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Fatty acids (FAs) are classified into different types according to the degree 
of hydrocarbon chain saturation, including saturated fatty acids (SFAs), 
monounsaturated fatty acids (MUFAs), omega-3 polyunsaturated fatty acids 
(omega-3 PUFAs) and omega-6 polyunsaturated fatty acids (omega-6 PUFAs), 
which play an important role in maintaining semen quality. This review focuses 
on the regulation of FAs in semen, diet and extender on semen quality, and 
expounds its effects on sperm motility, plasma membrane integrity, DNA integrity, 
hormone content, and antioxidant capacity. It can be concluded that there are 
species differences in the FAs profile and requirements in sperm, and their ability 
to regulate semen quality is also affected by the addition methods or dosages. 
Future research directions should focus on analyzing the FAs profiles of different 
species or different periods of the same species and exploring suitable addition 
methods, doses and mechanism of regulating semen quality.
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1. Introduction

Fatty acids (FAs) is the main component of dietary fat. Animals cannot synthesize FAs due 
to the lack of related desaturases and elongases (1). Therefore, these animals must obtain FAs or 
their precursors from the diet (2), as they are essential for many processes including growth, 
reproduction, vision, and brain development (3). The synthetic pathway of various FAs are 
shown in Figure 1 (4). It can be seen that the appropriate intake of FAs in the diet plays an 
important role in maintaining its composition in sperm and the reproductive ability (5). 
omega-3 polyunsaturated fatty acids (omega-3 PUFAs) and omega-6 polyunsaturated fatty acids 
(omega-6 PUFAs) are essential for multiple functions in the body, including synthesis of 
prostaglandins, leukotrienes, cell membranes, phospholipids, retinal photoreceptors (vision), 
gray matter (brain tissue), testes, and sperm (6). It is also reported that dietary PUFAs could 
regulate steroid hormone secretion (7).

FAs are important in male sperm because they are associated with membrane fluidity, 
acrosome reaction, sperm motility and viability (8). FAs in sperm membranes play a major role 
in sperm structure and function (9), and are required to facilitate membrane fusion events 
associated with fertilization (10, 11). Among them, PUFAs can penetrate the sperm cell 
membrane, improve the scalability of the sperm plasma membrane, maintain its structural and 
functional integrity, enhance the osmotic resistance of the acrosome membrane, and provide 
protection against physiological or thermal changes during cryopreservation (12, 13). Numerous 
studies have reported that the addition of appropriate levels of PUFAs to semen extender could 
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improve sperm antioxidant capacity and DNA integrity (14), and 
reduce oxidative stress levels (15).

On the other hand, the composition of FAs in sperm may vary by 
species. In stallion, the sperm contains high levels of docosapentaenoic 
acid (DPA), representing on average the 49.9%, followed by palmitic 
acid (PA) and stearic acid (SA), representing the 17.6 and 8.7%, 
respectively, (16). The predominant FAs of dog seminal plasma were 
C16: 0 (30.4%), C18: 0 (23.4%) and C18: 1n9 (9.0%) (17). In boar 
sperm, the most abundant saturated fatty acids (SFAs) were C16: 0 
(18%) and C18: 0 (16%), and the most abundant FAs were DPA (15%) 
and docosahexaenoic acid (DHA) (16%) (18). PUFAs account for 
nearly 60% of the total FAs in mammalian sperm (19); in particular, 
testicular cells and sperm contain large amounts of PUFAs, which are 
considered to be the major constituents of sperm phospholipids (20). 
It can be  seen that regulating the composition of sperm FAs of 
different species is of great significance for improving semen quality 
in the future.

This review will focus on the effects of the four most important 
FAs including SFAs, monounsaturated fatty acids (MUFAs), omega-3 
PUFAs and omega-6 PUFAs on semen quality. Our aim is to analyze 
the effect of FAs in diets, semen and extender on semen quality, and 
to extensively explore the potential mechanism of regulating animal 
semen quality.

2. Effect of different FAs on semen 
quality

FAs are classified into SFAs, MUFAs, and PUFAs, and a key 
difference between them is their degree of unsaturation, with zero, 
one, or more double bonds, respectively (21). There are many 
nomenclature systems for FAs, International Union of Pure and 
Applied Chemistry (IUPAC) can technically and clearly describe the 
chemical structure of FAs, but its name is too long. For convenience, 

historical names and shorthand notation are frequently used in 
scientific writings. The members of the common FAs families are 
shown in Table 1 (4).

