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Multi-transcriptomics reveals
RLMF axis-mediated signaling
molecules associated with bovine
feed e�ciency

Chaoyun Yang, Yanling Ding, Xingang Dan, Yuangang Shi* and

Xiaolong Kang*

Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University,

Yinchuan, China

The regulatory axis plays a vital role in interpreting the information exchange

and interactions among mammal organs. In this study on feed e�ciency, it

was hypothesized that a rumen-liver-muscle-fat (RLMF) regulatory axis exists

and scrutinized the flow of energy along the RLMF axis employing consensus

network analysis from a spatial transcriptomic standpoint. Based on enrichment

analysis and protein-protein interaction analysis of the consensus network and

tissue-specific genes, it was discovered that carbohydrate metabolism, energy

metabolism, immune and inflammatory responses were likely to be the biological

processes that contributemost to feed e�ciency variation on the RLMF regulatory

axis. In addition, clusters of genes related to the electron respiratory chain,

including ND (2,3,4,4L,5,6), NDUF (A13, A7, S6, B3, B6), COX (1,3), CYTB, UQCR11,

ATP (6,8), clusters of genes related to fatty acid metabolism including APO (A1,

A2, A4, B, C3), ALB, FG (A, G), as well as clusters of the ribosomal-related

gene including RPL (8,18A,18,15,13, P1), the RPS (23,27A,3A,4X), and the PSM

(A1-A7, B6, C1, C3, D2-D4, D8 D9, E1) could be the primary e�ector genes

responsible for feed e�ciency variation. The findings demonstrate that high feed

e�ciency cattle, through the synergistic action of the regulatory axis RLMF,

may improve the e�ciency of biological processes (carbohydrate metabolism,

protein ubiquitination, and energy metabolism). Meanwhile, high feed e�ciency

cattle might enhance the ability to respond to immunity and inflammation,

allowing nutrients to be e�ciently distributed across these organs associated

with digestion and absorption, energy-producing, and energy-storing organs.

Elucidating the distribution of nutrients on the RLMF regulatory axis could

facilitate an understanding of feed e�ciency variation and achieve the study on

its molecular regulation.

KEYWORDS

feed e�ciency, regulatory axis, consensus analysis, WGCNA, cattle

Introduction

Feed efficiency (FE) is one of the significant constraints to livestock development, and

its improvement is an essential breeding schedule for the sustainability of the beef cattle

industry. However, the distribution of nutrients between organs is unclear. Residual feed

intake (RFI) has been widely used to evaluate FE in dairy cattle (1–3) and beef cattle (4, 5).

It was described by Koch in 1963, and its linear regression of dry matter intake (DMI) and

average daily gain (ADG) represents the energy sinks (e.g., the requirement for maintenance,
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growth, lactation, and egg) of the animal at a certain time and fail

to correlate with economic traits such as average daily gain, growth

rate (6, 7). RFI belongs to moderate heritability [chicken 0.21–0.50

(8, 9), duck 0.24–0.27 (10–12), pig 0.19–0.63 (13, 14), cattle 0.28–

0.40 (15, 16), sheep 0.45 (17)], and is negatively correlated with the

FE, showing that stable genetic gain could be foreseen from RFI-

based selection. RFI is subject to many factors, such as protein

turnover, tissue metabolism, stress, digestibility, heat increment,

fermentation, physical activity, body composition, and feeding

patterns (18–22). However, the specific mechanisms underlying the

biology of RFI are still underdeveloped. Plenty of experimenters

have endeavored to elucidate RFI variation in terms of gene

expression from a single tissue [e.g., liver (23), skeletal muscle (24),

blood (25), adipose tissue (26), rumen epithelium (27), duodenum

(5)]. As each study has focused on only individual tissue, it is

highly variable and couldn’t acquire a coherent conclusion (28).

Although studies included multiple tissues, the results obtained do

not exhaustively describe the variation in RFI (29).

The digestion and absorption of nutrients is a coordinating

process participated by multi-organ. Nutrients are digested in

the gastrointestinal tract and absorbed into the blood, and then

transported to multiple organs and tissues such as the liver

and muscle to supply energy, with excess nutrients stored as

triglycerides in adipose tissues or glycogen in the liver and

muscle. Therefore, the process of nutrient intake to digestion,

energy supply, and storage must be done collaboratively among

tissues, during which different tissues control energy allocation

by regulating the expression of functionally related genes and

transmitting signals directly or indirectly to other tissues. Indeed,

a number of studies have recently shown that the brain-gut axis can

modulate obesity and appetite (30) and maintain the homeostasis

of gastrointestinal glucose (31). It has also been shown that the

liver-brain-gut axis (32), the gut-liver-muscle axis (33), and the

muscle-liver-fat axis (34) are closely related to metabolic function.

Consensus module analysis based on weighted correlation network

analysis (WGCNA) is a methodology for identifying and excavating

genes associated with complex phenotypic traits and has been used

to uncover themetabolites and gene signatures (35, 36).Meanwhile,

both consensus module analysis and spatial transcriptomics could

be used to explore similarities and differences between tissues.

With the limitations of the previous studies, this project is based

on the existence of a rumen-liver-muscle-fat (RLMF) regulatory

axis and performed consensus network construction using multi-

transcriptomic data from the rumen, liver, muscle and adipose

tissues with divergent RFI to identify consensus and tissue-specific

modules, and uncover the eigengenes and biological processes. The

Abbreviations: FE, feed e�ciency; RLMF, rumen-liver-muscle-fat; PPI,

protein-protein interaction; WGCNA, weighted correlation network; RFI,

residual feed intake; DMI, dry matter intake; ADG, average daily gain; TPM,

transcripts per kilobase of exon model per million mapped reads; MAD,

median absolute deviation; RL, rumen-liver; LM, liver-muscle; LF, liver-fat;

MF, muscle-fat; MM, module-memberships; KME, eigengene connectivity;

EPC, edge percolated component; MCC, maximal clique centrality; MNC,

maximum neighborhood component; BP, biological process; MF, molecular

function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes

and Genomes.

objectives of this project are to elucidate the changes in genes and

related biological processes from the perspective of nutrient intake

and digestion (rumen)-processing/transfer (liver)-energy supply

(muscle)-energy storage (adipose). It will provide a well-defined

understanding of the contribution of FE variation and present the

landscape of energy transfer from the gene expression profile.

