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Introduction: The rapid emergence and widespread spread of multidrug-

resistant bacteria is a serious threat to the health of humans and animals.

The pharmacokinetic/pharmacodynamic (PK/PD) integration model based on

mutant selection window (MSW) theory is an important method to optimize the

dosage regimen to prevent the emergence and spread of drug-resistant bacteria.

Actinobacillus pleuropneumoniae (AP) is a pathogen that can cause pleuropneumonia

in pigs.

Methods: We employed an in vitro dynamic infection model (DIM) to study the

prevention of drug-resistant mutations of danofloxacin against AP. A peristaltic pump

was applied to establish an in vitro DIM to simulate the PK of danofloxacin in

plasma, and to study the MSW of danofloxacin against AP. A peristaltic-pump in vitro

infection model was established to simulate dynamic changes in the danofloxacin

concentration in pig plasma. PK and PD data were obtained. Then, the relationship

between PK/PD parameters and antibacterial activity was analyzed by the sigmoid

Emax model.

Results and discussion: The area under the curve during 24 h/ the minimum

concentration that inhibits colony formation by 99% (AUC24h/MIC99) had the

best-fitting relationship with antibacterial activity. The AUC24h/MIC99 values for a

bacteriostatic e�ect, bactericidal e�ect, and eradication e�ect were 2.68, 33.67, and

71.58h, respectively.We hope these results can provide valuable guidancewhen using

danofloxacin to treat AP infection.

KEYWORDS

multidrug resistance, peristaltic pump, PK/PD, mutation selection window, Actinobacillus

pleuropneumoniae

Introduction

Actinobacillus pleuropneumoniae (AP) is a pathogen that can cause pleuropneumonia in

pigs. The clinical symptoms are fibrinous hemorrhagic pneumonia and necrotizing pneumonia

(1–3). AP infection seriously affects development of the pig industry, and can result in

considerable economic losses for farmers (4–7). The common prevention and treatment

methods for AP infection are vaccination and drug therapy.

Vaccination is an efficacious means for preventing AP infection (8–10). However, the

number of serotypes is large and the cross-protection of each serotype against AP is poor.

Hence, developing a universal, stable vaccine that works on all serotypes is very difficult (11, 12).

Antimicrobial therapy remains an efficacious way to treat AP infection.
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The antibiotics used most commonly to treat AP infection

in pigs are ceftiofur, tiamulin, danofloxacin, florfenicol, tilmicosin,

and cefquinome. However, non-rational use of antimicrobial

agents can result in the emergence and spread of drug-resistant

bacteria, which leads to treatment failure (13–16). Development

of new antibiotics and optimization of dosage regimens can be

employed to address drug-resistance issues. The development of

new drugs is time-consuming and cannot keep pace with the rate

of bacterial mutations. Hence, optimization of dosage regimens

can help to prevent the emergence of drug-resistant bacteria. The

pharmacokinetics/pharmacodynamics (PK/PD) integration model

based on mutant selection window (MSW) theory is an effective

method to optimize dosage regimens to prevent drug resistance.

Dong et al. (17) were the first to propose that the mutant

prevention concentration (MPC) is a limitation of the MSW theory.

The MPC is defined as the lowest drug concentration that inhibits

the growth of insensitive bacterial subpopulations at high bacterial

concentrations (bacterial number ≥109 CFU/mL). The minimal

inhibitory concentration (MIC) is located in the lower part of the

MSW. If the drug concentration is within the MSW (particularly in

the lower–middle part of the MSW) and subject to multiple selective

pressures, then resistant bacteria are selected over susceptible bacteria

(18, 19).

The in vitro dynamic infection model (DIM) is convenient,

economic, easy to operate, and can simulate PK and PD in infected

target organs. It has important application value in optimizing drug-

administration regimens for preventing drug-resistant mutations

(20–24). The peristaltic pump is a commonly used in vitro model

that can simulate the dynamic changes of drug concentrations and

bacteria counts in vivo. This model can be employed to obtain

the real-time and continuous antibacterial effect between a drug

and bacteria.