SFAs include three types, PA, SA and myristic acid (MA). It has 
been reported that SFAs can improve sperm viability and plasma 
membrane integrity by enhancing sperm antioxidant activity, which 
may be  beneficial for improving semen quality (22). However, 
another study pointed out that the percentage of SFAs in semen is 
inversely correlated with semen quality (23), and sperm motility and 
viability decrease when the ratio of SFAs in sperm increases (24). 
Therefore, it is speculated that the effect of SFAs on semen quality 
needs further research. PA is the major SFAs in sperm (25, 26), and 
its level in sperm is positively correlated with the total sperm count, 
indicating its importance for sperm production (27). SA is the 
predominant SFAs in many kinds of animal sperm, and is related to 
sperm plasma membrane integrity and oxidative stress (28). It has 
been reported that the content of SA may be  affected by species 
factors (29). MA is a straight-chain SFAs with 14 carbon atoms and 
no carbon–carbon double bond, which was originally found in the 
seeds of nutmeg (30, 31). MA is also widely found in animal fats and 
vegetable oils, including sperm, whale oil, coconut oil, and dairy 
products (32, 33). Compared with other SFAs, MA exhibits higher 
antioxidant activity (34). Other studies have shown that MA can 
promote the interconversion of different FAs, thereby improving their 
availability (35).

In mammalian biological systems, MUFAs are the best 
indicator for assessing their role in membrane fluidity, as observed 
in sperm (20). MUFAs partially offset the negative effects of 
high-fat diet on sperm quality by increasing gamete motility, 
improving mitochondrial respiration efficiency, and reducing 
oxidative stress (36). Oleic acid (OA) is a MUFAs with 18 carbon 
chains belonging to the omega-9 family, and the antioxidant 
potency of OA has been widely recognized (37). Palmitoleic acid 
(PTA) is a MUFA with 16 carbon chains, which belongs to the 

FIGURE 1

Schematic pathways of various fatty acids metabolism.
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omega-7 MUFAs. PTA is a natural ingredient in macadamia oil, 
sea buckthorn oil, and fish oil (38). Similar to the function of OA, 
the beneficial effects of PTA on antioxidant enzyme activity and 
altered signal transduction have been demonstrated in different 
cells (39). But another study showed that MUFAs were negatively 
correlated with sperm motility and concentration (22). It can 
be seen that the paradoxical effects of MUFAs on semen quality 
require further research.

Omega-3 PUFAs contain the first double bond at the third 
carbon atom at the methyl end of the FAs, and include three 
types, alpha-linolenic acid (ALA), Eicosapentaenoic acid (EPA), 
and DHA (40). Omega-3 PUFAs play important roles in 
reproductive physiology, including regulation of prostaglandin 
synthesis and membrane properties, and have excellent 
antioxidant effects (41). They are nutrients that improve semen 
quality (42), and accelerate spermatogenesis in different types of 
livestock (43). The most abundant omega-3 PUFAs is ALA (44), 
which has anti-inflammatory (45, 46) and antioxidant properties 
(47), while stimulating testosterone production (48). The six 
double bonds of DHA contribute to the maintenance of plasma 
membrane integrity (49), thereby providing membrane with very 
unique fluidity and flexibility, and thus are essential for 
improving sperm motility and acrosome reaction (50). In 
addition, DHA plays a positive role in promoting testicular 
testosterone secretion, improving sperm antioxidant capacity and 
DNA integrity (51). The function of DHA on semen quality is 
shown in Figure  2. Similar to the function of DHA, EPA is 
particularly important for sperm motility, normal morphology, 
plasma membrane integrity and freezing resistance (52). EPA is 
a precursor of eicosanoids such as prostaglandins, cyclic 
prostaglandins, thromboxane, and leukotrienes. Sperm lipids 
contain many different sphingolipids, among which 
sphingomyelin is rich in EPA, which plays an important role in 
regulating sperm motility and sperm plasma membrane structure 

(53). It can be concluded that different types of omega-3 PUFAs 
can improve semen quality.

