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When studying the dynamics of a pathogen in a host population, one crucial

question is whether it transitioned from an epidemic (i.e., the pathogen population

and the number of infected hosts are increasing) to an endemic stable state

(i.e., the pathogen population reached an equilibrium). For slow-growing and

slow-evolving clonal pathogens such as Mycobacterium bovis, the causative

agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to

discriminate between these two states. This is a result of the combination of

suboptimal detection tests so that the actual extent of the pathogen prevalence

is often unknown, as well as of the low genetic diversity, which can hide the

temporal signal provided by the accumulation of mutations in the bacterial DNA.

In recent years, the increased availability, e�ciency, and reliability of genomic

reading techniques, such as whole-genome sequencing (WGS), have significantly

increased the amount of information we can use to study infectious diseases,

and therefore, it has improved the precision of epidemiological inferences for

pathogens such as M. bovis. In this study, we use WGS to gain insights into the

epidemiology ofM. bovis in Cameroon, a developing country where the pathogen

has been reported for decades. A total of 91 high-quality sequenceswere obtained

from tissue samples collected in four abattoirs, 64 of which were with complete

metadata. We combined these with environmental, demographic, ecological, and

cattle movement data to generate inferences using phylodynamic models. Our

findings suggest M. bovis in Cameroon is slowly expanding its epidemiological

range over time; therefore, endemic stability is unlikely. This suggests that animal

movement plays an important role in transmission. The simultaneous prevalence

ofM. bovis in co-located cattle and humans highlights the risk of such transmission

being zoonotic. Therefore, using genomic tools as part of surveillancewould vastly

improve our understanding of disease ecology and control strategies.

KEYWORDS

Mycobacterium bovis, whole genome sequencing (WGS), genomic surveillance, zoonotic

tuberculosis, phylodynamics, phylogeography, multi-host system, one health
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1. Introduction

In the last two decades, the increased availability, efficiency,
and reliability of genomic reading techniques, such as whole-
genome sequencing (WGS) techniques, have ignited a
profound transformation in understanding disease ecology
and epidemiology. This, coupled with improved statistical
methodologies and high-performance computing, has enhanced
our understanding of pathogen dynamics and evolution (1).

Techniques such as WGS can identify polymorphisms in
the genetic material, which is generated by transcription errors
that can occur to the pathogen while replicating within their
host (2). As the pathogen is transmitted through the host
population, the accumulation of polymorphisms in its DNA/RNA
can be used as a “transmission signature”. Therefore, by
tracking these mutations across bacterial genomes sampled in
a host population, we are now able to infer transmission
events between individual hosts, sub-populations, geographical
areas, or species, while at the same time, we are able to
gather insights about the evolutionary trajectory of a pathogen
(2). Furthermore, when accurate spatial information on the
sampled isolates is available, we can combine it with pathogen
genetic data to disentangle the spatiotemporal dynamics of
outbreaks, particularly in natural or other scarcely sampled animal
populations (3).

Despite these advances, many challenges still exist, including
the reconciliation between the temporal signal of outbreaks with
pathogen mutations (4). Mycobacterium tuberculosis Complex
(MTBC) members are clonal species, and therefore, recombination
has been considered rare [although a recent publication showed
otherwise (5)]. A few mutations are expected to occur for these
species per year, generating little diversity during outbreaks in
host populations. Consequently, there is inherent uncertainty
in establishing infection patterns within the infected population
and their associated infections. Therefore, combining genomic
information with metadata is essential for accurate transmission
chain estimation (4).

Mycobacterium bovis, a member of the MTBC group, is the
etiological agent of animal or bovine tuberculosis (bTB) in bovids
and other mammalians and of zoonotic tuberculosis (TB) in
humans (6). Its infections are characterized by chronic disease, with
or without a latent period, where infected cattle are hard to identify,
making it hard to quantify potential infectious contacts (7). The
estimation ofM. bovis prevalence is often affected by several factors,
including the inaccuracy of diagnostic tests (8), and the potential
co-infection with other pathogens (9). Such challenges explain why
M. bovis has only been successfully eliminated or controlled in
a few countries. However, it still represents a significant threat
to cattle industries and human health in many other countries.
For example, zoonotic tuberculosis due to M. bovis is a major
public health problem in low- and medium-income countries
(LMICs), where close interaction between people and livestock is
common and the access to pasteurized milk is limited (6, 10).
Indeed, the magnitude of this burden is likely underestimated
since human–animal transmission is predominantly via ingestion
of infected products and it presents with a range of non-specific
symptoms (11).

