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Introduction: African swine fever virus (ASFV) infection is one of the most complex

and fatal hemorrhagic viral diseases, causing a devastating loss to the swine industry.

Since no e�ective vaccine is available, prevention and control of ASFV heavily depends

on early diagnostic detection.

Methods: In this study, a novel indirect ELISA was established for detecting antibodies

against ASFV using dual-proteins, p22 and p30. Recombinants p22 and p30 were

expressed and purified from E.coli vector system by recombined plasmids pET-

KP177R and pET-CP204L. p22 and p30 were mixed as antigens for developing the

indirect ELISA.

Results: Through optimizing coating concentrations of p30 and p22, coating ratio

(p30: p22 = 1:3), and serum dilution (as 1:600), the established ELISA performed higher

specificity, sensitivity, and repeatability against ASFV-positive serum. Furthermore, 184

clinical serum samples from suspected diseased pigs were verified the established

ELISA in clinical diagnosis. The results showed that compared with two commercial

ELISA kits, the established ELISA possessed higher sensitivity and almost uniform

coincidence rate.

Conclusion: The novel indirect ELISA based on dual-proteins p30 and p22 performed

a valuable role in diagnostic detection of ASFV, providing a broad insight into

serological diagnostic methods of ASFV.
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1. Introduction

African swine fever (ASF) is an acute and highly contact infectious disease, caused by African

swine fever virus (ASFV). ASFV infection induced high fever, lethargy, and death in pigs,

causing a devastating loss to the swine industry. ASF was firstly found in Kenya in 1909 and

reported in 1921 (1). Subsequently, ASFV spread to Central and Eastern Europe (2). In China,

ASFV infection first occurred in Liaoning Province in August 2018, and subsequently spread

to all provinces of China (3). Moreover, genotype I ASFVs and low virulent genotype II ASFVs

occurred in China (4, 5). Since no commercial vaccine is available, the emergence of ASFVs

presents new challenges for the early diagnosis and control of ASF.
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As the only member of the family Asfarviridae, ASFV is

an enveloped virus containing 170–190 kb double-stranded DNA.

The ASFV genome includes more than 150 open reading frames,

encoding 54 structural proteins and more than 100 nonstructural

proteins (6). Among these proteins, p22, encoded by KP177R gene,

is a structural protein located at the inner envelope of ASFV virion

(7). Recently, a function genomics has shown that p22 protein

interacts with host proteins involved in several cellular function,

including cell signaling transduction, cell structure, and virus binding

(8). Although a recombinant ASFV lacking p22 has no effect on

pathogenicity and virulence of ASFV, immunization with p22 could

induce a higher antibody titer, indicating that p22 has potential

as a target for serological diagnosis (9, 10). p30 protein is one

of the most immunogenic structural proteins in the ASFV virion,

which is encoded by CP204L gene (11). During ASFV infection of

macrophage, the expression of p30 is detected at 2–4 h post-infection

and then persists throughout the infection cycle (12). Thus, p30 is

considered to be an ideal diagnostic protein using for diagnosis of

ASFV in the early state of infection.

Since no commercial vaccines against this disease currently, early

detection and diagnosis play a vital role in the prevention and control

of ASFV. In addition to molecular diagnostic method, serological

detection is another method for virus infection, which is conducive

to identify infected animals and eradicate the potential risk (13, 14).

Although molecular diagnostic methods are very important for the

early diagnosis and prevention of ASF, the characteristics of low cost

and convenience of serological methods are more suitable for large-

scale field epidemiological investigation (14–16). The establishment

of reliable serological diagnostic methods is closely related to

the antigenicity of the selected antigens (17, 18). Enzyme-linked

immunosorbent assay (ELISA) is a designated experiment specified

by OIE (World Organization for Animal Health) for international

trade to detect specific antibodies to ASFV. Screening several viral

proteins with higher reactivity is very important for establishing

reliable serological diagnostic methods and avoiding unnecessary

biosafety problems (19, 20). In this study, we expressed and purified

ASFV p22 and p30 proteins, and established an indirect ELISA

method for detecting antibodies against ASFV.

2. Materials and methods

2.1. Serum samples

ASFV-positive serum was purchased from China Institute of

Veterinary Drug Control. All clinical swine sera were donated

from Vland Biotech (China). The negative sera against ASFV,

and the positive sera against porcine circovirus type 2 (PCV2),

porcine pseudorabies virus (PRV), classical swine fever virus (CSFV),

porcine reproductive and respiratory syndrome virus (PRRSV), and

Haemophilus parasuis (HPS) were stored in our lab.

