
TYPE Original Research

PUBLISHED 03 April 2023

DOI 10.3389/fvets.2023.1122953

OPEN ACCESS

EDITED BY

Eveline M. Ibeagha-Awemu,

Agriculture and Agri-Food Canada

(AAFC), Canada

REVIEWED BY

Brittney Keel,

Agricultural Research Service (USDA),

United States

Ghader Manafiazar,

Dalhousie University, Canada

*CORRESPONDENCE

Juan-José Arranz

jjarrs@unileon.es

SPECIALTY SECTION

This article was submitted to

Livestock Genomics,

a section of the journal

Frontiers in Veterinary Science

RECEIVED 13 December 2022

ACCEPTED 16 March 2023

PUBLISHED 03 April 2023

CITATION

Suárez-Vega A, Frutos P, Gutiérrez-Gil B,

Esteban-Blanco C, Toral PG, Arranz J-J and

Hervás G (2023) Feed e�ciency in dairy sheep:

An insight from the milk transcriptome.

Front. Vet. Sci. 10:1122953.

doi: 10.3389/fvets.2023.1122953

COPYRIGHT

© 2023 Suárez-Vega, Frutos, Gutiérrez-Gil,

Esteban-Blanco, Toral, Arranz and Hervás. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Feed e�ciency in dairy sheep: An
insight from the milk
transcriptome

Aroa Suárez-Vega1, Pilar Frutos2, Beatriz Gutiérrez-Gil1,

Cristina Esteban-Blanco1, Pablo G. Toral2, Juan-José Arranz1*

and Gonzalo Hervás2

1Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,
2Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain

Introduction: As higher feed e�ciency in dairy ruminants means a higher

capability to transform feed nutrients into milk and milk components, di�erences

in feed e�ciency are expected to be partly linked to changes in the physiology

of the mammary glands. Therefore, this study aimed to determine the biological

functions and key regulatory genes associated with feed e�ciency in dairy sheep

using the milk somatic cell transcriptome.

Material and methods: RNA-Seq data from high (H-FE, n = 8) and low (L-FE, n

= 8) feed e�ciency ewes were compared through di�erential expression analysis

(DEA) and sparse Partial Least Square-Discriminant analysis (sPLS-DA).

Results: In the DEA, 79 genes were identified as di�erentially expressed between

both conditions, while the sPLS-DA identified 261 predictive genes [variable

importance in projection (VIP) > 2] that discriminated H-FE and L-FE sheep.

Discussion: The DEA between sheep with divergent feed e�ciency allowed

the identification of genes associated with the immune system and stress in

L-FE animals. In addition, the sPLS-DA approach revealed the importance of

genes involved in cell division (e.g., KIF4A and PRC1) and cellular lipid metabolic

process (e.g., LPL, SCD, GPAM, and ACOX3) for the H-FE sheep in the lactating

mammary gland transcriptome. A set of discriminant genes, commonly identified

by the two statistical approaches, was also detected, including some involved

in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or encoding heat-shock

proteins (HSPB1). These results provide novel insights into the biological basis

of feed e�ciency in dairy sheep, highlighting the informative potential of the

mammary gland transcriptome as a target tissue and revealing the usefulness

of combining univariate and multivariate analysis approaches to elucidate the

molecular mechanisms controlling complex traits.
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1. Introduction

Feed costs represent a high proportion of total costs associated with the livestock

industry [up to 65–70%; (1)]. Breeding more efficient animals would maximize farm

profitability and also reduce the environmental impact of animal production (2). However,

the challenges and costs of estimating feed efficiency make the implementation of

this phenotype in animal breeding schemes difficult. Therefore, determining genes and

biomarkers associated with feed efficiency could be of great interest to developing breeding

strategies that can improve the feed efficiency of dairy cattle, leading to more sustainable and

profitable dairy farming practices.
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RNA sequencing is widely used in animal breeding to

determine genes influencing complex traits, such as milk

production, reproductive performance, and quality of carcasses

(3). For feed efficiency, most studies using RNA-Seq data have

been performed in pigs, chicken, and beef cattle [e.g. (4–6)].