It is well known that the Western diet is relatively poor in omega-3 
PUFAs and rich in omega-6 PUFAs. Omega-6 PUFAs are essential FAs 
in vertebrates, including linoleic acid (LA), arachidonic acid (AA), 
and DPA, have been shown to regulate testicular function (54). AA 
has the effect of reducing inflammation (55), promoting phospholipid 
synthesis and secretion of various steroid hormones (56). The most 
plentiful dietary omega-6 PUFAs is LA (57). The sperm cell membrane 
of birds contains a large amount of LA, which is an important 
precursor for the synthesis of other omega-6 PUFAs (58). Conjugated 
linoleic acid (CLA) is a geometric isomer of LA that is mainly 
synthesized by bacteria in the rumen, which can regulate the synthesis 
of testosterone and improve the antioxidant capacity of sperm (59). 
DPA is present at low level in most organisms, whereas the cell 
membranes of mammalian brain and testis are rich in DPA (>3–4 
times higher than other tissues) (60). It has been proposed that DPA 
is actively produced during sperm maturation in epididymal, and the 
change of its content in sperm membrane could affect sperm motility 
and viability, as well as sperm fertilization ability (61). In conclusion, 
different types of omega-6 PUFAs have different contents and 
functions, which need more exploration.

3. Effects of diets FAs on semen 
quality

Some studies have pointed out that the intake of high doses of 
SFAs poses risks to health, increases the level of oxidative stress, 
and reduces the synthesis of testosterone key enzymes, which will 
have adverse effects on semen quality (62, 63). Jensen et  al. 
reported in a sample of 701 young Danish men that excessive SFAs 
intake resulted in a decrease in total sperm count and sperm 
concentration (64). In addition, Takato et al. (33) reported that 

TABLE 1 Abbreviations and sources of FAs.

Common nouns Systematic name Abbreviation Sources

SFAs

Myristic acid Tetradecanoic C14:0 (MA) Dairy fat, coconut oil, palm kernel oil

Palmitic acid Hexadecanoic C16:0 (PA) Most fats and oils

Stearic acid Octadecanoic C18:0 (SA) Most fats and oils

MUFAs

Oleic acid cis-9-octadecenoic 9C-18:1 (OA) All fats and oils, especially olive oil, canola oil and high-

oleic sunflower and safflower oil

Palmitoleic acid cis-9-hexadecenoic 9C-16:1 (PTA) Marine oils, macadamia oil, most animal and vegetable oils

Omega-6 PUFAs

Arachidonic acid cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid 20∶4 (AA) Animal fat, liver,egg lipids, fish

Linoleic acid cis-9,cis-12-octadecadienoic 18∶2 (LA) Most vegetable oils, nuts

Docosapentaenoic acid cis-4,cis-7,cis-10,cis-13,cis-16-docosapentaenoic acid 22∶5 (DPA) Fish (salmon, herring, anchovies, and mackerel)

Omega-3 PUFAs

α-linolenic acid cis-9,cis-12-cis-15-octadecatrienoic acid 18:3 (ALA) Flaxseed, perilla, walnut, hemp seed, rapeseed, soybean

Docosahexaenoic acid cis-4,cis-7,cis-10,cis-13,cis-16,cis-19-docosapentaenoic acid 22:6 (DHA) Fish (salmon, herring, anchovy, smelt, and mackerel)

Eicosapentaenoic acid cis-5,cis-8,cis-11,cis-14,cis-17-eicosapentaenoic acid 20:5 (EPA) Fish (salmon, herring, anchovy, smelt, and mackerel)
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long-term oral MA is beneficial to the human body, but the daily 
safe dietary dose should be less than 37.0 mg. Taken together, in 
order to avoid sperm damage, SFAs intake should be controlled 
within the minimum range.