Materials and methods

Data preparation and processing

The GSE116775 dataset was downloaded from the Gene

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE116775). The present study (29) used four tissues

(rumen, liver, fat, and muscle tissue) from the Angus cattle

with diverse RFI (sequencing platform: Illumina HiSeq 4000;

Library layout: pair-end; Library source: TRANSCRIPTOMIC;

Average length: 200), including eight animals with high or low

RFI. After the original file (fastq format) was downloaded, the

fastqc software (37) (version 0.11.7, https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and Trim-galore (version

0.6.6, https://www.bioinformatics.babraham.ac.uk/projects/trim_

galore/, parameters: paired, –quality 25 –length 36, stringency 3)

were used to control the quality of reads, respectively. The read

fragment with a quality score greater than Q25 was reserved. The

quality-controlled clean reads were then aligned (hisat2, version

2.2.1, http://daehwankimlab.github.io/hisat2/; parameters: default

parameters) to the index file of the bovine reference genome ARS-

UCD1.2 (downloaded from the BovineGenome.org website, https://

bovinegenome.elsiklab.missouri.edu/downloads/ARS-UCD1.2)

to obtain a sam file containing the aligned information. The sam

files were converted to the bam files using samtools software

(38) (version 1.9, https://sourceforge.net/projects/samtools/files/

samtools/1.9/; parameters : -b -S -h) and the bam file index was

constructed, following gene quantification using the featureCounts

program in the subread package (39) (version 2.0.1, http://

subread.sourceforge.net/; parameters: -t exon -g gene_id ) to

acquire the count matrix. Considering that TPM (Transcripts Per

Kilobase of exon model per Million mapped reads) is an excellent

method for quantitating RNA abundance and is proportional to

the average relative RNA molar concentration, and is used by

many computational algorithms for transcript quantification [e.g.

RSEM (40) and Salmon (41) methods], we used TPM for gene

quantification. The formula for TPM is: 106 ∗ [(reads mapped to

transcript / transcript length) / Sum (reads mapped to transcript

/ transcript length)].

To filter out genes with low and abnormal expression, the

Median Absolute Deviation (MAD) variable was adopted to

remove genes with abnormal TPM values [the advantage of MAD

for removing abnormal values over the mean and/or standard

deviation method (42)] as an input for constructing the network

using the WGCNA package (43). Initially, the MAD value of

all genes was calculated; then all genes in the first quartile ()

were retained, and finally, all genes with a MAD >1 and the

overlaps in the two tissues were used to construct the consensus

module. Through theMADmethod, we finally determined that the

number of genes that fulfilled the conditions in the rumen, liver,
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muscle, and fat were 10,868, 8,574, 9,060, and 13,116, respectively.

In the consensus gene set, 7,168 (Supplementary Table S1), 6,471

(Supplementary Table S2), 7,621 (Supplementary Table S3), and

8,386 (Supplementary Table S4) genes were used for consensus

network construction for rumen-liver (RL), liver-muscle (LM),

liver-fat (LF), and muscle-fat (MF) regulatory axis, respectively.

In addition to the genes that were used to build the consensus

network, tissue-specific genes in the tissue-tissue regulatory axis

were selected as tissue-specific genes according to the MAD value

of top300, and functional enrichment analysis was performed:

RL (3,700 rumen-specific genes, Supplementary Table S5;

1,406 liver-specific genes, Supplementary Table S6); LM

(2,103 liver-specific genes, Supplementary Table S7; 2,589

muscle-specific genes, Supplementary Table S8), LF (953 liver-

specific genes, Supplementary Table S9; 2,028 fat-specific genes,

Supplementary Table S10); MF (674 muscle-specific genes, 4370

fat-specific genes).

Network construction and module
detection

The WGCNA methodology was adopted for the network

construction and identification of the consensus module. Before

proceeding with the network construction, sample outliers were

checked. The Euclidean distance between samples was calculated

using the hclust function in the WGCNA package, with the

parameter method = “average”, and samples with distinct outliers

were removed. The construction of a weighted gene network

requires the optimal selection of soft thresholding power β that

improves co-expression similarity and calculates the adjacency.

Therefore, picking the optimal soft thresholding power β was

performed using the function pickSoftThreshold (based on the

criterion of approximate scale-free topology) in the R package

WGCNA (44).

After eliminating the outliers and yielding the optimal soft

thresholding power β, the function blockwiseConsensusModules

was employed to calculate the consensus topological overlap and

produce the consensus module. Here, power = soft thresholding

power β was used (when R = 0.85). The module contained 30

genes was used as the minimum number (minModuleSize = 30),

the module detection sensitivity was 2 (deepSplit = 2), and the

cut height for merging of modules was 0.25 (mergeCutHeight =

0.25, i.e., merge into one module if the correlation coefficient

of eigengenes within the module is >0.75). In order to avoid

rearrangement of eigengene within modules according to KME,

the parameter minKMEtoStay was set to 0, and the parameter

maxBlockSize was set to 10,000, and the remaining parameters

follow the default value of the function.

The acquisition of the tissue-tissue consensus module of

interest correlates with the tissue-specific co-expression module of

the concern (e.g., Rumen-specific is correlated with the Rumen-

Liver consensus module). With this, the hypergeometric test

(Fisher’s exact test) was used to check the overlap between tissue-

specific and tissue-tissue consensus modules (e.g., Rumen-specific

and Rumen-Liver), and the correlation between tissue-specific and

tissue-tissue consensus modules was derived.

Subsequently, the consensus module was analyzed concerning

the RFI. First, the co-expression networks for each of the objects

used in the consensus network calculation were associated

with the RFI (e.g., Rumen-specific and Liver-specific co-

expression networks in the Rumen-Liver consensus module).

The Tissue-specific co-expression network was built using the

function blockwiseModules, where the parameters are: power

= soft thresholding power β. TOMType = “unsigned”, the

minModuleSize = 30. mergeCutHeight = 0.25. maxBlockSize

= 20,000. pamRespectsDendro = FALSE, verbose = 3, other

parameters were set as default. This process yielded tissue-

specific co-expression modules associated with RFI (significant

correlations). When the correlation coefficients used for the two

tissue-specific and RFI share the same sign (zero relationships if

the two correlations have opposite signs, labeled the “NA”), the

minimum correlation coefficient and the maximum significance

test p-value were preserved to evaluate the relationship between

the two modules. The process allows for the unification of the

common traits and similarities between the two modules.