Danofloxacin is a third-generation fluoroquinolone used only in

animals. PK/PD studies have been carried out in vivo and ex vivo

using danofloxacin. However, danofloxacin has not been studied in

vitro to obtain real-time and continuous antibacterial concentrations.

Here, a peristaltic-pump model was employed to establish an

in vitro infection model to study the prevention of drug-resistant

mutations based on the MSW. Our results could provide valuable

guidance for formulating dosage regimens if using danofloxacin to

treat AP infection in clinical settings to prevent the emergence of

drug-resistant mutations.

Materials and methods

Strains, drugs, and instruments

AP (CVCC259) was purchased from Chinese Veterinary

Culture Collection Center (Qingdao, China). Danofloxacin

mesylate powder (content >99%) was provided by Guangdong

Dahuanong Biotechnology (Guangdong, China). Tryptic soy

broth (TSB) and Mueller–Hinton Agar (MHA) were obtained

from Guangdong Huankai Microbiology Technology (Guangdong,

China). Nicotinamide adenine dinucleotide (NAD) was sourced from

Beijing Puboxin Biotechnology (Beijing, China). Newborn bovine

serum was provided by Guangzhou Ruite (Guangzhou, China).

A peristaltic pump (BT100-1F), pump head (DG-2-B/D; 10

roller), and rubber hose (inner diameter ≤3.17mm; wall thickness=

0.8–1mm) were purchased from Longer Precision Pump (Baoding,

NC, USA). Fiber dialysis tubes (Float-A-Lyzer
R©
; 1,000 kD; 10mL)

were sourced fromMilliporeSigma (Burlington, MA, USA).

Determination of the MIC, MIC99 and MPC

MHA and TSB were supplemented with 4% newborn bovine

serum and NAD (1 mg/mL).

The MIC was tested by an agar-dilution method according to

criteria set by the Clinical and Laboratory Standards Institute (25).

Briefly, after being cultured for 8 h in a constant-temperature shaker

(180–200 rpm, 37◦C), the bacterial suspension was diluted to 106

CFU/mL by TSB. Then, the bacterial suspension (100 µL) was added

to an MHA plate containing danofloxacin (0.016–1µg/mL after

twofold dilution). After drying, the MHA plates were placed in an

incubator in an atmosphere of 5% CO2 for 18–20 h at 37
◦C. TheMIC

was determined as the minimum concentration of drug that did not

result in bacterial growth.

Next, we determined MIC99. Briefly, a series of MHA plates

containing drugs were prepared based on the MIC (90% × MIC,

80% × MIC, 70% × MIC, 60% × MIC, 50% × MIC). After the

logarithmic-phase bacterial suspension had been diluted tenfold

(10−1, 10−2, 10−3, 10−4, 10−5, 10−6), the dilutions were inoculated

to MHA and cultured as described for determination of the MIC.

Then, the bacterial populations were counted and compared between

drug-containing plates and the blank plate. Percent recovery growth

of bacteria was obtained, and a linear formula between the drug

concentration and percent recovery was obtained. MIC99 was

determined as the value which inhibited the growth of bacteria by

99% (1% recovery).

We also tested the MPC. Briefly, after being cultured for 8 h,

a logarithmic-phase bacterial suspension (100mL) was centrifuged

(5,000 × g, 20min, 4◦C). Then, the supernatant was removed and

blank TSB (1mL) was added for a bacterial population of 1.5 ×

1011 CFU/mL. Then, the bacterial solution (100 µL) was inoculated

on MHA plates (1 × MIC, 2 × MIC, 4 × MIC, 8 × MIC, 16 ×

MIC, 32 × MIC, 64 × MIC) and incubation allowed to proceed for

72 h. The minimum concentration of danofloxacin that did not elicit

bacterial growth was defined as MPCpr. Then, based on MPCpr, the

drug concentration was reduced linearly from 10%MPCpr to 50% ×

MPCpr, and the procedure repeated as described for measurement

of MPCpr. The MPC was defined as the lowest concentration of

danofloxacin that could inhibit the growth of bacteria. All tests were

repeated thrice.