In dairy sheep, hardly any transcriptomic studies have been

conducted to characterize feed efficiency. To our knowledge, the

only research aiming at identifying differentially expressed genes

in sheep divergent for residual feed intake (RFI) values was

published by Zhang et al. (7) using liver samples. A feed-efficient

animal is generally defined as an animal that produces more while

consuming the same amount of feed or that shows a lower intake

for the same production level; therefore, as a simplified concept,

feed efficiency is related to units of output product per unit of feed

consumed (8). In this sense, when the final output of production is

meat, it has been common practice for RNA-Seq studies to analyze

muscle as the target tissue, both because of its importance for

energy expenditure and because animals bred for meat production

need greater muscle yield and higher conversion efficiency (9–13).

In dairy ruminants, we have found only a few studies comparing

divergent feed efficiency cows using liver and white blood cell

transcriptomes: (14–17). However, we are not aware of any RNA-

Seq approach linking the lactating mammary gland transcriptome

and feed efficiency. Considering that the main productive goals of

dairy animals are milk yield and milk fat and protein contents,

previous studies have demonstrated the usefulness of using milk

components to predict energy intake and efficiency in lactating

dairy cows (18, 19). As higher feed efficiency means a higher

capability of the animal to transform feed nutrients into milk and

milk components, we hypothesize that high and low feed efficiency

sheep would show transcriptomic differences in themammary cells.

In this regard, milk somatic cells have been demonstrated to be

representative of the mammary gland tissue, which can be used

as an effective approach to study the gene expression changes

in the lactating mammary gland without performing biopsies

(20). This is particularly important when looking for genes to be

used as biomarkers of a complex trait, such as feed efficiency,

mainly when the final aim of the research is knowledge transfer to

commercial flocks.

Therefore, this study aims to characterize the transcriptome

of the mammary gland in lactating sheep with divergent feed

efficiency values by identifying genes, metabolic pathways, and

biological processes potentially involved in this phenotype. At

a practical level, concerning the interest in the dairy sheep

industry, our objective is to obtain potential biomarkers for feed

efficiency that can be used in the future in commercial population

selection programs.

2. Materials and methods

2.1. Ethics statement

All experimental procedures were approved by the Research

Ethics Committee of the Instituto de Ganadería deMontaña (IGM),

the Spanish National Research Council (CSIC), and the Junta de

Castilla y León (Spain), following procedures described in Spanish

and European Union legislation (R. D. 53/2013 and Council

Directive 2010/63/EU).

2.2. Animals and sampling

This study constitutes a part of a larger research project aiming

at providing new insights into the physiological mechanisms

contributing to feed efficiency variation in dairy ruminants. A

detailed description of the sheep management practices and

samplings are detailed in Toral et al. (21). In brief, 40 Assaf ewes

in the first half of lactation (mean body weight = 73.9 kg, SD =

8.9; days post-partum = 61.6, SD = 4.2; age = 3.4 years, SD = 1.4;

milk yield= 2.6 kg/d, SD= 0.6) were housed in individual tie stalls,

milked twice daily and fed ad libitum a total mixed ration (TMR)

formulated from alfalfa hay (particle size > 4 cm) and concentrate

(50:50). The TMR included molasses to hinder selection of dietary

components. Results of chemical composition of the TMR have

been reported previously (21).

Individual dry matter intake and milk yield were recorded

over a 3-week period. Feed intake was calculated by weighing the

amounts of dry matter offered and refused by each animal, and

milk yield by weighing the total milk produced by each animal

at morning and evening milking. Composite samples of the milk

produced by each ewe were analyzed for fat, protein, and lactose

concentrations. The body weight was recorded in two consecutive

days per week.

For RNAseq analyses, we selected animals with divergent feed

efficiency index (FEI), namely 8 of the least (L-FE group) and 8 of

the most efficient (H-FE group) animals. Briefly, FEI was computed

as the difference between the mean value of dry matter intake

recorded (DMIR) and themean value of predicted drymatter intake

(DMIP) for the same period.

FEI = DMIR − DMIP

DMIP was calculated as follows:

DMIP = MEmp/METMR

Where MEmp are the metabolizable energy requirements for

maintenance, production, and body weight change (MJ/d), and

METMR is the metabolizable energy of the TMR (MJ/kg of DM).

Both values were estimated using equations for metabolizable

energy requirements for non-pregnant lactating sheep and TMR

formulation and tables of the nutritional value of feed materials

from the Agricultural and Food Research Council (22).