Finally, the gene significances (GS) and module-memberships

(MM, also known as KME) of eigengenes in the tissue-

specific consensus module were calculated using the function

corAndPvalue. For the purpose of measuring the relationship

among all genes in the two tissue-specific co-expression modules,

a “meta-analysis” was carried out to establish their correlations.

Once the consensus network modules were obtained, the genes

within the significantly related modules of the consensus or tissue-

specific network were subjected to functional enrichment analysis

to elucidate the biological processes and signaling pathways,

and protein-protein interaction (PPI) analysis was conducted

to discover the core genes and key regulatory sub-networks (If

there are multiple non-significantly correlated modules, the top

3 are selected according to the absolute value of the correlation

coefficient; also if the number of genes in the module was more

significant than 300, the top 300 absolute values of GS are selected

for subsequent analysis).

PPI and key gene analysis

Protein-protein interactions (PPI) were obtained using the

Strings website (https://string-db.org/, version 11.0) with the

following parameters; Organism: Bos taurus; minimum required

interaction score was set to high confidence (0.7), other

parameters were set to default. The CytoHubba plugin in

Cytoscape was used to detect hub genes through four centrality

methods which were network topology analysis—Degree, edge

percolated component (EPC), maximal clique centrality (MCC),

and maximum neighborhood component (MNC), which are

practical methods for identifying hub gene from PPI networks (45).

The overlaps of the four methods (the highest top20) were defined

as hub genes. The MCODE plugin in Cytoscape was applied to

identify critical sub-networks and the seeds of nodes (the seeds

of nodes were also defined as hub genes), and the parameter

configuration is degree cutoff = 2, node score cutoff = 0.2, k-core

= 2, and maximum depth = 100. Subsequently, genes from key

sub-networks were subjected to functional enrichment analysis.
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FIGURE 1

Consensus module construction and detection. (A–D) was the consensus module construction for RL, LM, LF, and MF, and its power β, module

amount and preservation were (8,7,7,9), (20,22,39,29) and (0.77, 0.71, 0.75, 0.77), respectively.

Gene function classification and annotation

The vast majority of present functional annotation programs

are updated slowly, leading to most of the results are missed (e.g.,

the most popular David website has data annotation information

prior to 2016, which does not explain the results of the latest studies

properly) (46). Therefore, the R package clusterProfiler (version

4.05) was designed. The clusterProfiler package is dependent on

the genome-wide annotation packages (OrgDb) project published

by Bioconductor, which is updated semi-annually, i.e., the gene

functions that we could annotate here are the latest and most up-

to-date versions available (47). The enrichGO function was applied

to the annotation of Gene Ontology, which includes a biological

process (BP), molecular function (MF), and cellular component

(CC), where the parameters are set as follows: pvalueCutoff =

0.05 (adjusted P-value cutoff on enrichment tests), qvalueCutoff =

0.2 (q-value cutoff on enrichment tests), pAdjustMethod = “BH”

(multiple test correction method for p-values, i.e., Benjamini &

Hochberg method), and the maximum number of genes enriched

in the pathway maxGSSize and the minimum number minGSSize

are adjusted according to the size of the annotated gene set. The

enrichKEGG function was adapted to the Kyoto Encyclopedia of

Genes and Genomes (KEGG) annotation to uncover the relevant

signaling pathways with the same parameters as the enrichGO

function. All enrichment analysis results were visualized using the

R package ggplot2.

Results

Consensus module detection

When the scale-free topology model fit reached 0.85

(R=0.85), a soft thresholding power (β = 8,7,7,9) was

assigned to construct the rumen-liver (RL), liver-muscle

(LM), liver-fat (LF), and muscle-fat (MF) consensus module

(Supplementary Figures S1A–D). As a result, several consensus

modules (20,22,39, and 29 modules in RL, LM, LF, MF regulatory

axis, respectively) were detected, and its total preservation of the

two eigengene networks was more than 0.71, indicating that there

was considerable similarity between the eigengene co-expression

modules (Figures 1A–D).

For RL regulatory axis (Supplementary Figure S2A and

Table 1), three consensus modules (turquoise, midnightblue,

tan), three rumen-specific modules (green, black, red), and

a liver-specific module (lightcycan) were detected. For LM

regulatory axis (Supplementary Figure S2B and Table 1), three

consensus modules (purple, yellow, pink), three muscle-specific
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TABLE 1 Names of detected modules and its correlation coe�cient in the RLMF regulation axis.

Axis name Module source Module Correlation P-value

Coe�cient

RL axis Consensus Turquoise 0.48 0.06

Consensus Midnightblue 0.48 0.06

Consensus Tan −0.47 0.07

Rumen-specific Green 0.63 0.01

Rumen-specific Black 0.74 0.002

Rumen-specific Red 0.58 0.03

Liver-specific Lightcycan −0.47 0.06

LM axis Consensus Purple 0.53 0.03

Consensus Yellow 0.46 0.07

Consensus Pink −0.48 0.06

Muscle-specific Midnightblue 0.71 0.001

Muscle-specific Salmon 0.76 0.001

Muscle-specific Red 0.7 0.003

Liver-specific Lightye-llow −0.67 0.03

LF axis Consensus Sienna3 0.55 0.03

Consensus White 0.66 0.006

Liver-specific Grey60 −0.63 0.001

Fat-specific Blue 0.58 0.04

Fat-specific Lightcyan 0.69 0.007

Fat-specific Plum1 0.61 0.02

MF axis Consensus Turquoise 0.65 0.003

Consensus Yellow 0.63 0.02

Consensus Darkgreen −0.63 0.01

Muscle-specific Orange −0.79 0.002

Muscle-specific Brown 0.74 0.001

Muscle-specific Darkorange 0.76 0.001

Fat-specific Royalblue 0.56 0.04

Fat-specific Lightcyan 0.56 0.05

Fat-specific Tan 0.6 0.03

modules (midnightblue, salmon, red), and a liver-specific module

(lightyellow) were observed as significant correlation modules.

For LF regulatory axis (Supplementary Figure S3A and Table 1),

two significant correlation consensus modules (sienna3, white),

a liver-specific module (grey60), and three fat-specific modules

(blue, lightcyan, plum1) were detected. For MF regulatory

axis (Supplementary Figure S3B and Table 1), three significant

correlation consensus modules (turquoise, yellow, darkgreen),

three muscle-specific modules (brown, orange, darkorange);

and three fat-specific modules (royalblue, lightcyan, tan) were

identified. These results indicated that in the regulatory axis RLMF,

in addition to the modules with similar expression patterns, there

were also tissue-specific modules, suggesting that the four tissues

may have functional similarities and specificity.