Establishment of an in vitro DIM

The peristaltic pump that we employed has been described in

detail previously (26). A storage chamber, central chamber, and

elimination chamber were connected through the peristaltic pump

and rubber tube. The storage chamber consisted of a blue-cap bottle

(500–5,000mL) for storage of blank TSB broth. The central chamber

comprised a modified three-necked flask containing blank TSB broth

(290mL), a dialysis tube, and magnetic rotor. The three-necked flask

consisted of an inlet tube, sampling tube, and outlet tube with rubber

stoppers. The sampling tube comprised an elongated syringe needle
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and nylon filters (0.22µm) for collection of the TSB sample and

contamination prevention. The central chamber was placed in a large

beaker with water at a constant temperature (37◦C) and magnetic-

stirring apparatus (100 rpm). The elimination chamber consisted of

a blue-cap bottle (500–5,000mL) for collection of waste liquid. The

dialysis tube contained a bacterial suspension (10mL) and “floated”

in blank TSB and 1-cm above TSB thanks to a foam gasket.

The PK parameter of danofloxacin in pigs was in reference to

the work of Yang et al. (27). We set the elimination half-life (t1/2)

of danofloxacin at 7 h. The elimination rate constant (Kel) was

calculated to be 0.693/t1/2. The flow rate of the peristaltic pump (Q)

was calculated as Kel × VC (broth volume in the central chamber

and dialysis tube). After the flow rate had been set, the device was

run for 2 h to enable stabilization. Then, logarithmic-phase AP (108

CFU/mL) was added to the central chamber. The in vitro DIM was

established if the bacterial population stabilized at∼108 CFU/mL.

Kill curves and changes in the MIC

We wished to study the antibacterial effect in different parts of

the MSW. Hence, seven dosage groups (0 × MIC99, 1/2 × MIC99,

1 × MIC99, 2 × MIC99, 4 × MIC99, 8 × MIC99, 16 × MIC99)

were set up and administrated thrice every 24 h. To balance the drug

concentration between the dialysis tube and peripheral chambers

rapidly, both compartments were administered drugs to ensure that

the drug concentration was identical upon experiment initiation. The

bacterial suspension (0.1mL) was collected from the dialysis chamber

FIGURE 1

Simulated time-concentration curves of danofloxacin in the peristaltic pump after extrapolation.

FIGURE 2

Time-kill curves of danofloxacin against Actinobacillus pleuropneumoniae after administration of di�erent dosages. Values are the mean ±standard

deviation (n = 3).
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with a 1-mL sterile syringe. Then, it was diluted and dropped onto

a blank MHA plate for bacterial counting at 0, 3, 6, 9, 12, and

24 h after each dose as well as at 48 and 72 h after the final dose.

The limit of detection of the bacterial count was 50 CFU/mL. Each

dose was repeated thrice. The kill curve of danofloxacin against AP

was drawn as the logarithmic value of the bacterial population at

different times.

To detect AP mutants, each sample was plated in MHA

containing 1× MIC of danofloxacin 24 h after each dose as well

as 48 and 72 h after the final dose. AP with increasing MICs

was passed through five generations in MHA to monitor the

stability of the mutant. Then, the MIC of mutant AP was tested as

described above.

PK/PD fitting and analysis

The concentration of danofloxacin at different time points was

tested by high-performance liquid chromatography, but the data were

lost because of damage to software. Therefore, the PK of drugs in

the model were simulated using a first-order elimination rate and

calculated using Equation 1:

C = C0 × e−kt (1)

C: drug concentration at time t,

C0: initial concentration of danofloxacin,

K: constant of elimination rate,

t: time of sample collection after drug administration.

The drug concentration at each time point after each dose

administration was calculated, and drug concentration–time curves

were drawn. Values of area under concentration-time curve (AUC24h)

and maximum concentration (Cmax) during 24 h were obtained

based on a non-compartment model usingWinNonlin (version 5.2.1,

Pharsight, MO, USA).