2.2. Sequence analysis and optimization

The amino acid sequences of p22 and p30 were analyzed

for immunogenicity, hydrophilicity and transmembrane region by

IEDB database (http://tools.immuneepitope.org/bcell/). According to

Escherichia coli (E.coli) expression systems, the sequences of KP177R

TABLE 1 The sequences of primers.

Primers name Primers sequences

CP204L-R GGATCCATGGATTTCATCCTGAATATC

CP204L-F CTCGAGTTTTTTTTTCAGCAGTTTAA

KP177R-R GGATCCAAAAAACAGCAGCCGCCGA

KP177R-F CTCGAGTTATGCGTGTTTATGATTAC

gene and CP204L gene were optimized and synthesized based on

ASFVHLJ/18 strain (Accession numberMK333180.1). Subsequently,

the synthesized sequences were cloned into pEASY-Blunt vector by

gene synthesis corporation.

2.3. Expression of p22 and p30

To construct the expression plasmids of p22 and p30, the

sequences of CP204L and KP177R were amplified by PCR using

the primers containing BamHI and XhoI restriction enzyme sites

(Table 1). After verification by sequencing, the sequences of CP204L

and KP177R were inserted into pET-32a vector. The plasmids

recombinants pET-KP177R and pET-CP204L were transformed into

E.coli BL21(DE3) cells. The recombinants E.coli were cultured

in LB medium and the condition of proteins expression were

optimized, such as culture time, temperature, IPTG concentration.

The immunogenicity evaluation was performed with standard ASFV-

positive serum (China Institute for Veterinary Drug Control) and

His-Tag monoclonal antibody (Proteintech).

2.4. Purification of p22 and p30

After optimizing the culture conditions, the E.coli were

centrifuged to get the pellets (4,000 rpm, 30min, 4◦C) and then

resuspended in pre-cold PBS on ice for ultrasonication. According the

manufacturer’s protocol, the supernatants were collected and filtered

through a 0.22µm filter and purified using a Ni-NTA resin-based

column (GE Healthcare) following centrifuging at 12,000 rpm for

30min. After eluting with elution buffer, the fractions were dissolved

in PBS containing 5% glycerol and concentrated by ultrafiltration.

The protein concentration was determined by a BCA Protein Assay

Kit (Thermo Fisher). The purified p22 and p30 proteins were verified

using sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) and Coomassie blue staining.

2.5. Western blot

Following separation by SDS-PAGE, proteins were transferred

onto PVDF membrane. After blocking with 5% skim milk for 2 h,

the membrane was incubated with standard ASFV-positive serum

(1:1,000) overnight at 4◦C. Then, the membrane was incubated

with HRP-conjugated goat anti-pig secondary antibodies (1:8,000,

Abcam). Finally, the membrane was visualized in Bioanalytical

imaging system.
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FIGURE 1

Exploration of p22 and p30 proteins induction conditions. (A, B) Determination of optimal IPTG concentration of p22 (A) and p30 (B). M, Marker; (1)

pET-32a empty carrier; (2) Before induction; (3–6) IPTG concentration at 0.1, 0.4, 0.7, and 1.0mM. (C, D) Determination of the best OD600 of p22 (C) and

p30 (D). M, Marker; (1) pET-32a empty carrier; (2) Before induction; (3–6) OD600 at 0.4, 0.6, 0.8, 1.

2.6. Establishment of indirect ELISA

2.6.1. Determination of coating concentration and
serum concentration

The coating concentration and serum concentration were

optimized by checkerboard titration (21). Briefly, p22 and p30

were diluted (1:20–1:400) and coated on 96-well microtitration

plates. ASFV-positive andASFV-negative sera with different dilutions

were incubated. After incubating with HRP-conjugated goat anti-

swine IgG (H+L) antibody and stopping with stop solution, the

plates were quantified using a microplate reader at 450 nm. Coating

concentration and serum concentration were developed the best

reaction condition by determining the negative sample (N) value,

positive sample (P) value, and P/N ratio. Based this condition, the

optimal dilution of horseradish peroxidase-conjugated secondary

antibodies was further determined.