Enrichment and PPI analysis of the RL
regulatory axis and rumen- or liver-specific
module

Enrichment analysis for Consensus module in RL
regulatory axis

Functional enrichment analysis of the genes contained

in the consensus eigengene networks was carried out to

unravel the biological functions of eigengenes (Figure 2 and

Supplementary Table S11). The turquoise consensus module

is primarily involved in executing molecular functions such

as catalytic activity, kinase activity, transferase activity, etc. It

is also involved in disease and inflammation-related signaling

pathways such as “MAPK signaling pathway”, “T cell receptor
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signaling pathway”, etc. Biological processes are mainly associated

with RNA molecular pathways, such as “spliceosome”, “RNA

splicing”. In the tan consensus module, the genes were mainly

involved in pathways related to energy metabolism, such

as “oxidative phosphorylation”, “chemical carcinogenesis—

reactive oxygen species”, “thermogenesis”; biological processes

such as “ATP metabolic process”, “electron transport chain”,

“respiratory electron transport chain”, “ATP synthesis coupled

electron transport”, etc.; molecular functions were primarily

performed by respiratory chain-related enzymes such as “NADH

dehydrogenase activity”, “NADH dehydrogenase activity”,

“oxidoreductase activity”, “acting on NAD(P)H, electron transfer

activity”, etc.; the cellular components are mainly located in

mitochondrial-related structures such as the “mitochondrial

membrane”, the “mitochondrial proton-transporting ATP synthase

complex”, and the “mitochondrial respiratory”. The other

consensus module, midnight-blue consensus, was not enriched

for the relevant biological pathways or processes under the set

threshold conditions.

The results of eigengenes’ enrichment analysis for the

consensus module above suggested that three main functionally

similar findings in RL regulatory axis. The first was that

energy metabolism was widespread. The second was that the

eigengenes in the consensus module activated the corresponding

signaling pathways in response to inflammation or pathology. The

third was that given the diverse function of rumen and liver,

RNA function-related pathways were activated to adapt to the

complex environment.

Enrichment analysis for rumen- or liver-specific
modules

Meanwhile, rumen-specific module enrichment analysis

showed that green and black modules were mainly involved

in ribonucleotide-related biological processes, such as nucleic

acid metabolic process, RNA metabolic process, ribosome

biogenesis, regulation of nitrogen compound metabolic process,

positive regulation of metabolic process; and ubiquitin-mediated

proteolysis and binding, ubiquitin-dependent protein binding

(Figure 2 and Supplementary Table S11).

In addition to the genes used in the non-consensus module, the

genes with aMAD value of the top 300 in the rumen are primarily

enriched in the regulation of epithelial cell motility and movement

(Supplementary Figure S4), such as “cell motility” and “epithelium

development”. The genes with a MAD value of top 300 in the liver

were predominantly enriched in inflammation-related signaling

pathways such as “inflammatory response”, as well as in fatty acid

degradation pathways (“PPAR signaling pathway”, “fat digestion

and absorption”) and glucose and amino acid metabolism. These

suggest that the rumen-specific genes were mainly involved in

mRNA-related processes and related pathways such as cell motility,

which may be required for rumen motility.

Protein-protein interaction and hub gene analysis
By elucidating the interactions between genes, it revealed the

interactions network contained 1,243 nodes, 3,990 seeds, and

eight sub-networks with a score value >6 (Figures 3A–H). Eleven

hub genes were also discovered (Figure 3A, all from rumen-

specific module green), which were DDX27, BRIX1, FTSJ3, BMS1,

UTP15, RPF2, PES1, WDR3, NOP58, SKIV2L2, and DHX15. The

eight subnetworks in which the genes were at the hub were

AATF, PRPF19, NDUFA13, KIAA0638, EIF3G, GTF2H3, AHCTF1,

MRPS12. The enrichment analysis revealed that the genes, in the

consensus module tan, primarily involved in energy metabolism-

related pathways. After PPI analysis, we detected a cohort of genes

associated with the cellular electron transport chain (Figure 3C),

including NADH-related genes ND (2,3,4), NDUFA (7,13, S6),

cytochrome-related genes COX (1,3), CYTB, UQCR11), and ATP

synthase-related genes ATP (6,8). Meanwhile, a set of ribosome-

function related genes, RPL (1,8,18A,18,15,13), constituted another

sub-network (Figure 3E). The rumen-specific green module was

predominantly engaged in RNA biological processes, which were

consistent with the enrichment analysis results. These genes

consisted of DEAD-box decapping family genes (Figure 3A),

DDX (24,27,47,52), DHX15; ribosomal function-related genes

(Figure 3A), UTP (3,6,15), WDR (3,43,75); transcription-related

genes (Figure 3F),GTF2(A1, E1, H1, H3), POLR2F, TCEA1, ERCC3;

protein degradation related genes (Figure 3D), PSM (E1, D2-4,

D9, C1, B6); nuclear pore complex protein gene NUP (50,85,88,

160,107). PPI analysis of liver-specific top 300 and rumen-specific

top 300 genes were identified by MCODE with Score = 9.3

(Supplementary Figure S5), in which the genes were all from liver-

specific top 300 and a cohort of genes associated with fatty acid

transport, APO (A1, A2, B, C3, H), ALB, AMBP, FABP1.

In summary, the integration of enrichment and PPI analyses

demonstrated that respiratory-related genes and pathways become

active in both the liver and the rumen, which explains that

the two tissues participate in energy-intensive activities such

as peristalsis, nutrient uptake and transport, as well as the

transport of substances and the breakdown of some macro-

molecules. In addition, as there was various heterotrophic

microbe colonized in the rumen, they provided small molecule

nutrients for themselves and the ruminants by breaking down

the ingested large molecules, and this process also required

energy from respiration. Meanwhile, signaling pathways related

to energy metabolism were also more active in the liver, which

might be due to its distinctive energy-center and detoxification-

center properties.