The antibacterial effect (E) was defined as the maximum change

in the number pf bacteria during the interval of each administration.

The antibacterial effect was split into a bacteriostatic effect (0 log10
CFU/mL), bactericidal effect (3 log10 CFU/mL), and eradication

effect (4 log10 CFU/mL).

AUC24h/MIC99 and Cmax/MIC99 were obtained directly by the

values of AUC24h and Cmax divided by MIC99. The percentage of

time that the drug concentration was above MIC99 during the dosing

interval of 24 h (i.e., %T >MIC99) was calculated by PD models

using WinNonlin.

The relationship between PK/PD parameters and the

antibacterial effect was fitted by an inhibitory sigmoid Emax

model by WinNonlin using Equation 2:

E = Emax −
(Emax − E0)× CN

e

CN
e + ECN

50

(2)

E: change in the bacterial count in different drug concentrations

after administration of each dose,

Emax: change in the bacterial count in the control group after

administration of each dose,

E0: maximum change in the bacterial count in the treatment

group after administration of each dose,

Ce: PK/PD parameters, AUC24h/MIC99, Cmax/MIC99,

%T >MIC99,

EC50: value of the PK/PD parameter to reach half of Emax,

N: Hill coefficient, the slope of the PK/PD parameter, and

E curves.

The fitting relationships between PK/PD parameters

and E were expressed by the correlation coefficient (R2).

The greater the value, the better was the fitting. PK/PD

parameters were calculated to make the bacterial population

decrease by 0 log10 CFU/mL, 3 log10 CFU/mL, and 4

log10 CFU/mL.

Results

MIC, MIC99, and MPC

The MIC, MIC99, and MPC were 0.0625, 0.05, and

0.4µg/mL, respectively.

TABLE 1 Values of the antibacterial e�ect (E) and PK/PD parameters of

danofloxacin against Actinobacillus pleuropneumoniae after

three-times administration.

Dose
(µg/mL)

AUC24h/MIC99

(h)

Cmax/MIC99 %T
>MIC99

(%)

E (log10
CFU/mL)

Control 0 0 0 1.16

0 0 0 −0.27

0 0 0 −0.17

0.025 0.50 4.73 0 −0.45

0.55 5.17 0 −0.49

0.55 5.21 0 −0.35

0.05 1.00 9.46 0 −0.99

1.09 10.34 4.13 −0.63

1.10 10.42 4.48 −0.58

0.1 2.00 18.92 29.59 −3.10

2.19 20.67 33.33 −2.10

2.20 20.84 33.64 −2.26

0.2 4.00 37.84 62.92 −4.14

4.37 41.34 67.93 −2.15

4.41 41.68 68.36 −1.53

0.4 8.00 75.68 92.42 −7.22

8.74 82.69 94.93 −3.42

8.81 83.36 95.14 −3.37

0.8 16.00 151.36 100.00 −7.65

17.49 165.38 100.00 −2.84

17.62 166.72 100.00 −2.75

AUC24h , 24-h area under concentration-time curve; Cmax , maximum concentration; MIC99 , the

minimum concentration that inhibits colony formation by 99%; %T > MIC99 , the percentage of

time that drug concentration remained above MIC99 ; Each dose was given thrice. From top to

bottom corresponds to the antibacterial effect and PK/PD parameters after each dose.
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PK

According to Equation 1, the danofloxacin concentration at

each time point was obtained by extrapolation. Concentration–time

curves were drawn (Figure 1). The values of Cmax and AUC24h after

administration of each dose were obtained using WinNonlin.

Drug concentrations were distributed in different parts of the

MSW. The groups of 0.025µg/mL and 0.05µg/mL were located

outside the MSW. The groups of 0.1µg/mL and 0.2µg/mL were

located in the lower part of the MSW. The group of 0.4µg/mL was

located in the middle of the MSW. The group of 0.8µg/mL group

was located in the middle and upper parts of the MSW.