2.6.2. Determination of cut-o� value, specificity,
sensitivity, and repeatability

To determine the cutoff vale of the established ELISA, 50 ASFV-

negative serum samples were evaluated. The competitive ELISA

based on p32 (produced by ID.vet) was used as a reference. The

mean value (X) and standard deviation (SD) of 50 samples were

calculated. Negative≤ X+ 2×SD. Positive≥ X+ 3×SD. The middle

is considered as the suspicious range.

For verifying the specificity of the established indirect ELISA, pig

serums positive against other pig pathogens were tested, including

pseudorabies virus (PRV), porcine reproductive and respiratory

syndrome virus (PRRSV), porcine circovirus 2 (PCV2), classical

swine fever virus (CSFV), Haemophilus parasuis (HPS). The ASFV-

positive serum and the serum from specific pathogen-free (SPF) pig

was used as positive and negative control, respectively.

According to the optimized condition, the sensitivity was

carried out by testing the serial dilution multiple of ASFV-positive

serum (1:200–1:15,000).

To assess the repeatability of the indirect ELISA, ASFV-positive

blood samples (determined by ID.vet competitive ELISA) were

selected for intra-assay and inter-assay repeatability experiments.

For inter-assay variability, each sample was retested three times on

plates of different batches. For intra-assay variability, each sample was

repeated 3 times on the same plate at the same time. The results are

expressed as the coefficient of variation (CV), that is, the ratio of the

SD of each group of samples to the average OD450 value.

2.7. Detection of clinical samples

A total of 184 serum samples from suspected diseased pigs was

blinded by the established indirect ELISA and two commercial ELISA

kits (ID.vet and JUNO). All the serum samples were detected by p22

and p30 dual-proteins combination based indirect ELISA method in

this study. The coincidence was calculated.
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FIGURE 2

Soluble analysis and purification of p22 and p30 proteins. (A, B) Soluble analysis of p22 protein (A) and p30 protein (B). M, Marker; (1) Supernatant after

ultrasound; (2) Precipitation after ultrasound. (C, D) The purification results of p22 protein (C) and p30 protein (D). (C) M, Marker; (1–7) Flow through fluid,

supernatant after ultrasound, 20, 40, 50, 100, and 200mM imidazole. (D) M, Marker; (1–9) Precipitation after ultrasound, supernatant after ultrasound, flow

through fluid, 20, 40, 50, 100, 200, and 200mM imidazole.

FIGURE 3

Determination the expression of p22 and p30. (A, C) The expression of p22 protein (A) and p30 protein (C) was determined by anti-His antibody. (B, D)

The expression of p22 protein (B) and p30 protein (D) was immunoreactive with ASFV-positive serum.
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FIGURE 4

Optimal conditions of ELISA. (A) Optimal concentration of coating protein and serum dilution. (B) Optimal blocking solution and best blocking time.

(C) Determination of the optimum dilution of enzyme-labeled secondary antibody. (D) Optimum substrate-enzyme interaction time.

TABLE 2 Coating volume ratio of p30 and p22.

Volume ratio of p30 to p22 p30 p22 1:1 2:1 1:2 3:1 1:3

ASFV-positive sera 2.920 1.394 1.537 1.672 1.261 1.502 0.835

ASFV-negative sera 0.474 0.195 0.244 0.219 0.164 0.186 0.101

P/N 6.2 7.2 6.3 7.6 7.7 8.1 8.3

3. Results

3.1. Expression and purification of p22 and
p30

To explore the optimal conditions for the expression of p22

and p30, the recombinants E.coli (containing pET-KP177R or pET-

CP204L) was cultivated with different concentrations of IPTG for 4 h

at 37◦C. The results showed induction expression using 0.1–1.0mM

IPTG had no effect on the expression of p22 and p30 (Figures 1A, B).

When the OD600 value reach 0.8–1.0, the recombinants E.coli

were more conducive to induction expression (Figures 1C, D). We

further found that p22 was mainly expressed in the supernatant,

while p30 was expressed both in the supernatant and precipitation

(Figures 2A, B). The soluble protein fraction was purified with Ni-

NTA Sepharose, and the result showed that 100mM imidazole was

more conducive to elution of p22 protein and 200mM imidazole was

beneficial to elute p30 protein (Figures 2C, D).

