotations of multiple

species; however, there were limitations. First, we limited the

number of species to those from which could collect more

than 30 samples of RNA-seq data from species listed in the

Ensembl database. If additional species are considered , there is

a possibility that the evaluation of the middle and lower ranks

may change. Second, although quality control was performed as

best as possible for the 30 RNA-seq data samples collected for

each species, the data contained random errors, as experimentally

identical tissues and environmental conditions were not controlled

across all species. This factor can affect the empirical quality

metrics. Third, only an intuitive scaling method incorporating 10

quality evaluation indicators was applied in this study. We believe

that a methodology that can efficiently integrate heterogeneous

indicators derived from these diverse species will be elucidated in

near future. Lastly, we considered only those quality evaluation

indicators that could be obtained from available data; information

that was not publicly available, such as the mis-assembly rate

or assembly depth coverage, could not be considered. However,

because the relative methodology proposed in this study is a

framework, these practical issues are expected to be automatically

resolved as reference genomes and gene annotations for various

organisms are revealed. Concurrently, the relative index will

become more accurate.
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