In vitro dynamic kill curves

Kill curves at different dosing concentrations are shown in

Figure 2. The antibacterial effect after each dose is shown in

Table 1. The groups of 0.025µg/mL and 0.05µg/mL could produce

a bacteriostatic effect. The group of 0.1µg/mL could reach

a bactericidal effect. The group of 0.2µg/mL could reach an

eradication effect.

The antimicrobial effect of three-times administration was not

significantly different for the group of 0.025µg/mL compared with

that of the control group (Table 1). If the dose >0.025µg/mL, then

the reduction in the bacterial count after the first-time dose was

FIGURE 3

Values of MICfinal/MICinitial after drug administration for a di�erent number of times.

FIGURE 4

Fitting curve between AUC24h/MIC99 and the antibacterial e�ect.
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TABLE 2 Values of PK/PD parameters and AUC24h/MIC99 to achieve

di�erent antibacterial e�ects.

PK/PD parameter Value

Emax (Log10 CFU/mL) 0.24

EC50 (h) 22.30

E0 (Log10 CFU/mL) −4.81

Slop (N) 1.42

AUC24h/MIC99 for bacteriostatic effect (h) 2.68

AUC24h/MIC99 for bactericidal effect (h) 33.67

AUC24h/MIC99 for eradication effect (h) 71.58

Emax , change in the bacterial count in the control group after administration of each dose; E0 ,

maximum change in the bacterial count in the treatment group after administration of each

dose; EC50 , value of the PK/PD parameter to reach half of Emax ; N, Hill coefficient, the slope of

the PK/PD parameter and E curves.

significantly greater than that after the second-time dose and third-

time dose. The higher the dose, the greater was the difference, but

the difference between the second-time dose and third-time dose

was not significant. Changes in the MIC at each dose are shown in

Figure 3. The MIC of AP did not change significantly if the drug

concentration was lower than MIC99 and higher than the MPC. If

the drug concentration was in the middle of the MSW, then the

MIC of AP was increased significantly if the frequency of drug

administration increased (eightfold increase for the groups of 0.1, 0.2,

and 0.4µg/mL) and recovery to the initial value was observed in the

group of 0.05µg/mL after the final administration.

PK/PD analysis

Using the sigmoid Emax model, AUC24h/MIC99 had the highest

correlation with E (R2 = 0.7992) (Figure 4). R2 of %T >MIC99 with

E was 0.7935 (Figure 5). The values of AUC24h/MIC99, Cmax/MIC99,

%T > MIC99, and E are shown in Table 1. Therefore, AUC24h/MIC99

was selected as the PK/PD parameter to predict the corresponding

E. The PK/PD parameters and AUC24h/MIC99 values for different

antibacterial effects were obtained (Table 2). The predicted values of

AUC24h/MIC99 to produce a bacteriostatic effect, bactericidal effect,

and eradication effect were 2.68 h, 33.67 h, and 71.58 h, respectively.

Discussion

Danofloxacin is a third-generation fluoroquinolone used solely

in animals. It has a wide range of antibacterial activities. The ex

vivo PK/PD of danofloxacin have been studied in ruminants (e.g.,

sheep, goats, cattle, camels) using tissue-cage infection models, but

reports for bacteria that infect pigs are scarce. Although those ex vivo

studies reflected the interaction between the host, drugs, and bacteria

comprehensively, the drug concentrations were constant. Therefore,

a new model is needed to ascertain the influence of dynamic drug

concentrations on pathogens.

Previously, we studied the in vivo PK/PD integration of

danofloxacin against AP using a tissue-cage infection model.

However, the targets of AP are the lungs and blood, so differences

exist between tissue fluid and lungs. Considering the high cost and

fatality rate using an animal-infection model, establishment of an

in vitro infection model to simulate infection of target organs is

necessary and valuable.

The peristaltic-pump model can be employed to simulate the

dynamic changes in drug concentration and bacterial population

in the host in real-time. This strategy provides important support

for simulating in vivo PK/PD integration (especially for simulation

of difficult-to-obtain target organs). Therefore, we established a

peristaltic-pump infection model to study the MSW-based PK/PD

integration of danofloxacin against AP in vitro for preventing the

emergence and spread of drug-resistant mutant bacteria. In the

present study, the PK parameters of danofloxacin in pig blood were

referenced with results reported previously (t1/2 = 7.28 ± 1.10 h)

(27). We set t1/2 at 7 h after comprehensive consideration of the

deviation of different dosing methods and reagents.