The higher the feed efficiency, the lower the value of the FEI,

which averaged −0.29 (SD = 0.23) for H-FE, and 0.81 (SD = 0.24)

for L-FE. As reported previously (21), this index showed a good

agreement (r = 0.69, P < 0.01) with RFI in the same animals

(estimated as the residual term from the regression of feed intake

on various energy sinks: 0.16 ± 0.084 for L-FE, and −0.18 ± 0.082

for H-FE ewes).

Both groups of ewes, H-FE and L-FE, were sampled for RNA-

Seq. Milk samples were obtained as described previously (23). Milk

somatic cells (MSC) from healthy udders have been proven to be

an alternative non-invasive approach for the lactating mammary
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gland transcriptome in ruminants with correlations of 0.98 with

mammary gland biopsies (20, 24). To summarize, 50mL of fresh

milk was collected from each animal 1 h after milking and 10min

after injection of 5 IU of oxytocin/animal (Facilpart, Laboratorios

SYVA, León, Spain) to maximize MSC concentration. To prevent

RNA degradation, udders were cleaned with soap and water and

disinfected with povidone-iodine, and the nipples were also flushed

with RNAseZap (Ambion, Austin, TX, USA). A sterile gauze was

used to cover the collection tube to avoid contamination.

For RNA extraction, MSC were pelleted by centrifugation at

650×g for 10min at 4◦C in the presence of a final concentration

of 0.5mM of EDTA. Then, the pellet was washed twice with 10,

and 2mL of PBS (pH 7.2 and 0.5mM of EDTA) followed by

centrifugation at 650×g for 10min at 4◦C.

The last pellet was kept in RNAlater (Sigma-Aldrich, Madrid,

Spain) and stored at −80◦C until RNA extraction using 500 µL

of TRIzol according to the manufacturer’s instructions (Invitrogen,

Carlsbad, CA, USA). The RNA quality was evaluated using an

Agilent 2,100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA), obtaining a mean RNA integrity number of 8.2 (SD = 0.6;

range = 6.8–9.1). The RNA sequencing was conducted at CNAG

(Centro Nacional de Análisis Genómico, Barcelona, Spain), where

the TrueSeq Stranded Total RNA Library Prep Kit (Illumina, San

Diego, CA, USA) was used for library preparation. A HiSeqTM

3,000/4,000 sequencing system (Illumina) was used to generate

stranded paired-end reads of 75 bp to a minimum depth of 30

million reads. Samples from six animals (4 L-FE and 2H-FE), which

did not reach the minimum depth required after the first round

of RNA-Seq, were re-sequenced to achieve the minimum depth.

Thus, there are two technical replicates for these six animals. The

datasets generated for this study can be found in the ArrayExpress

- EMBL-EBI database under the accession E-MTAB-12355.

2.3. Alignment and quantification

The alignment to the ovine reference genome (assembly ARS-

UI_Ramb_v2.0) available at NCBI was performed using STAR

v. 2.7.0 (25). For the alignment step, we used the following

parameters: “–outFilterType BySJout” to reduce spurious junctions,

“–outWigStrand Stranded” to indicate that our RNA-Seq data was

stranded, and the option “– quantMode TranscriptomeSAM” to the

necessary output for the quantification with RSEM v.1.3.3 software

(26). The quantification of the gene expression for the different

samples was carried out using RSEM v.1.3.3. The options applied

for the quantification were “–paired-end” to indicate our data

were paired-end, “–estimate-rspd” to estimate the start position

of the distribution, “–calc-ci” to calculate 95% credibility intervals

and posterior mean estimates, “–seed 12345” to set the seed for

the random number of generators used in calculating posterior

mean estimates and credibility intervals, and “–p 8” to fix the

parallel environment.

2.4. Di�erential gene expression analysis

To perform the differential expression analysis (DEA), we first

imported the samples into the R environment with the Tximport

package (27). Once the matrix of counts per gene and sample was

created, we kept genes with more than 10 counts in at least three

samples (28). Then, technical replicates from the same sample were

collapsed using the “collapseReplicates” function on DESeq2 (29).

The DEA between L-FE and H-FE animals was performed using

DESeq2 (29).We selected differentially expressed genes with a False

Discovery Rate (FDR) <0.05, and log2FoldChange> |1.5|.