In Cameroon, M. bovis is circulating in the cattle population,
both in the southern areas (12) and, in particular, in the northern
regions, where a previous study on cattle sampled at four regional
abattoirs showed a sampled population prevalence ranging from
2.75% (31 positive over 1,129 cattle inspected, Northwest) to
21.25% [34 over 160, North (13)]. Abattoirs surveillance, where
carcasses are inspected for TB-like lesions, is the only surveillance
strategy regularly implemented in the country; in Bamenda
(Northwest region), Awah-Ndukum et al. (14) showed that the
TB-like lesion in cattle increased in the period from 1994 to 2010.

Commonly to many LMICs, bTB control in Cameroon is
also made difficult by the absence of detailed records on cattle
population, by local rearing practices such as pastoralism which
expose animals to contact with other herds and potential reservoir
wildlife species, and by the transhumance cattle movements
westward toward Nigeria, where the demand of meat is driven by a
fast human population increase (15).

In a previous study, Egbe et al. (15) employed two molecular
typing techniques to understand the relatedness ofM. bovis strains
circulating in the region. These are spoligotyping and MIRU-
VNTR typing as follows: the former is based on the presence
of multiple spacer oligonucleotides in the genome direct repeat
region, while the latter is based on 12 loci containing variable
numbers of tandem repeats of mycobacterial interspersed repetitive
units (16, 17). Compared with WGS, these techniques consider a
limited genome region and can be more subject to homoplasy (18).
The results reported by Egbe (15) showed that most of the isolates
belonged to the Af1 clonal complex (n = 250/total n = 255), while
the remaining ones had an unidentified clonal complex. They also
highlighted an unexpectedly high genetic diversity, as showed by
the 37 sampled spoligotypes, of which, 19 were newly observed, and
a total of 97 genotypes were obtained by combining spoligotypes
with MIRU-VNTR (15).

While those techniques are instrumental to investigating
potential infection clusters at a broader level, they can be limited
for a more in-depth understanding of the spatiotemporal dynamics
of the disease. This study aimed to fill these gaps and enhance
our understanding of the M. bovis epidemiology and spatial
dynamics in Cameroon usingWGS.We applied novel phylogenetic
techniques to determine whether there was endemic stability across
Cameroon’s cattle-rearing regions while examining the role of
environmental and ecological variables and animal movements in
the pathogen spread.

We used 91 high-quality M. bovis sequences obtained from
cattle tissues sampled at regional abattoirs as described by Egbe
et al. (13). After determining the single nucleotide polymorphisms
(SNPs), we built a tree by joining the Cameroonian WGSs
with other African sequences obtained from publicly available
repositories, in order to understand how the sampled population
fit in the continent context. Then, we ran a continuous space
phylogeographical analysis with BEAST (19) on the Cameroonian
sequences while testing different random walk diffusion models
(20). This was possible because the origin village of the cattle
tested at the abattoir was known for 64 M. bovis cattle
isolates, allowing us to associate spatial coordinates with these
sequences. Furthermore, we tested the association between the
spatial pathogen distribution obtained with the georeferenced
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phylogenetic tree and environmental, anthropic, and ecological
factors (21), and we finally ran a machine learning analysis to
test whether the empirical cattle movement network (22) or other
variables could explain the genetic diversity across isolates.

Our findings strengthen the call for improved M. bovis

molecular surveillance in underrepresented regions and countries,
to gather insights into potential patterns that can be missed
when limiting the studies to areas of low genetic diversity, the
consequence of strict control practices such as test-and-cull.