Omega-3 PUFAs could improve sperm plasma membrane fluidity 
by trapping free radicals (65). When bulls were fed a diet rich in 
omega-3 PUFAs, the altered FAs profile in the sperm plasma 
membrane made the membrane more resistant to damage caused by 
ice crystal formation during freezing (66). Adding appropriate levels 
of omega-3 PUFAs to the diet has been reported to increase 
concentrations of IGF1, plasma testosterone, and scrotal circumference 
in male buffalo (67), and by increasing motility, viability, plasma 
membrane integrity, and acrosome integrity (68), reducing sperm 
lipid peroxidation to improve sperm quality and in vitro fertilization 
capacity (69). However, contrary results were previously reported, 
with a diet rich in omega-3 PUFAs making boar sperm more 
susceptible to lipid peroxidative damage (70), which negatively 
affected membrane structure and function (71). These conflicting 
results appear to be largely attributable to several factors, including 
age, breed, and source of omega-3 PUFAs (68). The ALA content of 
flaxseed oil reaches more than 50%, and studies have shown that 
supplementation of flaxseed oil in bull diets could have a positive 
effect on the progressive motility, morphology and viability of frozen–
thawed sperm (72, 73). In the bulls supplemented with dietary DHA, 
although no improvement was found in the frozen–thawed semen, the 
viability of fresh sperm was improved (74). In a clinical trial, After 
10 weeks of dietary DHA treatment, its content in seminal plasma was 
increased, antioxidant capacity was improved, and the percentage of 
sperm with DNA damage was reduced (51). In conclusion, dietary 
DHA supplementation increased its concentration in seminal plasma, 
which was associated with increased total antioxidant capacity and 
decreased sperm DNA fragmentation. Higher concentrations of EPA 
in the diet improved ejaculate volume and sperm motility (75). 
Supplementation of EPA in the diets can improve sperm motility, 
viability, total sperm count and total morphologically normal sperm 
count in dogs, as well as increase serum testosterone concentrations 

(43). It can be seen that EPA in the body is related to sperm motility 
and spermatogenesis.

It has been established that increasing dietary omega-6 PUFAs 
increases plasma steroid hormone levels (76). Other studies have 
shown that a diet rich in omega-6 PUFAs having a positive effect on 
semen quality and total sperm count in rams (77, 78), However, excess 
omega-6 PUFAs also expose sperm to oxidative stress damage (79). 
Supplementation of omega-6 PUFAs in bull diets can lead to lipid 
peroxidation, loss of PUFAs in the plasma membrane and reduced 
sperm motility and fertility (80). High levels of omega-6 PUFAs can 
lead to lipid peroxidation to produce malondialdehyde (MDA), which 
in turn inhibits sperm mitochondrial function and enzymatic activity, 
reducing DNA integrity and sperm motility (69). Therefore, when 
adding omega-6 PUFAs to diet, it is necessary to pay attention to its 
effect on sperm oxidative stress. It has been suggested that in 
ruminants, rumen microbes may hinder the transfer of dietary LA to 
semen because they hydrogenate LA (81). However, recent studies 
have shown that feeding additional LA results in significantly 
increased concentrations of LA in goat plasma and fertility in sperm, 
indicating that it has the ability to resist rumen biohydrogenation (82). 
Similarly, supplementation of CLA in the diets improved reproductive 
performance in dairy cows (83). When CLA was added at 50 g/day, 
there was a benefit on fresh and frozen–thawed sperm quality (84). 
However, 1% CLA supplementation in Japanese quail diets has been 
reported to reduce fertilization and hatchability (85), and CLA is 
thought to reduce spermatogenesis in rabbits and affect the synthesis 
of hormones involved in reproduction by affecting the composition of 
FAs in epididymal fat (86). Conflicting results may be  caused by 
different species and ways of addition.

The predominant FAs in poultry sperm have been documented to 
be omega-6 PUFAs, whereas in most mammals omega-3 PUFAs are 
the predominant FAs (87). The lipids of sperm are relatively unique 
because they contain many different sphingolipids, including 
sphingolipids with DHA, EPA, and AA (88), and changes in lipid 
composition affect membrane fluidity, impair membrane function, 
and may even lead to intracellular death and apoptosis (89). The 

FIGURE 2

The function of DHA on semen quality. ➀Improve antioxidant capacity and reduce oxidative stress ②Promote testosterone synthesis ③Promote sperm 
maturation ④Improve sperm plasma membrane integrity ➄Improve DNA integrity ⑥Protect sperm from damage caused by cryopreservation.
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composition of sperm PUFAs has previously been reported to vary by 
diet, with the FAs content in sperm reflecting the ratio of omega-6/
omega-3 PUFAs in the diet, and intake of different types and sources 
of PUFAs has been shown to alter sperm production in animals, while 
the composition of FAs in sperm could influence sperm quality, lipid 
composition, acrosome and fertilization ability (18).