2.5. Sparse partial least square-discriminant
analysis

The matrix of counts, normalized with DESeq2, was used to

perform a sparse Partial Least Square-Discriminant analysis (sPLS-

DA) in order to identify the key genes driving discrimination of

our samples into H-FE and L-FE classes (30). To perform the sPLS-

DA we used the R package mixOmics (30). We used the function

“tune.splsda” to assess the optimal number of components and

variables to select in each component. For this step, the function

“tune” implements repeated (N = 10) and stratified (5-fold) the

cross-validation to obtain the best predictive performance for the

model. Then, the function “splsda” was used to classify the samples

and select the variables. The function “vip” allowed us to obtain the

variable importance in projection (VIP) coefficients, which reflect

the relative importance of variables to explain each component.

Genes with a VIP higher than two were selected for further analysis.

2.6. Functional enrichment analyses

Gene ontology (GO) terms and pathways were analyzed to

explore the biological relevance of genes associated with feed

efficiency in the DEA and sPLS-DA analyses. For the functional

enrichment analyses, we used the ToppGene Suite (31), particularly

the ToppFun functional enrichment tool. These analyses were

performed for the different lists of genes obtained from the

previous analyses, i.e., the differentially expressed genes (DEGs)

and the list of genes obtained from the sPLS-DA analysis.

The databases used for the enrichment were GO:Molecular

function, GO:Biological Processes, GO:Cellular Component, and

the Pathway databases included in ToppGene Suite (https://

toppgene.cchmc.org/navigation/database.jsp), the full gene set of

each database was used as background set for the analyses.

The following options were applied to perform the functional

enrichment analyses: “P-value Method = probability density

function,” “multiple test correction = FDR,” “FDR cutoff <0.05,”

“Gene Limits 2 ≤ n ≤ 2,000”. To visualize the results,

the GOplot R package was used (32). First, we applied

the GOplot function “reduce_overlap” to eliminate for each

of the functional categories analyzed (GO:Molecular function,

GO:Biological Processes, GO:Cellular Component, and pathways)

the terms with a gene overlap ≥ 80%. Then, to plot the functional

enrichment results, we used the “circle_data” GOplot function. This

type of plot combines the results from the functional analyses with

the log2 fold change of the genes within each GO term or pathway,

and computes a z-score that indicates if the GO term or pathway

is more likely to be upregulated (positive values) or downregulated

(negative values) in H-FE ewes compared to L-FE ewes.
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3. Results

3.1. Mapping statistics summary

An average of 43.24 (SD= 11. 98)million reads per sample (n=

16) was generated, the average million reads per library (n= 22; six

animals had two technical replicates) was 31.4 (SD = 6.5 million

reads). Overall, 96.65% of the reads aligned to the ovine genome;

among them, 78.61%were uniquelymapped reads. A total of 15,116

genes were expressed (i.e., those detected in at least 3 samples and

with 10 counts or more).

3.2. Di�erentially expressed genes between
H-FE and L-FE sheep and functional
enrichment analyses

In the DEA, 79 genes were identified as differentially expressed

between H-FE and L-FE animals (FDR< 0.05 and log2FoldChange

> |1.5|; Supplementary Table 1), 10 genes had higher expression in

the lactating mammary gland of H-FE animals, and 69 had higher

expression in the L-FE.).

Functional enrichment analysis was performed to determine

which GO terms were enriched among the DEGs. We found

enriched (FDR < 0.05) 27 GO terms in the biological process

category (BP)-GO terms and two pathways [Source = MSigDB

C2 BIOCARTA (v7.5.1)] (Supplementary Table 2). There was non-

enrichment in themolecular function (MF) and cellular component

(CC) categories. A total of 11 BP-GO terms remained after reducing

the terms with a gene overlap >80% (Figure 1). The highest

enriched BP-GO terms were “response to lipid” (16 genes; FDR =

1.637E-2), “regulation of protein modification process” (16 genes;

FDR = 3.134E-2), and “positive regulation of DNA-templated

transcription” (16 genes; FDR = 3.134E-2). All 11 BP-GO terms

had a negative z-score, meaning they were downregulated in the

H-FE animals, but the BP-GO term “mitotic spindle midzone

assembly” had a positive z-score (1.41) and was enriched with two

genes (KIF4A and PRC1) (FDR = 4.976E-2). The pathways found

enriched were “Overview of proinflammatory and profibrotic

mediators” (5 genes; FDR = 2.991E-2) and “p53 transcriptional

gene network” (4 genes; FDR= 2.991E-2).