Enrichment and PPI analysis of the LM
regulatory axis and liver- or
muscle-specific module

Enrichment analysis for Consensus module in LM
regulatory axis

According to the enrichment analysis (Figure 4), the genes of

the consensus-pink module were principally enriched in pathways

involved in lipid catabolism, such as “fatty acid degradation”, “fatty

acid metabolism”, “lipid modification”; Protein function-related

biological processes, such as “amide/peptide/protein transport”,

“protein processing in the endoplasmic reticulum”, “negative

regulation of protein tyrosine kinase activity”. In the consensus-

purple module, genes were primarily enriched in pathways

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2023.1090517
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Yang et al. 10.3389/fvets.2023.1090517

FIGURE 2

Enrichment analysis for consensus or rumen-/liver-specific modules in RL regulatory axis. The dot size and color represented enriched gene

numbers and the enriched significance.
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FIGURE 3

PPI and hub gene analysis for genes in RL regulatory axis. The color and shape represented gene source and gene type, respectively.

linked to energy metabolism, such as mitochondrial-related

function “mitochondrial respiratory”, “mitochondrial respiratory

chain complex I”, “mitochondrial proton-transporting ATP

synthase complex”; electronic transmission , such as “electron

transport chain”, “energy coupled proton transport, down

electrochemical gradient”, “respiratory electron transport chain”;
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FIGURE 4

Enrichment analysis for consensus or liver-/muscle-specific modules in LM regulatory axis. The dot size and color represented enriched gene

numbers and the enriched significance.
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oxidative phosphorylation, such as “oxidative phosphorylation”,

“oxidoreductase complex”, “oxidoreductase activity”; cellular

respiration, such as “mitochondrial respiratory”, “respiratory chain

complex I”, “respiratory electron transport chain”, NADH activity,

such as “NADH dehydrogenase activity”, “NADH dehydrogenase

(quinone) activity”, “NADH dehydrogenase complex” and ATP

and calorie formation, such as “ATP biosynthetic process”, “ATP

synthesis coupled electron transport”, “ATP metabolic process”,

“thermogenesis”. The consensus module yellow was mainly

enriched in “ribosome” and “ubiquitin mediated proteolysis”.

Enrichment analysis for liver- or muscle-specific
modules

In the muscle-specific module midnightblue (Figure 4), the

genes were chiefly enriched in “carbonmetabolism”. In the muscle-

specific module blue, genes were primarily involved in pathways

related to protein metabolism, such as “protein export”, “protein

processing in endoplasmic reticulum”; proteasome complex

phagocytosis, such as “endocytosis”, “phagosome” and “lysosome”.

Genes in muscle-specific module brown mainly enriched in

RNA processing, such as “spliceosome complex”, “spliceosome”,

ribosome biosynthesis “ribosome biogenesis in eukaryotes;

“autophagy-related “autophagosome”. The dominant enrichment

in the muscle-specific module salmon was in “aminoacyl-tRNA

biosynthesis” and “ubiquitin mediated proteolysis”.

In addition to the genes used in the non-consensus module

(Supplementary Figure S6), the genes with a MAD value of top

300 in the liver were primarily enriched in inflammation-related

signaling pathways (“e.g., inflammatory response”, “adaptive

immune response”), protein-related (e.g., “proteolysis”, “enzyme

regulator activity”), carbohydrate metabolism-related (e.g., “PPAR

signaling pathway”, “carbohydrate metabolic process”, “pentose

and glucuronate interconversions”). In muscle, the genes with a

MAD value of top 300 are mainly enriched in muscle contraction

(e.g. “calcium signaling pathway,” “muscle contraction”) and

muscle development-related pathways (e.g. “skeletal muscle organ

development,” “muscle cell differentiation”). Accordingly, the main

differences between liver and muscle was mainly the more active

catabolism of the three major nutrients and the inflammatory

response-related functions in the liver, whereas muscle-specific

genes were mainly associated with the development of muscle

contraction, as well as the way substances enter cells: cytokinesis

and cytokinesis, and the activation of cellular autophagy signaling

pathways caused by the possible production of ROS after themuscle

has undergone a large amount of oxidative energy supply.

Protein-protein interaction and hub gene analysis
PPI analysis was adopted to explicate a cluster of structurally

and functionally similar genes. By analyzing the interactions

between genes, 931 nodes, 3,863 edges were derived. Five sub-

networks with a score >6 (Figure 5) and 14 hub genes (the

shape “V” in Figure 5A) were also detected, namely BRIX1,

DDX24, DHX15, GNL2, KIAA0020, NMD3, NOP56, NOP58,

NSA2, RPF2, RSL24D1, TSR1, WDR43, WDR75. The genes in

MCODE 4 (Figure 5D) were all derived from the consensus

module purple, and PPI analysis identified clusters of genes related

to energy metabolism, such as ND(2-6,4L), ATP (6,8), COX3,

CYTB, and NDUFB (3,6). MCODE 2 (Figure 5B) was composed

primarily of muscle-specific module midnightblue and consensus

module yellow genes, which were mainly involved in protein

turnover (e.g., protein ubiquitination). These gene clusters include

PSMA(1-7), the proteasome-related gene clusters PSM (C4, C6,

D1-2, D4-7, D13-14), and the ribosomal function-related gene

clusters RPL(3,7,19,22-24,27A,36A) and RPS (23, 27A, 3A, 4X).

In MCODE 1 (Figure 5A, muscle-specific module brown), the

genes were mainly involved in ribosome-related functions, such

as UTP(6,15), WDR(3, 43, 75), RSL(1D1, 24D1), NOP(56, 58),

BMS1, BRIX1, and transcription-related genes, such as DCAF13,

DDX(24,52), DHX15, CEBPZ, NIP7, which was identical to the

results of the enrichment analysis. In MCODE 3(Figure 5C), genes

were mainly involved in mRNA processing, such as SF3(A1,

A3, B3, B14), CWC15. In MCODE 5 (Figure 5E), genes were

primarily derived frommuscle-specific midnightblue modules, and

principally involved in energy metabolism, e.g., ATP6(V1H, AP2,

V1A, V0B, V1D, V0E1, V1C1). PPI analysis of liver-specific top 300

and muscle-specific top 300 genes revealed three MCODEs with

Scores >6 (Supplementary Figure S7), which contained genes all

from the liver. MCODE 1 (Supplementary Figure S7A) contained

the lipoprotein-related genes APO (A1, B, C3, H), AHSG,

ALB. MCODE 2 (Supplementary Figure S7B) also contained the

lipoprotein-related genes APO (A2, A4), FABP1, FG (A, G),

HP, HPX, LPL, AMBP. MCODE 3 (Supplementary Figure S7C)

contained the UDP-glucuronosyltransferase UGT (2B15, 2B17,

2B4, 2B10, 1A1), and cytochrome-related gene clusters CYP (4A11,

3A24, 2E1, 1A2).