3.2. Immunogenicity of recombinant protein
p22 and p30

Both of purified p22 and p30 were primarily verified by

Western blot and performed a strong immunoreactivity with

anti-His antibody (Figures 3A, C). Furthermore, the results of

Western blot showed that the purified p22 and p30 protein

specifically reacted with ASFV-positive serum (Figures 3B, D).

Taken together, the purified p22 and p30 exhibited

higher immunogenicity.

3.3. Optimization of experimental conditions
for ELISA

To determine the optimal conditions, the checkerboard titrations

were performed. The results showed that the optimum coated

concentration of p22 and p30 was determined at 0.12 and 0.4µg/mL,

and the optimum dilution ratio of serum as primary antibody was

1:600 (Figure 4A). For blocking conditions, we found compared

with 5% BSA and 1% gelatin, using 5% skim milk for 60min

exhibited higher performed a higher blocking effect (Figure 4B).

Moreover, the dilution ratio of secondary antibody and the reaction

time of substrate-enzyme were explored. The result showed for

p22, the optimum dilution of secondary antibody reached 1:40,000

(Figure 4C) and the optimum reaction time is 15min (Figure 4D);

for p30, the optimum dilution of secondary antibody was 1:30,000

and the reaction time of substrate-enzyme is 10min (Figures 4C, D).

To develop the indirect ELISA based p22 and p30, the coating ratio

of both proteins were evaluated. Based on calculating P/N value, we

found that the optimum volume ratio of p30 to p22 reached 1:3

(Table 2).
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3.4. Determination of cut-o� value,
sensitivity, repeatability, and specificity

Fifty ASFV-negative serum samples (determined by ID.vet

competitive ELISA) were used to determine the cut-off value of the

established ELISA. As shown in Figure 5A, the mean value of ASFV-

negative serum was 0.174, and the cut-off value was determined to

be 0.34. For assessing the sensitivity of this ELISA, ASFV-positive

serums were diluted to detect. The results showed compared with

ID.vet ELISA kit, the established ELISA performed higher sensitivity

(Table 3). To determine the repeatability of this ELISA, 4 selected

ASFV-positive serums were performed by intra-assay and inter-assay.

We found the intra-assay coefficients of variation (CV) ranged from

2.0 to 4.5% And the inter-assay CV ranged from 2.5 to 5.5% (Table 4),

indicating that the indirect ELISA exhibited higher repeatability. To

assess the specificity of this ELISA, the positive serums against PCV2,

PRV, PRRSV, CSFV, and HPS were detected. The results showed that

all these serums were negative (Figure 5B), indicating the established

ELISA possessed high specificity.

3.5. Clinical samples detection

Total 184 pig blood samples were detected by the above

established indirect ELISA, and 99 positive samples and 83 negative

samples were detected by ID.vet competitive ELISA kit. Among

184 samples, the results of 174 samples detected by the established

ELISA were consistent with that of ID.vet ELISA, the coincidence

rate of the established ELISA arrived at 94.6% (compared with ID.vet

ELISA) (Table 5). Moreover, the sensitivity of the established ELISA

was higher than that of other ELISA kits (Table 5). Several negative

samples determined by ID.vet ELISA were identified as positive

FIGURE 5

Determination of sensitivity and specificity. (A) The cut-o� value of the

established ELISA. (B) The specificity was determined using positive

serums against PCV2, PRV, CSFV, PRRSV and HPS.

samples and suspicious samples by the established ELISA. Taken

together, the indirect ELISA based on p22 and p30 could be adapted

to clinical serological diagnosis.

4. Discussion

ASF is a global epidemic disease with high mortality, causing

a serious impact on the global swine industry. Considering that

there is no effective vaccine to prevent and control ASFV, the only

effective measure is to diagnostic analysis and eliminate infected

animals. Thus, highly sensitive and specific diagnostic analysis

performed an important role in rapid detection of ASFV. Due to

the advantages of low cost, high sensitivity, and strong specificity,

ELSIA is recommended as the primary method for detecting ASFV

antibody (22).

