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Introduction

Avian metapneumovirus (AMPV), a member of the family Pneumoviridae, genus

Metapneumovirus possesses a non-segmented negative-sense RNA genome of approximately

13–15 kb with eight genes (3′-N-P-M-F-M2-SH-G-L-5′) (1–3). AMPV causes rhinotracheitis

in turkeys and swollen head syndrome (SHS) in chickens, mostly contributing to secondary

bacterial infections leading to more severe symptoms in chickens (4).

Different types of AMPVs have been classified based on the nucleotide sequence

divergence of the attachment glycoprotein (G) and antigenic differences between strains (5).

Types A and B are found all around the world, and type C was reported in North America,

China, and South Korea, and in a retrospective study in France in 1990 (6). Type D was

reported only once in a turkey flock in France in 1985 (5, 7). AMPV types A, B, and C

have been detected in South Korea; the type A and B in poultry farms and the type C from

pheasants in live bird markets (6, 8, 9).

The study of AMPV infection is particularly difficult due to the transient nature of

viral shedding in the host before the symptoms develop. In most cases, multiple blind

passages of AMPV from the clinical samples are required for isolation and identification

(4, 5). Therefore, a limited number of AMPV sequences are available in the NCBI GenBank

database. As of November 29, 2022, there are only three complete genome sequences

of AMPV type B (LN16, VCO3/60616, and Hungary/657/4; MH745147, AB548428, and

MN729604 respectively) (3, 10, 11).

The tiling amplicon method has been proven to be efficient and prolific in producing

whole genome sequences directly from clinical samples during the Covid-19 pandemic (12).

In a previous study, the multiplex tiling RT-PCR method was applied to enrich the genetic

material of Zika virus and Rabies lyssavirus directly from brain tissue samples, and it enables

to sequence of the full genome of low titer samples containing as low as 50 genome copies in

a reaction (13, 14).
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In this study, we detected 6 AMPVs from chickens in live

bird markets (LBM) in South Korea during 2019–2022. For whole

genome sequencing of AMPVs, we developed a PCR primer panel

to efficiently amplify the complete coding region of AMPV type

B using the multiplex tiling RT-PCR method. We successfully

obtained the complete coding region of AMPVs using Illumina

next-generation sequencing (NGS) and conducted comparative a

phylogenetic analysis to analyze the genetic relatedness of AMPVs

from LBMs in Korea with other AMPVs.

Materials and methods

Sample collection

A total of 138 slaughtered chickens were purchased from

poultry meat vendors in LBMs in Korea during the period of

2019 to 2022. The nasal turbinate or whole beaks of the chickens

were collected and washed with phosphate-buffered saline (PBS)

using enough to fully immerse the samples. Total RNA was

extracted from the nasal turbinate wash samples using the Qiagen

RNeasy mini kit (Hilden, Germany) and used to detect both Avian

metapneumovirus type A and B using the real-time qRT-PCR as

previously described (8). All positive nasal turbinate wash samples

were inoculated to Vero cells for virus isolation.

Primer design and tiling amplicon PCR

To design a tiling amplicon PCR primer panel, full genome

sequences of AMPV type B available in the NCBI GenBank (LN16,

VCO3/60616, and Hungary/657/4; Accession no. MH745147,

AB548428, and MN729604 respectively) were downloaded and

aligned using the MAFFT 1.4.0 program on Geneious Prime

software (https://www.geneious.com) (3, 10, 11). Primers were

designed to amplify 380–420 bp region with about 100 bp overlap,

and 43 sets of designed primers were pooled into two pools

according to the primer design output by Primal Scheme (http://

primalscheme.com) (Supplementary Table 2) (13). Three of six

positive samples with lower cycle threshold (Ct) values (ranging

TABLE 1 Genome sequencing and assembly results of Avian metapneumovirus type B isolates from this study.

Isolates Real-time
PCR (Ct
valuea)

Total NGS
reads

Trimmed
reads
(>Q20)

Genome assembly results

Number of
assembled

reads

Coverage Complete
CDS

AMPV/B/Korea/N19-29/2019 28.67 9,016,084 8,632,844 7,925,758

(91.8%)b
99.3% (13,414 of

13,513)

Yes

AMPV/B/Korea/N21-41/2021 25.77 8,427,438 8,178,950 7,563,434 (92.5%) 99.2% (13,411 of

13,513)

Yes

AMPV/B/Korea/N21-83/2021 30.6 7,867,590 7,609,232 6,967,759 (91.6%) 98.3% (13,279) of

(13,513)

No

[Gaps in F (5 bp)

and L (100 bp)]c

aCycle threshold values of real-time RT-PCR.
bPercentage of mapped reads/trimmed reads.
cGaps were filled with two sanger sequencing reads produced with sample PCR primers used for multiplex RT-PCR.

from 25.77 to 30.6) were selected for subsequent multiplex RT-

PCR (Table 1). cDNA was synthesized from the RNA using the

LunaScript RT SuperMix kit (NEB, Massachusetts, United States)

following the manufacturer’s instructions. For the multiplex PCR

assay, an equal volume of each 100 uM primer stock was pooled

together as designated as pool 1 and 2 (Supplementary Table 2).

The PCR mixture was prepared by mixing 12.5 ul Q5 Hotstart 2X

Master Mix (NEB, Massachusetts, United states), 0.015 uM of each

primer pool, 5 ul of template cDNA, and nuclease-free water up to

25 ul. The reaction mixture was prepared for each pool as it induces

consistency between reactions and PCR assay was performed.