3.3. Discriminant genes between H-FE and
L-FE

The supervised analysis with the sPLS-DA method was applied

to discriminate between H-FE and L-FE animals (Figure 2A). The

tune function led to an sPLS-DA model with one component and

380 predictive genes that could help to classify sheep as H-FE and

L-FE; of them, 261 genes had a VIP > 2 (Supplementary Table 3).

The prediction of the feed-efficiency status obtained with the first

component was AUC (area under the curve) = 1 (P-value =

0.0007775), with a significantly balanced error rate of 0.32. The 20

genes with the highest loading are represented in Figure 2B. The

loading weights were positive for the H-FE group and negative

for the L-FE group. Interestingly, there were 15 genes overlapping

between the sPLS-DA (VIP > 2) and the DEGs: CCNA2, HS3ST1,

HSPB1, IQCF1, KIF20A, KIF4A, LOC101111669, LOC101115355,

MYO7A, NKX3-1, PDE4C, PRC1, PRDM5, SESN2, and TOP2A

(Table 1).

The functional enrichment analysis was performed with the

discriminant genes between high and L-FE sheep with a VIP >

2. We identified 40 GO terms enriched in the BP category, five

GO terms in the MF category, and 14 terms enriched in the CC

category (Supplementary Table 4). The highest enriched terms in

eachGO category were “nuclear division” for the BP (26 genes, FDR

= 1.154E-6), “ATP binding” for the MF (34 genes, FDR = 1.575E-

2), and “chromosome, centromeric region” for the CC (15 genes,

FDR= 7.342E-5). With the enrichment analysis using the pathway

databases, 21 pathways were found to be significantly enriched

(Supplementary Table 4), the highest enriched one “Cell Cycle,

Mitotic” (22 genes, FDR = 1.454E-4, BioSystems: REACTOME).

In Figure 2C, GO terms (2, 7, and 4 GO terms from the MF, BP, and

CC categories) and pathways (2 pathways from the REACTOME

database) remaining after eliminating those with a gene overlap

>80% are represented. All non-redundant terms and pathways had

a positive z-score, meaning that, in general, the genes clustered in

each term/pathway had higher expression in the H-FE condition.

4. Discussion

The characterization of the genetic basis of economically

relevant breeding traits is crucial to understanding the biology

underlying these phenotypes and selecting animals with higher

genetic merit. Regarding feed efficiency, RNA-Seq has been applied

over the last decade to determine genes and markers related to

this trait in several livestock species mainly intended for meat

production [e.g., (6, 11, 23, 24)]. Nevertheless, less research has

been performed in dairy cattle (14–16), and we are not aware of

studies on dairy sheep. The liver has been the most commonly

used organ to study gene expression differences in relation to feed

efficiency (14–16). However, the collection of biopsies from an

internal organ would not be feasible in practice. In this study,

we analyzed RNA-Seq data from milk, which offers a novel

perspective for the genetic characterization of feed efficiency.

The milk transcriptome has successfully been used to examine

differences in mammary metabolism due to breed (33), lactation

stage (34), dietary lipid supplementation (35), and mastitis (36).

We used two bioinformatic approaches, DEA and sPLS-

DA. DEA independently tests the expression level of each gene

between conditions allowing the determination of the DEGs. Our

study identified 79 DEGs between high- and L-FE sheep. Even

though the number of DEGs is not high, a similar number of

DEGs was identified in other studies using RNA-Seq technology

to characterize differences in the transcriptome associated feed-

efficiency, for instance when the liver was used as the target tissue

[55 DEGs when studying FE for daily gain and body weight in Hu

sheep (7) [FDR < 0.05 and log2FoldChange > |1.5|] and 70 and

19 DEGs (FDR < 0.05) for Holstein and Jersey dairy cattle breeds,

respectively (16)]. These results give an idea about the complexity

of feed efficiency, reinforcing the usefulness of using alternative

tissues to gain biological insights about the trait further. Most of the

genes found to be differentially expressed had a higher expression
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FIGURE 1

Functional enrichment results from the di�erential gene expression analysis between high (H-FE) and low (L-FE) feed e�ciency animals. In the

GOCircle plot, the significant GO terms enriched (FDR < 0.05) after a reduction of the terms with a gene overlap >80% are represented. The outer

circle shows a scatter plot for each GO term of the logFC of the genes clustered in the term. The blue circles are genes downregulated in H-FE, while

red circles are upregulated genes in H-FE sheep. The inner circle shows a bar plot representing the z-score for each GO term. The red bar means

that the GO term is upregulated for H-FE, while the blue bar indicates the GO term is upregulated for L-FE.

in the L-FE condition. Thus, most GO terms found enriched were

related to the biological processes upregulated in the L-FE sheep.