To summarize, as a result of both enrichment and PPI

analysis, energy metabolism and protein metabolism were the

active biological processes in the LM regulatory axis. However,

there are distinctions, e.g., more genes in the liver are enriched

in inflammation-related pathways, whereas in muscle, they are

more involved in muscle cell development and movement. The

analysis of the consensus module pointed to the fact that

energy metabolism was an essentially biological process for the

LM regulatory axis, as both of the organs require considerable

energy. For muscle, the contractile movement is a powerful

energy-consuming and thermogenic process with the fastest

protein turnover.

Enrichment and PPI analysis of the LF
regulatory axis and liver- or fat-specific
module

Enrichment analysis for Consensus module in LF
regulatory axis

There was no result for enrichment during the consensus

network analysis of LF regulatory axis.

Enrichment analysis for liver- or muscle-specific
modules

The enrichment results were shown in Figure 6. Liver-specific

grey60 was primarily enriched in cell cycle-related pathways such
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FIGURE 5

PPI and hub gene analysis for genes in LM regulatory axis. The color and shape represented gene source and gene type, respectively.

as “FoxO signaling pathway”, “chemical carcinogenesis—reactive

oxygen species”, “cellular senescence” and “endocytosis”. In the

fat-specific black module, genes were principally enriched in

mitochondria-related cellular components such as “mitochondrial

membrane”, “mitochondrial protein-containing complex”,

“mitochondrial membrane”, etc. In the fat-specific blue module,
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FIGURE 6

Enrichment analysis for consensus or liver-/fat-specific modules in LF regulatory axis. The dot size and color represented enriched gene numbers

and the enriched significance.

genes were abundant in energy metabolism-related pathways,

such as “oxidative phosphorylation”, “thermogenesis”, “chemical

carcinogenesis - reactive oxygen species” and gene transcription-

related pathways such as “spliceosome”, “RNA degradation”. In

fat-specific lightcyan, the main enrichment was in “oxidative

phosphorylation”, “chemical carcinogenesis - reactive oxygen

species”, and “reactive oxygen species”. In fat-specific plum1,

genes were primarily involved in inflammation-related biological

processes, such as “regulation of immune effector process”,

“adaptive immune response”, “interleukin-2 production”,

“regulation of interleukin-2 production”.

In addition to the genes used in the non-consensus module

(Supplementary Figure S8), genes with top 300 MAD values in

the liver were mainly enriched in inflammation-related pathways

(“inflammatory response”, “leukocyte mediated immunity”), fatty

acid metabolism-related pathways (“PPAR signaling pathway”,

“linoleic acid metabolism”, “organic acid catabolic process”),

proteolytic metabolism (“Proteolysis”, “negative regulation of

Frontiers in Veterinary Science 12 frontiersin.org

https://doi.org/10.3389/fvets.2023.1090517
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Yang et al. 10.3389/fvets.2023.1090517

proteolysis”). The genes with a MAD value of top 300 in fat were

also mainly enriched in the “PPAR signaling pathway”, “fat cell

differentiation”, and “aldosterone” and “aldosterone synthesis and

secretion”. To summarize, liver-specific genes are mainly involved

in biological processes such as energy metabolism, inflammatory

response and cell cycle, and longevity; fat-specific genes are mainly

involved in energy metabolism and inflammatory metabolism,

indicating that the two organs have many operational functions

similarities they express different genes.

Protein-protein interaction and hub gene analysis
The PPI network contains 566 nodes, 1,872 seeds, and contains

12 hub genes (Figure 7A, the shape “v”), namely RPL (7A, 13A,

24, 28, 34, 37A), RPS (24, 19, 27A, 8, 28, 29). Five sub-networks

were detected in this network. In MCODE 1 (Figure 7A), there

are 12 hub genes, and ribosomal function-related gene clusters,

RPS (4Y1, 26, 15A, 10), RPL (29, 17). In MCODE 2 (Figure 7B), a

similar result to the enrichment analysis identified a cluster of genes

that are tightly linked to energy metabolism, such as ubiquinone

oxidoreductase-related genes, ND1, NDUF (A1, A4-6, 9, A11-

12, F1, B2, B4, B9, B10, S3, S5), ATP5(H, J2), and cytochrome,

such as UQCRB, COX5B, CYTB. In MCODE 3 (Figure 7C), genes

were primarily involved in the ubiquitination of proteins and

proteasome, such as PSM(A1-2, C1, C3, D2, D8), UBB. In MCODE

4 (Figure 7D), genes were mainly involved in the function of

mitochondrial ribosomal proteins, such as genes MRP (S17, L20,

L22, S23, L34, L32, L47). In MCODE 5 (Figure 7E), genes were

largely involved in the transcriptional processes of genes such as

SF3B5, PRPF19, LSM (2,4). MCODE 1 (Score = 8.6) and MCODE

2 (Score = 6.5) were identified by PPI analysis of liver-specific top

300 and fat-specific top 300 (Supplementary Figure S9). MCODE

1 (Supplementary Figure S9A) comprises several genes associated

with the adipose metabolism: ALB, APO (C3, H), FGB, GC,

HRG, PAH. MCODE 2 (Supplementary Figure S9B) also contains

multiple genes associated with adipose metabolism, such as APO

(B, A4), FABP1, and LPL.

In summary, although enrichment analysis revealed that the

consensus module of LF regulatory axis was not enriched for

the relevant biological processes, it indicated that the similarities

between liver and fat were low from a gene expression perspective,

which may explain the fact that the two tissues perform different

functions. However, there were significant similarities between the

two tissues external to the consensus network, such as involvement

in energy metabolism and inflammation-related pathways.

Enrichment and PPI analysis of the MF
regulatory axis and muscle- or fat-specific
module

Enrichment analysis for Consensus module in MF
regulatory axis

In the consensus module turquoise, genes were enriched

in signaling pathways related to carbohydrate metabolism

(Figure 8), such as “carbohydrate digestion and absorption”„

“regulation of lipolysis in adipocytes”, “phospholipase D signaling

pathway”; energymetabolism, such as “oxidative phosphorylation”,

“chemical carcinogenesis-reactive oxygen species”; “thermogenesis;

inflammation, such as “PI3K-Akt signaling pathway, “ “B cell

receptor signaling pathway”, “FoxO signaling pathway”, “insulin-

related signaling pathway”, “GnRH secretion”, “neurotrophin

signaling pathway”„ “neurotrophin signaling pathway”, etc.