Numerous studies have shown that the omega-6/omega-3 
PUFAs ratio has an important regulatory effect on male 
reproduction, the properties of which vary from species to 
species. The effect of the ratio of omega-6/omega-3 PUFAs on 
different species is shown in Figure 3. In the human diet, it is 
reasonable to maintain an appropriate dietary intake ratio of 
omega-6 and omega-3 PUFAs to promote reproduction. However, 
little is known about the effects of varying ratios of omega-6 and 
omega-3 PUFAs on sperm quality and fertility. Studies have 
shown that testicular function appears to be positively correlated 
with omega-3 PUFAs intake and negatively correlated with 
omega-6 PUFAs intake (90). Gerster found that the conversion of 
ALA to EPA and DHA was reduced by 40–50% when the ratio of 
omega-6/omega-3 PUFAs in the diet was elevated (91). Due to 
lack of research data, the appropriate ratio of omega-6/omega-3 
PUFAs requires further research. Reducing the omega-6/omega-3 
PUFAs ratio could improves boar plasma membrane properties 
and affects sperm FAs composition. Am-in N stated that the ratio 
of omega-6/omega-3 PUFAs in boar sperm was positively 
correlated with sperm motility, viability, normal morphology and 
normal plasma membrane (92). Appropriate omega-6/omega-3 
PUFAs ratios in boar diets play an important role in maintaining 
boar reproductive performance, with an ideal ratio of 1: 1 (93). 
Similarly, increasing the ratio of omega-6/omega-6 PUFAs in the 
rat diets could decrease the concentrations of hormones such as 
GnRH, FSH, LH, and testosterone, while improving sperm 
concentration, motility, and plasma membrane integrity (94). 
The ideal ratio of omega-6/omega-3 PUFAs in the diet is 1.52: 1, 
however, when it is higher than 1.52:1, it would lead to a decrease 

in hormone levels, which in turn affects reproductive 
performance (7). In conclusion, there is a strong relationship 
between the omega-3/omega-6 PUFAs ratio and steroid hormone 
levels, which in turn regulate semen quality in rats. Avian semen 
is characterized by a relatively high proportion of omega-6 
PUFAs (95). The sperm of male broiler breeders are rich in AA 
and DHA, and the fertility of male broiler breeder sperm is 
positively correlated with their ratio (96). A diet with a moderate 
ratio of omega-6/omega-3 PUFAs is beneficial for semen quality 
and reproductive outcomes in rooster. Dietary treatment of 
roosters with an appropriate omega-6/omega-3 PUFAs ratio 
increases hormone secretion, thereby improving sperm quality, 
Diets with omega-6/omega-3 ratios ranging from 6: 1 to 9: 1 
improved sperm fertilization capacity (97). This is consistent 
with research conducted in aged roosters that a ratio of 6.25: 1 
omega-6/omega-3 PUFAs dietary supplements is the optimal 
concentration for improved semen quality and reproductive 
performance in aged roosters, while a ratio below 6.25: 1 may 
increase the degree of sperm lipid peroxidation and reduced 
reproductive outcomes (98).

4. Effect of FAs in extender on semen 
quality

Previous research has shown that adding 75 μmol/L PA to boar 
extender improved sperm motility parameters, membrane integrity 
and acrosome integrity, and decreased sperm apoptosis rate (45, 46). 
Similarly, it was found that the addition of PA at concentrations of 
10–100 μmol/L to the bull extender significantly increased progressive 
linear motion, viability, and SOD levels, while reducing reactive 
oxygen species (ROS) levels on days 1 and 3 of the experiment (14). It 
can be seen that the addition of PA to the extender can improve the 
quality of semen, but the optimal dose may vary depending on 
the species.