The highest enriched term among theDEGswas “response to lipid”,

suggesting that dietary lipids can induce a different response in

more or less efficient animals. Several studies in nutrigenomics in

ruminants have demonstrated that lipid supplementation affects

the lactating mammary gland transcriptome (35). Moreover, it has

been shown that there is variability in the individual response

to dietary unsaturated fatty acids (37). Although L-FE and H-

FE ewes received the same TMR, a detailed fatty acid analysis of

their ruminal digesta suggested a lower biohydrogenation extent

of dietary fatty acids in the less efficient group (21), which might

contribute to explain the present findings.

In addition, it is worth mentioning that almost all the genes

in the GO term “lipid response” are also within the terms

“response to cytokine” and “response to oxidative stress”. Metabolic

adaptations to high energy demands, such as lactation, lead to

lipid mobilization, which might be higher in less efficient sheep.

This would be supported by the lower BW gain of the ewes over

the trial and the lower milk de novo fatty acids/cis-9 18:1 ratio, a

potential proxy of energy deficiency and body fat mobilization (21).

Lipid mobilization has been demonstrated to favor inflammatory

responses and oxidative stress (38). In addition, several RNA-Seq

studies with different target tissues and species, such as beef (39),

dairy cows (16), pigs (40), sheep (7), and poultry (41) support our

results and highlight the association between feed efficiency and the

immune system and stress, indicating that the latter processes may

increase maintenance requirements and so reduce production in

L-FE animals (42).

Regarding upregulated genes in H-FE sheep, we found the

enriched term “mitotic spindle midzone assembly”, which is

associated with anaphase and cell division (43). The vast majority

of cell proliferation in the mammary gland occurs during its

allometric growth before puberty and during pregnancy, with the

number of secretory cells in the mature udder correlating with

milk yield (44). It has been demonstrated in dairy cattle and

mice that there is a constant but low proportion of cell division

during lactation (45). The genes involved in “mitotic spindle

midzone assembly”, KIF4A and PRC1, showed low abundance in

our transcriptomic data [<10 fragments per kilobase per million

mapped reads (FPKM)], which agrees with the results reported

in cattle postulating that cell division during lactation is low.

However, the higher expression of these two genes in H-FE animals

suggests that cell division might also be higher than in L-FE,

consistent with the observed differences in milk yield between

groups (21).

Systems biology is particularly interesting when determining

the genetic basis of complex phenotypes, such as feed efficiency.

Co-expression network analysis has been successfully used to

analyze the genetic architecture of feed efficiency by finding

modules of highly co-expressed genes (15, 39, 40). sPLS-DA has

been successfully applied lately for high-dimensional classification
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FIGURE 2

Results from the sparse Partial Least Square-Discriminant analysis (sPLS-DA). (A) Sample prediction area plot from the sPLS-DA model applied on the

RNA-Seq data set from high (H-FE; orange triangles) and low (L-FE; blue circles) samples using as the distance for prediction “maximum distance”. (B)

Loading plot of the top 20 discriminating genes on the first component between high and low feed e�ciency animals, colors indicate the group in

which the mean expression is maximal for each gene (H-FE: orange and L-FE: blue). (C) GOCircle plot showing the significant GO terms and

pathways enriched (FDR < 0.05) after a reduction of the terms with a gene overlap >80% are represented. The outer circle shows a scatter plot for

each term of the logFC of the genes clustered in the term. The blue circles are genes downregulated in H-FE, while the red circles are upregulated

genes in H-FE sheep. The inner circle shows a bar plot representing the z-score for each term. The red color means that the GO term is upregulated

for the H-FE group; the red color intensity is associated with the value of the z-score.

problems in genome biology. However, to date, no studies have

exploited sPLS-DA to study transcriptomics behind feed efficiency.

Over other multivariate methodologies, such as co-expression

analysis approaches, one of the main interests of using sPLS-DA

is that it aims to determine the most discriminant set of genes

between the sample groups by applying discrimination analysis,

variable selection and dimension reduction (30, 46) simultaneously.