Enrichment analysis for liver- or muscle-specific
modules

In the muscle-specific module brown (Figure 8), the two

major enrichment pathways were “endocrine resistance” and

“FoxO signaling pathway”. In the muscle-specific module

green (Figure 8), genes were primarily involved in protein

ubiquitination-related functions, such as “ubiquitin-dependent

protein binding”, “ubiquitin protein ligase binding”, “protein

export”, the inflammation-related signaling pathways, such as

“MAPK signaling pathway”, “B cell receptor signaling pathway”,

“apoptosis”, and the lipid synthesis-related signaling pathway, such

as “steroid biosynthesis”.

In the fat-specific module royalblue, genes mainly performed

CoA dehydratase activity but had fewer enriched pathways,

such as “very-long-chain 3-hydroxyacyl-CoA dehydratase activity”,

“3-hydroxyacyl-CoA dehydratase activity”, “3-hydroxy-behenoyl-

CoA dehydratase activity”, “3-hydroxy-behenoyl-CoA dehydratase

activity”. In addition to the genes used in the consensus

module (Supplementary Figure S10), genes with MAD values

top 300 in muscle were mainly enriched in the processes of

calcium ion involvement in cell contraction , such as “calcium

signaling pathway”, “regulation of calcium ion transmembrane

transport”, “cAMP signaling pathway”, “regulation of calcium

ion transmembrane transport”, “cAMP signaling pathway”, etc.;

and skeletal muscle cell contraction, such as “skeletal muscle

contraction”, “regulation of muscle system process, “ and

signaling pathways that regulate blood glucose concentration, such

as “glucagon signaling pathway, “ “insulin secretion”, “cAMP

signaling pathway.” In contrast, genes with top 300 MAD values

in fat were not enriched to the respective pathways.

Protein-protein interaction and hub gene analysis
The PPI network contains 313 nodes and 828 edges, while

five core genes (PA2G4, RPL24, RPS11, RPS16, RPS9) and two

subnetworks (scores >6) were discovered (Figure 9). where the

genes in MCODE 1 were primarily involved in the ribosomal

function-related gene cluster (Supplementary Figure 9A), RSRC1,

RPS(9, 17, 16, 15A, 11), RPL(36, 27, 24, 22, 15), MRPL(54, 49,

42, 37, 17) and the gene clusters PSM(D6, D13, C1, B9, B8,

B6, PSMB3, B2) that were involved in ubiquitinated degradation

of proteins. PPI analysis of muscle-specific top 300 and fat-

specific top 300 (Supplementary Figure S10) showed results in line

with the enrichment analysis, with one MCODE (score = 6.2)

found in a network containing a cluster of genes associated with

actinomycosis: MYH (2, 6, 7), MYL (2, 3, PF), ACT (A1, C1, N3),

ATP2A1, CSRP3, SRL, TMEM38A, TNNC2.

To sum up, integrating the enrichment and PPI analyses,

it is clear that the common biological processes shared by MF

regulatory axis were still dominated by energy metabolism and

inflammation-related biological processes. However, the signaling

pathways associated with inflammation in muscle and lipolysis in
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FIGURE 7

PPI and hub gene analysis for genes in LF regulatory axis. The color and shape represented gene source and gene type, respectively.
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FIGURE 8

Enrichment analysis for consensus or muscle-/fat-specific modules in MF regulatory axis. The dot size and color represented enriched gene

numbers and the enriched significance.

fat appear to be more active. Meanwhile, muscle is a predominantly

energy-consuming motor tissue, and thereby genes and signaling

pathways are closely associated with actin/myosin/tropomyosin.

Discussion

Energy allocation and usage in animals is a systemic regulatory

process that is operated in a coordinated multi-organ effort, which

may be signaled to the associated regulatory axis to accomplish

this complicated physiological process. The FE of an animal is

determined by how the body allocates nutrients; if maintenance

needs are increased, FE is decreased. The organism’s organs

should function in collaboration with each other, especially those

involved in the digestion-absorption-production-consumption-

storage process, and should be controlled by a set of sophisticated

regulatory axis. Studies have revealed that different organs could

communicate via the regulatory axis and determine the direction of
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FIGURE 9

PPI and hub gene analysis for genes in MF regulatory axis. The color and shape represented gene source and gene type, respectively.

nutrient flow, e.g., the brain-gut axis regulates obesity and appetite

in animals (30) and maintains gastrointestinal glucose homeostasis

(31). A novel vago-vagal liver-brain-gut reflex arc controls the

number of pTreg cells and maintains gut homeostasis (32). As

indicated by published data, the present study is the first to address

the mechanisms of nutrient regulation by the rumen-liver-muscle-

fat regulatory axis from a transcriptomic perspective.

The reciprocal interaction between the gastrointestinal tract

and the liver is established by the portal vein, which transports

nutrients absorbed by the gastrointestinal tract directly to the

liver, where they then travel to other tissues that require energy

consumption or storage (muscle, fat, etc.); the connecting system

is linked by the vascular, gastrointestinal mucosal system (48).

The rumen is an essential digestive organ for ruminants and is

the principal site of microbial digestion; it is also the site of

fermentation of volatile fatty acids (VFA) by the rumen microbiota

that supplies 70% of the ruminant’s daily energy (49). The liver is

the pivotal organ of systemic metabolism [e.g., lipid metabolism,

carbohydrate metabolism, protein metabolism (50)] and plays an

essential role in maintaining lipid homeostasis (51), as well as

being the site of a more active immune response, with bile acids

secreted to facilitate the absorption of nutrients from the intestine

(52). As the most energy-consuming organ of the organism, muscle

directly determines the efficiency of energy usage in terms of FE.

Meanwhile, fat tissue functions as a storage site for energy when

the organism’s maintenance needs are fulfilled. For this reason,

it is essential to interpret the direction of energy flow along

the RLMF regulatory axis. In the present work, we discovered a

great similarity between gene expression and biological pathways

in the RLMF regulatory axis, i.e., active expression of energy

metabolism and inflammation-related genes. However, immune

and lipid metabolism-related genes were more actively expressed in

the liver than rumen, and transcriptional regulation-related genes

and pathways were more active in the rumen than the liver.