Kill curves revealed a marked difference in the antibacterial

effect among three-times administration at an identical dosing

concentration. In particular, the antibacterial effect of one-time

administration was obviously higher than that for two-times and

three-times administration. Three main reasons could explain these

results. First, the growth rate of mutant AP may be reduced to add

its persistence against drugs. Second, a sub-inhibitory concentration

of danofloxacin could inhibit the growth of bacteria. Third, the drugs

in the bacterial body have antibacterial activity. Therefore, bacteria

need a long time to pump-out drugs. Hence, the rate of bacterial

growth is reduced and bacterial counts cannot recover to that in the

initial population.

The sensitivity of AP decreased if the danofloxacin concentration

was between MIC99 and the MPC. These experimental results are

consistent with those reported by other investigators (28–31). The

main reason is that sensitive bacteria were the main subpopulation

in the original population, but a few resistant subpopulations were

present. These sensitive bacteria were killed gradually if the drug

concentration was between MIC99 and the MPC. After multiple

dosing, the resistant subpopulations grew gradually and became

the main population that exhibited a higher MIC compared with

that of the bacteria in the original population. Therefore, drug

concentrations located in the lower part of the MSW should be

avoided if dosage regimens are being designed.

If selecting drugs for the treatment of bacterial infections,

PK/PD parameters are used often to evaluate the clinical efficacy

of antimicrobial agents to prevent the emergence and spread

of drug-resistant bacteria (32). For fluoroquinolones, the best-

fitting PK/PD parameter related to the antibacterial effect is

AUC24h/MIC (33). We also analyzed the relationship between

Cmax/MIC99, %T >MIC99, and AUC24h/MIC99, and the antibacterial

effect. We discovered that AUC24h/MIC99 and Cmax/MIC99 were

correlated more strongly with antibacterial activity (R2 = 0.7992

and 0.7991, respectively) compared with %T >MIC99 (R2 =

0.7935). Hence, we applied AUC24h/MIC99 to analyze the PK/PD

parameters between E and calculate the required values of

AUC24h/MIC99 to achieve different antibacterial efficacy. The

predicted values of AUC24h/MIC99 to produce a bacteriostatic effect,

bactericidal effect, and eradication effect were 2.68, 33.67, and

71.58 h, respectively.

Few PK/PD studies of danofloxacin against pathogenic bacteria

in pigs have been conducted. The ex vivo PK/PD of danofloxacin

against Pasteurella multocida and Haemophilus parasuis in piglet

serumwere studied by Li et al. (34). The mean values of AUC24h/MIC
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FIGURE 5

Fitting curve between %T >MIC99 and the antibacterial e�ect.

to produce a bacteriostatic effect and bactericidal effect were 32 h

and 49.8 h for P. multocida, whereas they were 14.6 h and 37.8 h for

H. parasuis, respectively. Yang et al. (35) studied the ex vivo PK/PD

integration of danofloxacin against Escherichia coli in piglet ileum

using ultrafiltration probes. The mean values of AUC24h/MIC

for ileum ultrafiltrates that achieved a bacteriostatic effect,

bactericidal effect, and eradication effect were 99.85, 155.57, and

218.02 h, respectively.

Conclusions and recommendations

We established an in vitro peristaltic-pump infection model

to simulate the dynamic changes in danofloxacin concentrations

in pig plasma. We obtained real-time and continuous PK data

and PD data simultaneously. AUC24h/MIC99 was the best-

fitting PK/PD index for the antibacterial effect. The predicted

values of AUC24h/MIC99 to produce a bacteriostatic effect,

bactericidal effect, and eradication effect were 2.68, 33.67, and

71.58 h, respectively. These results may provide a valuable

reference for application of danofloxacin in the treatment of

AP infection.
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