As a multivariate methodology, modeling transcripts as a set,

sPLS-DA provides a more accurate picture of the context of the

biological system and complements the findings obtained from

univariate approaches. In addition, it has been shown to effectively

discriminate between groups using OMICs data where the number

of features far outnumbers the number of samples by selecting

those features that clustered those groups, even when they are

hidden among a large number of noise attributes (30, 46). The

application of feature selection techniques not only facilitates the

stratification and prediction of the samples, but also allows the

identification of biomarkers related to the studied trait. In our
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TABLE 1 Genes found in common by the di�erential gene expression analysis (DEA) and the sparse Partial Least Square-Discriminant analysis (sPLS-DA).

Gene Name DEA sPLS-DA

FCa (log2) P-value P-adjb VIPc Loadingsd

HS3ST1 −3.22 4.89E-06 1.06E-02 2.32 −0.02

PDE4C −2.70 2.47E-04 4.79E-02 7.63 −0.06

IQCF1 −2.51 2.05E-04 4.43E-02 5.27 −0.04

HSPB1 −2.20 8.32E-05 3.31E-02 2.78 −0.02

NKX3-1 −2.02 9.85E-05 3.70E-02 2.09 −0.02

SESN2 −1.67 1.12E-04 3.70E-02 7.08 −0.06

LOC101111669 −1.47 1.96E-04 4.28E-02 3.63 −0.03

LOC101115355 −1.06 1.18E-04 3.70E-02 11.83 −0.10

PRC1 1.19 1.93E-04 4.28E-02 15.71 0.13

TOP2A 1.49 1.85E-06 4.66E-03 18.29 0.15

MYO7A 1.67 2.90E-05 2.29E-02 17.56 0.14

CCNA2 1.75 7.10E-05 3.12E-02 10.10 0.08

PRDM5 1.76 1.64E-04 4.08E-02 5.93 0.05

KIF20A 1.85 1.43E-05 1.45E-02 13.10 0.11

KIF4A 1.91 1.30E-05 1.40E-02 13.04 0.11

aFC, fold change. Negative values correspond to higher expression in low feed-efficiency animals. Positive values correspond to higher expression in high feed-efficiency animals.
bP-adj, False Discovery Rate (FDR) multiple test correction performed by DESeq2.
cVIP, variable importance in projection.
dLoadings, value of the gene’s loading weight (importance) on the first component of the sPLS-DA.

analysis, the number of discriminant genes between H-FE and

L-FE sheep was higher than the number of genes detected by

the DEA approach (261 vs. 79 genes, respectively). These results

allowed us to determine which biological processes were more

relevant for the H-FE condition (Figure 2), complementing the

results obtained by the DEA approach in which most enriched

GO terms were associated with L-FE. The most enriched MF

was “ATP binding”. Some studies in livestock species have related

energy homeostasis production with feed efficiency (15, 40, 41).

However, mutations in the ATP-binding domain have also been

demonstrated to affect anaphase chromosome segregation in

cultured cells (47). Thereunder, the majority of the terms enriched

were linked to “nuclear division”, “chromosome organization”,

and “cell division”, among others, with more than 20 genes

clustered within these terms. This result highlights the importance

of the findings previously discussed from the DEA analysis,

suggesting a greater cell division in the lactating udder of H-

FE sheep. Thus, we hypothesize that the higher milk yield of

more efficient animals (21) could be due to a higher number of

secretory cells. Moreover, the sPLS-DA methodology allowed the

identification of a higher number of genes linked to cell division

than DEA. This reinforces the use of a systems biology approach

to understanding the complexity of the biological processes behind

feed efficiency, which may be underestimated using univariate

analyses (8).

