AUTHOR=Anagnostopoulos Alkiviadis , Griffiths Bethany E. , Siachos Nektarios , Neary Joseph , Smith Robert F. , Oikonomou Georgios TITLE=Initial validation of an intelligent video surveillance system for automatic detection of dairy cattle lameness JOURNAL=Frontiers in Veterinary Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2023.1111057 DOI=10.3389/fvets.2023.1111057 ISSN=2297-1769 ABSTRACT=Introduction

Lameness is a major welfare challenge facing the dairy industry worldwide. Monitoring herd lameness prevalence, and early detection and therapeutic intervention are important aspects of lameness control in dairy herds. The objective of this study was to evaluate the performance of a commercially available video surveillance system for automatic detection of dairy cattle lameness (CattleEye Ltd).

Methods

This was achieved by first measuring mobility score agreement between CattleEye and two veterinarians (Assessor 1 and Assessor 2), and second, by investigating the ability of the CattleEye system to detect cows with potentially painful foot lesions. We analysed 6,040 mobility scores collected from three dairy farms. Inter-rate agreement was estimated by calculating percentage agreement (PA), Cohen’s kappa (κ) and Gwet’s agreement coefficient (AC). Data regarding the presence of foot lesions were also available for a subset of this dataset. The ability of the system to predict the presence of potentially painful foot lesions was tested against that of Assessor 1 by calculating measures of accuracy, using lesion records during the foot trimming sessions as reference.

Results

In general, inter-rater agreement between CattleEye and either human assessor was strong and similar to that between the human assessors, with PA and AC being consistently above 80% and 0.80, respectively. Kappa agreement between CattleEye and the human scorers was in line with previous studies (investigating agreement between human assessors) and within the fair to moderate agreement range. The system was more sensitive than Assessor 1 in identifying cows with potentially painful lesions, with 0.52 sensitivity and 0.81 specificity compared to the Assessor’s 0.29 and 0.89 respectively.

Discussion

This pilot study showed that the CattleEye system achieved scores comparable to that of two experienced veterinarians and was more sensitive than a trained veterinarian in detecting painful foot lesions.