FIGURE 3

Effects of omega-6/omega-3 PUFAs on semen quality.
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The protective effect of OA on frozen sperm is reflected in 
improving its antioxidant capacity. The addition of OA at 0.125, 0.25, 
0.5 and 1 mmol/L to the rooster extender increased the total 
antioxidant activity and decreased sperm MDA concentrations in 
seminal plasma stored at 4°C for 24 and 48 h, while the concentration 
of 1 mmol/L OA improves sperm motility in roosters (15). Similarly, 
adding 1.25 mmol/L OA to the extender and incubating at 37°C for 
4 h significantly improved acrosome integrity, motility and viability 
of boar sperm (99). Addition of 0.25 and 0.50 mmol/L OA resulted 
in decreased lipid peroxidation and increased total antioxidant 
capacity, while improving motion parameters of frozen–thawed ram 
sperm. OA positively affects ram sperm plasma membrane integrity, 
motility, and stability during cold storage, increasing SOD activity 
after 48 h of storage at low temperature (100). In conclusion, the 
addition of OA to the extender may have a positive effect on semen 
quality. Compared to other natural FAs, PTA is the most reliable 
protective compound during sperm freezing, although it is in far 
lower levels in sperm phospholipids than other natural FAs (101). 
Studies have shown that 1 mmol/L PTA could increase the percentage 
of sperm motility in roosters stored at 4°C, and improving semen 
quality by increasing the activity of total antioxidant enzymes and 
reducing lipid peroxidationin seminal plasma after 24 and 48 h of 
storage (102). Similar to the results, 0.5 mmol/L PTA 
supplementation in ram extender increased the percentage of sperm 
forward motility, increased total antioxidant enzyme activity at 24, 
48 and 72 h, and decreased sperm at 72 h storage of lipid 
peroxidation, when supplemented at concentrations of 0.25, 0.5 and 
1 mmol/L PTA increased SOD activity in sperm and decreased NO 
production in sperm at 48 and 72 h during refrigeration (103). 
Addition of PTA to boar extender increased sperm viability and 
motility after 2 and 7 days of storage at 6°C, and increased sperm 
counts with active mitochondria after 3 days of storage (104). It is 
suggested that PTA can be added to the extender as an exogenous 
antioxidant. Taken together, different types of MUFAs in the 
extender can maintain the viability of frozen–thawed sperm by 
increasing the activity of total antioxidant enzymes, reducing 
lipid peroxidation.

At present, ALA has been studied for cryopreservation of buffalo 
semen, and the addition of 5 ng/mL ALA to the extender increased the 
omega-3 PUFAs content of the plasma membrane of the sperm head 
and tail, thereby improving the fluidity of the plasma membrane (105). 
The addition of ALA to the extender showed improvements in frozen–
thawed sperm motility, progressive motility, plasma membrane 
integrity, viability, and chromatin integrity of buffalo bull sperm (106). 
In addition, another study reported that DHA supplementation in 
extender protected sperm from damage caused by the cryopreservation 
process (22). It indicated that the addition of different types of 
Omega-3 PUFAs in the extender may improve sperm antioxidant 
activity, reduce oxidative stress, and further maintain the plasma 
membrane integrity of frozen sperm.

It has been reported that addition of 0.25 mmol/L LA to the 
extender increased sperm motility and percentage of progressive 
motility in rooster (107). Addition of LA to the extender can improve 
the motility parameters, DNA integrity, plasma membrane integrity 
and reduce sperm oxidative stress damage of bull sperm after frozen–
thawed (108). Similarly, CLA is a potent antioxidant that reduces lipid 
peroxidation induced by cryopreservation of boar sperm, enables 
long-term survival of sperm after refrigeration at 17°C (109, 110), and 

enhances the protective effect of sperm cryopreservation (111). 
Therefore, it is speculated that different types of LA can improve 
sperm quality after frozen–thawed by reducing oxidative 
stress damage.

5. FAs content affects semen quality

PA is one of the most abundant long-chain SFAs in rooster sperm. 
Similar results were found in mammals, the most abundant SFAs in 
the plasma membrane of Norwegian Landrace and Duroc varieties 
was PA, which was positively correlated with sperm survival and 
plasma membrane integrity (18). Further research indicates that that 
PA content in sperm is a key indicator for screening bulls for high or 
low fertility phenotypes (112). However, studies on human sperm 
showed that the level of PA in semen of infertile men and 
asthenospermia patients was higher than that of normal sperm (27, 
113). And the increase of PA level leads to the disorder of sperm 
plasma membrane metabolism (114). The reason for the different 
results may be caused by different species. Unlike rooster sperm, the 
major SFAs of all major classes of buffalo sperm and seminal plasma 
is SA (115). Similarly, biochemical analysis of sperm lipids from three 
pterosaur species revealed that SA is the predominant SFAs in 
flying-fox sperm (116). Compared with silver fox sperm, blue fox 
sperm membranes had significantly higher SA content (29). Studies 
have shown that SA is a biomarker for identifying high freezability and 
low freezability male donkey sperm, which is related to the plasma 
membrane integrity and oxidative stress of sperm after frozen–thawed 
(28). However, another study reported a negative correlation between 
SA content and sperm motility in semen samples from 155 patients 
when tested by gas chromatography (117). This indicated that there 
were species differences in the effect of SA on semen quality.