ASFV encodes more than 50 structural proteins. It is necessary

to develop ELISA based on the viral proteins expressed in different

stages of viral infection. At present, several commercial ELISA kits

were effective and available for detecting ASFV antibodies. For

example, the multi-antigen indirect ELISA kit based on the mixture

of three recombinant proteins p32, p62 and p72 produced by ID.vet

in France. Besides, several studies have used p30, p54, p72, and

other viral proteins as coating proteins for establishing ELISA to

detect ASFV antibodies. p72 is a late structural protein of ASFV,

which is located in the middle or surface layer of viral particles

(23). ASFV p72 gene possesses highly conserved sequence, inducing

a strong immune response (24). Moreover, a recent study has used

p72 protein expressed by eukaryotic system as coating antigen to

establish an blocking ELISA (25). p54 protein is an early structural

protein in ASFV infection, which involves in viral replication,

transfection, and maintenance of structural stability (23). An indirect

ELISA detection method based on the p54 protein produced by

baculovirus expression system was developed and performed higher

coincidence rate compared with the commercial kits (26). pp62 is

an important structural protein of ASFV, cleaved into p35, p15 and

p8 proteins by s273r protease during maturation of viral particle (7).

The recombinant pp62 protein using baculovirus expression system

TABLE 4 Determination of repeatability by inter-assay and intra-assay.

Sample
no.

Intra-assay Inter-assay

Results CV% Results CV%

1 2.513±0.072 2.86 2.525±0.135 5.34

2 1.404± 0.045 3.21 1.372± 0.025 2.55

3 1.64± 0.033 2.01 1.684± 0.054 3.21

4 0.835± 0.034 4.07 0.821± 0.39 4.75

TABLE 3 Determination of sensitivity.

Test kit Dilution ratios 1:200 1:400 1:800 1:1,600 1:3,200 1:6,400 1:12,800 1:25,600

p22 and p30 OD450 2.387 2.105 1.791 1.379 1.086 0.732 0.435 0.216

P/N + + + + + + + -

ID.vet OD450 0.172 0.285 0.397 0.511 0.654 / / /

P/N + + + + - - - -
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TABLE 5 Coincidence rate of clinical samples.

ELISA kit Sample
numbers

Positive samples Negative samples Suspicious
samples

Samples
with

di�erent
results

Coincidence
rate

(Compared
with ID.vet)

Numbers Positive
detection

rate

Numbers Negative
detection

rate

p22 and p30 184 101 54.9% 79 42.9% 4 10 94.6%

ID.vet 184 99 53.8% 83 45.1% 2 / /

JUNO 184 96 52.2% 87 47.3% 1 7 96.2%

has been used as coating protein for establishing ELISA, which is

recommended by OIE resulting its sensitivity and specificity (27).

CD2v is a membrane protein embedded in the outer surface of the

virus capsule and a late expression protein of ASFV (28), which can

lead to the adsorption of erythrocytes on the surface of virus infected

cells and contribute to their diffusion in the host (29). ASFV CD2v

protein was expressed in CHO-K1 cells and established an indirect

ELISA method with good specificity and sensitivity (21).

Since ELISA based on different ASFV proteins has different

characteristics, it is necessary to continuously explore other viral

proteins of ASFV that can be used for specific antibody detection,

and select different antigen combinations to further improve

ELISA detection methods. p22 is an early transcribed, structural

protein localized at the inner envelope of ASFV particle. Although

recent study has confirmed p22 protein did not seem to be

involved in viral replication or virulence in pigs by developing a

recombinant ASFV lacking the KP177R gene, p22 protein could

interact with cellular proteins to participate in viral binding,

signal transduction, and cell adhesion (8). Recently, a blocking

ELISA based on p22-monoclonal antibody showed higher s

sensitivity and specificity for detecting ASFV antibodies (30). p30,

a membrane phosphorylated protein, is expressed in the early

stage of ASFV infection and plays a significant role in virus

internalization (31, 32). Recent research has showed p30 could

interact with 7 cellular proteins to involve in viral internalization

mediated by clathrin and micropinocytosis, and might regulate

innate immunity by interacting with innate immune regulators

(33). Furthermore, an indirect ELISA based on p30 expressed by

prokaryotic expression system has been established and showed

higher specificity (34). In this study, based on the recombinant

proteins p22 and p30 were expressed in prokaryotic expression

system, an indirect ELISA was developed and showed higher

sensitivity and specificity.

5. Conclusion

An indirect ELISA based on p30 and p22 protein was established.

Through detection of standard ASFV-positive serums, positive

serums against other virus, and negative serums, the sensitivity and

specificity of this ELISA was determined. Our study provides a broad

insight into serological diagnostic methods of ASFV antibodies,

but it still needs to be further verified by more pig serums from

different sources to expand the experimental data and improve the

detection method.
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