PCR amplification conditions were: 98◦C for 15 s, followed by

35 cycles of 95◦C for 15 s and 63◦C for 5min (12). The PCR

products were then visualized by electrophoresis on 2% agarose

gels showing around 400 bp amplicons (13). PCR products of

both primer pools were combined and used for library preparation

after purification using the Qiaquick PCR purification kit (Qiagen,

Hilden, Germany). Library was prepared using the TruSeq Nano

DNAkit (Illumina, California, United States) to produce 2× 151 bp

paired-end reads. Library preparation and sequencing on NextSeq

500 sequencing system (Illumina, California, United States) was

done by LAS (Gimpo, Republic of Korea).

Assembly and phylogenetic analysis

Raw reads were trimmed of adapters and low-quality bases

using BBDuk version 38.84 by setting the minimum quality to 20

(15). De novo and reference-based assemblies of genome sequences

were performed. For reference-based assembly, trimmed reads

were mapped to the LN16 virus genome (GenBank accession

number: MH745147) using the Minimap 2.24 (https://github.com/

lh3/minimap2) with default options and visualized on Geneious

Prime software. Trimmed reads were assembled de novo using

the SPAdes assembler 3.15.5. The assembled genome sequences

produced by reference mapping and de novo assembly approaches

were combined to generate the final consensus genome sequences.

A total of 48G sequences of AMPV type B were downloaded

from the GenBank database and aligned using the MAFFT
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Multiple Sequence Alignment software v7.450 for phylogenetic

analysis (16). A maximum-likelihood (ML) phylogenetic tree was

reconstructed using the RAxML GUI 2.0 (https://antonellilab.

github.io/raxmlGUI/) with a rapid bootstrap option set to

1,000 (17).

Descriptive results

A total of 6 out of 138 (4.34%) chicken nasal turbinate

wash samples tested positive for AMPV type B by real-time

qRT-PCR (Supplementary Table 1 and Supplementary Figure 1).

Sequencing results confirmed that the positive samples from the

surveillance were not a result of contamination as the detected

APMV sequences differ from each other and the rest of the

APMV genomes found in the GenBank database. The inoculated

Vero cells did not exhibit any cytopathic effect, suggesting it may

require additional passages for virus isolation (data not shown).We

successfully obtained complete coding genome sequences (CDS)

of all three nasal turbinate samples (AMPV/B/Korea/N19-29/2019,

AMPV/B/Korea/N21-83/2021, and AMPV/B/Korea/N21-41/2021;

hereafter N19-29, N21-83, and N21-41, respectively) (Table 1). Our

FIGURE 1

(A) Maximum-likelihood analysis of 54 glycoprotein (G) sequences of AMPV type A and B. It is rooted to the AMPV type A sequences and (B)

Maximum-likelihood analysis of 48 glycoprotein (G) sequences of AMPVs type B downloaded from GenBank database, rooted to midpoint. Closed

circles (•) indicate the viruses sequenced in this study. The scale bars show the number of substitutions per site. The numerical values represent 1,000

bootstrap replicate values expressed as a percentage.
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tiling amplicon PCR reactions showed a fairly small amplification

bias when clinical samples with relatively low Ct values, 25.77

and 28.67, were used. We were able to assemble complete CDS of

N19-29 and N21-41 viruses using the tiling amplicon PCR primer

panel designed in this study coupled with illumina NGS. However,

the N21-83 virus which showed a higher Ct value (30.6) had two

short gaps in the initial genome assembly results, including 5 bp

in F gene and 100 bp in L gene. The gaps were covered with

two sanger sequencing reads using the same primers used in this

study. Since the two fragments were amplified using the same

primers, the outcome of low amplification efficiency was not likely

due to primer-template mismatch. We assume that competitive

inhibition between primers may have decreased PCR efficiency of

the fragments.

Phylogenetic analysis of G gene sequences revealed that the

viruses sequenced in this study belong to the AMPV type B

and showed the closest genetic relationship with the SC1509

(GenBank Accession no. DI187010.1) virus (nucleotide sequence

identity: 95.74–96.14%) from Korea in 2009 and the LN16

virus (nucleotide sequence identity: 95.42–95.82%) identified from

China in 2016 (Figure 1). The N19-29, N21-83, and N21-41

viruses did not cluster with the commercial live attenuated

AMPV type B vaccine strains in phylogenies (Figure 1). We

were not able to present phylogenetic analysis based on whole-

genome sequences as currently there are only 3 complete

genome sequences of AMPV type B available in the NCBI

GenBank database.

In conclusion, we developed the tiling amplicon PCR method

for genome sequencing and successfully sequenced three AMPVs

directly from clinical samples. The multiplex tiling RT-PCR and

NGS approach developed in this study has the potential to

be implemented in a diagnostic setting, providing a rapid and

reliable method for complete genome sequencing and molecular

epidemiological study of AMPV from clinical samples. In addition,

the complete CDS of AMPVs established in this study would

be useful as reference data for future investigations on AMPVs.

The relative ease of acquiring complete CDS directly from clinical

samples without a labor-intensive adaptation process in cell

culture will help further the diversity of the AMPV genome

database. Full genome sequencing of AMPV have suggested

subpopulation present in vaccine strain could be selected for

better replication during in vivo replication in field conditions

(18). Our method could also be used to monitor mutations

and subpopulations of field strains without prior adaptation,

allowing for more accurate representation of AMPV quasi-

species. In addition, since the live bird markets have been

recognized as a reservoir, amplifier, and source of Avian viruses

(19), genomic surveillance of AMPVs in LBMs should be

enhanced for monitoring of further evolution and spread of

the AMPVs.
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