DHA content increases during sperm epididymal maturation, and 
its deficiency in sperm is typical of male infertility or infertility (118). 
DHA content is positively correlated with sperm concentration and 
motility, and has a protective effect on DNA fragmentation (26). It is 
possible to affirm that increased sperm DHA concentration is essential 
for the final step in dog epididymal maturation, as it is directly 
involved in the events required for fertilization (119). DHA is 
extremely abundant in male ejaculate, and its content in sperm 
accounts for 44.9% of PUFAs (22) and 31.5% in seminal plasma of all 
the FAs (6). In bulls, DHA is approximately 30% in sperm and 20% in 
seminal plasma of total FAs (120). Safarinejad reported a positive 
correlation between EPA levels and semen quality in 
oligoasthenospermia men (121). Further study showed that EPA can 
improve sperm motility, but does not affect sperm concentration or 
sperm PUFAs content (18). It can be seen that the content of omega-3 
PUFAs in sperm is rich, and its content is positively correlated with 
semen quality.

It was found in omega-6 PUFAs studies, AA in rat testis could 
regulate spermatogenesis and androgenic activity, and increase plasma 
FSH, LH, and testosterone levels in a dose-and time-dependent 
manner (122). In vitro study has also shown that the peroxygen 
product of AA causes the release of LH and FSH from porcine anterior 
pituitary cells (123). In summary, AA has an important regulatory 
effect on the synthesis of steroid hormones. The concentration of AA 
is associated with resistance to heat shock in boar sperm (124), and is 
positively correlated with deer semen quality (125). The above studies 
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indicate that AA is an important omega-6 PUFAs regulating 
mammalian semen quality. Testis and sperm have a characteristic lipid 
composition, and high DPA concentrations are unique to rat testis, 
and its level was found to be independent of the quality and quantity 
of oil supplemented in the diet of mature rats (126). Although the 
source of DPA accumulation during early growth has not been 
elucidated, current studies have shown that PUFAs are transferred 
from the circulatory system to the liver and synthesize DPA, which 
eventually accumulates in the testis (127).

6. Mecanisms involved in FAs impacts 
on semen quality

It has been reported that MA prevented the down-regulation of 
testicular steroidogenesis gene expression, and inhibited the reduction 
of sperm count, motility, viability and number of sperm with abnormal 
morphology in diabetic rats (128). Furthermore, oral administration 
of 10 and 20 mg/kg body weight of MA to rats for 28 consecutive days 
also prevented the increase in testicular inflammation and apoptosis 
by preventing the down-regulation of oxidative stress-related genes 
(129). Further study indicates that MA treatment reduced MDA and 
ROS levels in the testis of diabetic rats, and decreased receptor for 
advanced glycation endproducts (RAGE) up-regulation, thereby 
protecting the testis from oxidative damage and maintaining sperm 
motility and sperm morphology (130). The protection mechanism of 
MA is shown in Figure 4. Taken together, MA has a protective effect 
on testicular oxidative damage, thereby helping to prevent the 
occurrence of testicular inflammation and apoptosis. Sperm can use 
PA as a substrate to generate more ATP as an energy source for 
maintaining viability (131). However, other studies have shown that 

PA increases glycolytic flux and lactate production in testicular tissue 
cells in vitro, as well as carnitine palmitoyltransferase I (CPT1) and 
long-chain acyl-CoA dehydrogenase (LCAD) levels, These two 
enzymes are key enzymes in the β-oxidation of FAs. Meanwhile, 
mitochondrial respiration was impaired by PA followed by decreased 
ATP turnover, increased maximal respiration, and proton leak (132). 
The different results may be caused by species difference and different 
PA content in sperm, which need further study.

It was found that ALA is the parent of the omega-3 PUFAs, which 
mammals convert to EPA and DHA through alternating elongation 
and desaturation by elongases of very long chain FAs (ELOVL) and 
fatty acid dehydrogenase (FADs) enzymes (133, 134). It was found in 
a further study that the liver can synthesize EPA, and its precursors 
are transported to the testis with the blood to improve sperm motility. 
There is a negative correlation between EPA in the liver and sperm 
production, indicating that it is synthesized in the liver and then 
transferred to the testis to promote the production of sperm plasma 
membrane (18). It shows that different types of omega-3 PUFAs play 
an important role in maintaining the content of different types of FAs 
in the body, and the liver may be  an important place for 
synthesizing FAs.