Another GO term enriched and associated with H-FE was

“cellular lipid metabolic process”, consistent with the greater

milk fat yield in more efficient animals (21). Some well-known

genes involved in mammary lipid metabolism were found as

discriminant genes between H-FE and L-FE sheep: LPL, SCD,

GPAM, and ACOX3. The LPL gene product, the lipoprotein

lipase, is involved in the mammary uptake of plasma fatty acids

(48) and, in cattle, an association between LPL abundance and

maintenance ofmilk synthesis through lactation has been suggested

(48). Regarding the stearoyl-CoA desaturase (SCD), an enzyme

implicated in the desaturation of fatty acids, polymorphisms

in the SCD gene have been associated with milk and protein

yields in dairy cattle (49, 50). Another gene associated with

lipid metabolisms was GPAM, which encodes for mitochondrial

glycerol-3-phosphate acetyltransferase, a protein involved in

triglyceride synthesis (51). In dairy cows, mutations in the GPAM

gene were significantly correlated with changes in milk fat and

protein or milk yield (52). The most discriminant gene between

H-FE and L-FE sheep was ACOX3. This gene encodes for acyl-

Coenzyme A Oxidase 3, which is involved in peroxisomal β-

oxidation. The majority of cellular energy is supplied by the

oxidation of carbohydrates, fats, or protein. Although ACOX3

was upregulated in the H-FE group, in general, genes involved

in fatty acid oxidation have been related to low feed efficiency

in livestock (53) and negative energy balance (54), when using

the liver as target tissue. However, oxidation in mammary

tissue has received less attention, and its relationship with feed

efficiency is thus less clear. In any event, genome-wide association

studies in dairy cows suggested associations between ACOX3

and fat percentage and some fatty acid concentrations in dairy

cows (55, 56).
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Finally, we conducted a literature review on those genes found

in common by the two methodological approaches (DEA and

sPLS-DA), or highlighted by studies on feed efficiency in other

species. Some genes, such as CRYAB, HSPB1, or PRC1 have been

related to feed efficiency in livestock using other target tissues.

The CRYAB gene, which encodes for Crystallin Alpha B protein,

is upregulated in the liver, duodenum, and adipose tissue of L-FE

pigs (40, 57), in the jejunum in cattle (58), and in breast muscle

in poultry (59). This gene, and HSPB1 (also known as HSP27),

are members of the heat-shock protein family. The expression of

heat-shock proteins increases as a cellular response mechanism to

a stressor (60).HSPB1 codifies heat-shock protein Family B (Small)

Member 1, and contradictory findings have been found for this

gene regarding feed efficiency. In beef cattle, higher expression of

HSPB1 has been associated with H-FE animals (61, 62), whereas

in broilers, this gene is upregulated in L-FE animals (63). In our

study, CRYAB and HSPB1 were upregulated in L-FE sheep, which

agrees with the results reported in pigs by Ramayo-Caldas et al.

(40). Findings in dairy cows demonstrated that less efficient animals

have higher heat production than efficient ones (64). Previous

studies have revealed associations between SNPs in heat-shock

proteins and traits such as respiration rate and body temperature

(65, 66). Thus, it could be speculated that animals with a higher

expression of heat-shock proteins are less efficient due to energy

losses in greater heat production. Lastly, we would like to highlight

the role of gene SESN2 in lactation and its potential impact on

feed efficiency, which could be a novel finding. SESN2, which

codifies for sestrin2, belongs to a family of conserved, stress-

inducible regulators of metabolism. A study on the influence of

the expression of this gene on lactation suggested that SESN2

negatively regulates cell proliferation and casein synthesis in cow

mammary epithelial cells (67). Thus, the upregulation of SESN2

in L-FE animals would lead to a decrease in milk yield. The fact

that SESN2 is involved in cell proliferation, such as other genes

found in common by DEA and sPLS-DA approaches (specifically

KIF20A, KIF4A, TOP2A, NKX3-1, CCNA2, PRC1), emphasizes

the complementarity of the different methodologies applied and

supports the potential relevance of mammary cell division for feed

efficiency in dairy sheep.

5. Conclusions

The results from this study provide novel insights into the

biological basis of feed efficiency in dairy sheep, highlighting

the informative potential of the mammary gland as a target

tissue and revealing the usefulness of combining univariate

and multivariate analysis approaches to elucidate the molecular

mechanisms controlling complex phenotypes. The DEA between

sheep with divergent feed efficiency allowed the identification

of genes associated with the immune system and stress in L-

FE animals. In addition, the sPLS-DA approach revealed the

importance of genes involved in cell division (e.g., KIF4A and

PRC1) and cellular lipid metabolic process (e.g., LPL, SCD,

GPAM, and ACOX3) for the H-FE sheep in the lactating

mammary gland transcriptome. We also detected a set of

genes commonly identified by the two statistical approaches,

including some involved in cell proliferation (e.g., SESN2,

KIF20A, or TOP2A) or encoding heat-shock proteins (HSPB1).

Further research would be needed to elucidate the potential role

of these genes as candidate biomarkers of feed efficiency in

dairy sheep.
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