FE is a complex quantitative trait controlled by polygenes

(53). As the energy-consuming organs, it’s speculated that genes

related to the regulation of energy metabolism through the RLM

regulatory axis might be responsible for the variation in RFI. We

have identified a set of genes involved in the electron respiratory

chain, which are core subunit components of the mitochondrial

complex I-V and are up-regulated in the high FE group in the RLM

regulatory axis, including ND (2,3,4,4L,5,6), NDUF (A13, A7, S6,

B3, B6), COX (1,3), CYTB, UQCR11, ATP (6,8). Previous studies

of the high FE animals in cattle rumen (27) and skeletal muscle

(26), chicken skeletal muscle (54), and swine skeletal muscle and

liver (55, 56) also showed that genes associated with the electron
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respiratory chain are upregulated. These investigations all point

to our supposition that the regulation of energy metabolism via

the RLM regulatory axis may be one of the principal causes of

FE variation. The electron respiratory chain is the primary site of

energy production in the organism and can generate substantial

levels of ATP. Therefore, the overall efficiency of the electron

respiratory chain may be a potential determinant of FE. It has also

been revealed that mitochondrial respiration rates were high FE

than in high RFI individuals (57) and that mtDNA copy numbers

were significantly lower, which exhibited lower uncoupling of the

electron transport chain and oxidative stress (58, 59). Moreover,

in skeletal muscle and liver, the expression of genes related to

TCA (tricarboxylic acid) cycle and oxidative phosphorylation was

relatively high (57, 60), and ATP was synthesized more efficiently

(54, 61, 62). Hence, high FE organisms might have a more optimal

layout of the electron respiratory chain, with less mitochondrial

uncoupling, stress response, and mitochondrial number, which

improves energy efficiency (FE).

The mediators of energy metabolism are based on the

electron respiratory chain, but its substrates, NADH and FADH2,

are primarily derived from carbohydrate metabolism, in which

gluconeogenesis and lipid metabolism are predominant. In the

rumen, a large amount of VFA (which provides 70% of daily

energy requirements) was produced by microbial catabolism, then

transported via the portal vein to the liver and served as raw

materials for the synthesis of sugars or proteins (49). Therefore,

it’s speculated that the metabolic rate and efficiency of the relevant

substances, particularly sugar, lipid, and protein, in the LMF

regulatory axis might also be an essential contributor to FE

variability. Consistent with anticipation, a set of genes closely

related to lipid metabolism were found to be upregulated in the

LM regulatory axis and LF regulatory axis: APO (A1, A2, A4, B,

C3), ALB, FG (A, G), HP, HPX, LPL, AMBP, FABP1, AHSG. Our

findings are concordant with the results in high FE chicken skeletal

muscle (54) and pig liver and skeletal muscle (upregulation of the

trans-lipoprotein gene family) (18, 56). It was also revealed that

lipid synthesis-related genes were down-regulated and fatty acid

oxidation-related genes were up-regulated in the livers of high FE

pigs and ducks (22, 61). In addition, differential genes in pig and

cattle skeletal muscle were mainly enriched in energy metabolism

and lipid metabolism-related signaling pathways (26, 63). However,

some other studies found that SCL was downregulated in pig

and cattle liver of LRFI (61, 64, 65). As such, the efficiency of

carbohydrate metabolism on the RLMF regulatory axis might be

another prime contributor to FE variation.

Furthermore, protein metabolism-related genes are actively

expressed in the RLMF regulatory axis, such as the RPL gene

family (8,18A,18,15,13, P1), the RPS gene family (23,27A,3A,4X),

and the PSM gene family (A1-A7, B6, C1, C3, D2-D4, D8

D9, E1). Ubiquitination of proteins suppresses immune and

inflammatory responses (66) and enhances transcriptional activity

due to the requirement to produce appropriate resistance proteins.

In the present study, the RLMF regulatory axis has varying

degrees of immune and inflammatory responses and protein

ubiquitination, particularly in the liver and fat. Therefore, it is

hypothesized that genes and pathways related to protein synthesis

and catabolism are also effective in the regulatory axis involved.

In the rumen of high FE cattle, the genes for protein synthesis

(RPL10, RPS15, RPL36) and degradation (PSMB6, UBC, UBA52,

UBE2V1) were significantly upregulated (27). In high FE pig’s

skeletal muscle, liver, dorsal , and perirenal adipose, the gene

families MRPL, MRPS, PRS, RPL, PSM are upregulated (56), and

protein ubiquitination was an active signaling pathway in the

liver (28, 65). The upregulated genes in low FE chickens breast

muscle were mainly involved in the immune and inflammatory

responses (54). The highest differential expression enrichment

in the pig liver were those involved in protein ubiquitination,

followed by immunomodulation-related pathways (65). In the

Angus cattle skeletal muscle transcriptome, differential genes

were significantly enriched in immune response, inflammatory

response, and muscle contraction/development (26). The immune

and inflammatory response is highly energy-intensive, resulting

in fewer nutrients available for its production (67). At the same

time, it has been suggested that animals with high FE have a more

efficient ability to resist inflammation and devote more energy

to growth and muscle deposition (68). Therefore, the regulation

of biological processes related to protein metabolism through the

RLMF regulatory axis may contribute to the regulation of FE

in animals.

To summarize, energy metabolism, substance metabolism,

protein ubiquitination, inflammation, and immune-related

signaling pathways on the RLMF axis are likely biological processes

closely associated with FE, and genes enriched in these pathways

might be involved in FE variation. Although we have integrated

analysis of transcriptomic data from multiple tissues from a

regulatory axis perspective to elucidate the potential contributors

to FE variation, shortcomings also remain. First, the central

nervous system is the regulatory center for feeding, and the arcuate

nucleus (ARCs) of the hypothalamus is essential nuclei for sensing

energy signals. We have not yet found transcriptomic data for

brain, gut, liver, and fat in the same individual, which prevents us

from confirming whether the hypothalamus also contains similar

results. Next, we have only hypothesized that this regulatory axis

is likely to exist based on the available studies, but functional

experiments are lacking to establish a direct regulatory role.

Meanwhile, more samples or similar studies are needed in other

cattle breeds or species to confirm our results.

Conclusion

The substance metabolism, energy metabolism, inflammation,

and immune-related signaling pathways on the RLMF regulatory

axis and the principal effector genes they contain may be the

significant contributors to FE variation based on current data.

Therefore, it is essential to incorporate a holistic approach

(regulatory axis) into the breeding agenda for future molecular

breeding activities in cattle.
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