AA is part of the cell–cell signaling regulatory network for 
spermatogenesis (135). A small amount of AA does not cause 
oxidative stress damage to sperm (136). However, excessive AA 
activates lipoxygenase (LOX) and mitogen-activated protein kinase 
(MAPK) signaling pathways (137), increasing sperm oxidative 
damage and reducing sperm motility in a dose-dependent manner (1, 
138). Therefore, it can be speculated that an appropriate dose of AA 
can improve semen quality, but it is also important to avoid oxidative 
stress damage to sperm caused by AA. Unlike AA, LA can improve 
the antioxidant capacity of sperm by providing a suitable antioxidant/

FIGURE 4

The protective mechanism of MA on sperm (128). Schematic showing the mechanism of MA protection in the testis. MA may lead to the down-
regulation of RAGE and the reduction of ROS levels. Meanwhile, MA may also prevent the increase of lipid peroxidation and antioxidant enzymes by 
reducing the alteration of Nrf2-Keap1 pathway. MA treatment has also been postulated to have the ability to inhibit the NF-kβ pathway, resulting in the 
down-regulation of NF-kβ and IKKB, and thus possibly the reduction of TNF-α, IL-1β, and iNOS levels. In addition, MA can also prevent apoptosis by 
down-regulating the expression of Bax. MA treatment helps to increase the levels of steroidogenic markers such as StAR, CYP11A1 and ARA-54 in the 
testis of DM.
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oxidative ratio (2, 139). Figure 5 shows the antioxidant mechanism of 
LA. As a geometric isomer of LA, CLA can be converted to other 
PUFAs for the needs of the organism through a series of elongation 
and desaturation steps performed by different enzymes in the 
endoplasmic reticulum (140). In homeostasis, DPA, as the major 
PUFAs in the testis, is thought to be involved in the function of sperm 
transport, and the testis supports normal spermatogenesis by 
consuming DPA to transport sperm into the seminal vesicles (141). 
DPA is beneficial for the maintenance of sperm quality, is mainly 
stored in the testis as phospholipids containing PUFAs, increases the 
activity of endogenous antioxidant enzymes to maintain the DNA 
integrity of sperm in the testis (142).

7. Summary

The beneficial and detrimental effects of FAs supplementation in 
diets and extender are currently the focus of research in the field of 
male reproduction. In this review, we brought together recent findings 
the effects of different types of FAs on semen quality. The ratio of 
omega-6/omega-3 PUFAs in sperm is related to semen quality. To 
improve male fertility and for economic reasons, future studies should 
focus on analyzing the composition of sperm FAs and exploring its 
role in the regulation of extender and diets on semen quality. Our aim 
for a future in which FAs will help to improve the quality of animal 
semen production. It can be concluded that the FAs composition of 
diets and supplements affects sperm metabolism, and analysis of their 
profile in semen will be an important indicator for identifying sperm 
fertility. At this moment, FAs have varying effects on semen properties, 
which may be  affected by its species, animal species, treatment 
methods and dosage. It is still too early to ensure optimal levels of FAs 
additions to diets or extender with a view to developing diets or 
extender that improve semen quality. Although some FAs have proven 
very promising, their efficacy and practical applicability need to 
be  validated in future. Future studies should not only clarify the 
requirements of different animal for FAs, but also deeply explore the 

mechanism of its impact on semen quality, so as to develop diets or 
extender that can improve semen quality.
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FIGURE 5

Antioxidant Mechanisms of LA. LA could scavenge ROS that play an important role in the initiation of lipid peroxidation. MDA can be used as an indirect 
measure of accumulated lipid peroxidation. Glutathione peroxidase (GSH-Px) is an enzyme that oxidizes reduced glutathione (GSH) to oxidized 
glutathione (GSSG), a process that reduces lipid peroxides to the corresponding alcohol, and reduces free hydrogen peroxide to water and molecular 
oxygen. Meanwhile, superoxide dismutase (SOD) and catalase (CAT) also have similar functions.
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