2. Materials and methods

2.1. Data collection

Four regional abattoirs were sampled between 2012 and 2013,
in the Northwest (Bamenda), Adamawa (Ngaoundere), North
(Garoua), and Extreme North (Maroua) regions of Cameroon
(Supplementary Figure 1). As part of the regular operations, cattle
carcasses were inspected for the presence of TB-like lesions. The
tissues, including lymph nodes, of all animals with lesions and of
some randomly chosen ones without lesions were collected to be
cultured, and information about the animal (age, breed, and village
of provenance, among others) was taken. A detailed description
of the data collection and bacterial isolation can be found in the
study by Egbe et al. (13). The DNA extraction was conducted in
BSL 3 facilities (Tuberculosis Reference Laboratories in Bamenda,
Cameroon), and the procedure is fully described in the study by
Egbe et al. (15). Sequencing was also attempted forM. bovis isolates
sampled in human hosts at the Bamenda hospital (Northwest
region) during a cross-sectional study within the wider project. We
reported a summary of the number of sampled animals and the
number ofM. bovis-positive ones in Supplementary Table 1.

2.2. Whole-genome sequencing processing

The sequencing was carried out at Edinburgh Genomic
Facilities (University of Edinburgh). Samples were prepared with
1 TruSeq Nano 550 bp insert, 76 Pippin selected library from the
supplied genomic DNA, while MiSeq v2 (Illumina) was used to
generate 250 base paired-end sequences from the library to yield at
least 11M+ 11M reads (1 run) at 30x coverage. The output was read
from a 4-lane Miseq. A total of 124 M. bovis WGSs were obtained
(two from human hosts), while for nine isolates (one from human
hosts), the sequencing failed.

We used an adapted BovTB-nf pipeline (23) for quality
control. Reads were deduplicated using fastuniq, trimmed using
Trimmomatics (24) (-phred33 ILLUMINACLIP:$adapters:2:30:10
SLIDINGWINDOW:10:20 MINLEN:36), and mapped to the
reference genome using bwa-mem2 (25). The mapped reads were
filtered (-ShuF 2308 -) and sorted using Samtools (26), and
then classified using Kraken2 (27) (–quick) against a prebuilt
Kraken 2 database [Minikraken v2 (27)]. The Kraken2 output was
summarized with Bracken (28) (-r 150 -l S), and the top 20 species
from the Bracken output were used to determine if the sample
was contaminated with other microorganisms. Variants were called
using bcftools (29) (–IndelGap 5 -e ‘DP<5 && AF<0.8’), and

strain-specific SNPs were used for classifying whether the samples
wereM. bovis or not [custom script and differentiating SNPs taken
from the study mentioned in MMMO (23)]. The percentage of
coverage (>60%) on the reference, read depth (>10), and number
of reads (> 600,000) were used to identify and remove samples
with insufficient data. To curate aligned core-variants for the
downstream phylogenetic analysis, variants were called and filtered
using Snippy v4.6.0 (30), using the default settings (minimum
coverage = 10, minimum VCF variant call quality = 100), with
the M. bovis AF2122/97 genome (GenBank: LT708304.1) as the
reference genome. Variants from repeated regions were removed
[mask for repetitive regions taken from the study mentioned in
MMMO (23)]. Core-SNPs were determined by the snippy-core
function within Snippy, where a genomic position was considered
to be a core-site when present in all samples. We defined “high-
quality” sequences as the ones with genome coverage > 90% and
reading depth > 10 (31), and we renamed the sequences with
a string composed of the following information: host species,
location (administrative subdivision or country, see Section 2.3),
sequential number, and date.

For each sequence, the spoligotype and the clonal complex were
retrieved from the study by Egbe et al. (15). In one case, a sequence
was missing the spoligotype number; however, it was assessed with
the vSNP pipeline (32). For all bioinformatics tools, we used the
default settings unless stated otherwise.

We checked if divergent sequences belonged to other
mycobacteria species. We tested the presence of regions of
difference (RDs) 1, 4, 9, and 12 patterns (33) in the outlier
samples, and raw reads from each sample were aligned to M.

tuberculosis (NC_000962.3) with Burrows-Wheeler Aligner v0.7.17
(34) and sorted and indexed with SAMtools v1.10 (35). Primer
flanking regions for the RDs on M. tuberculosis were determined
by querying the sequences using NCBI web nucleotide BLAST
with the default parameters (36), while the presence of RDs
was manually determined by examining the read alignment in
Integrative Genomics Viewer v2.14.1 (37).

2.3. Cameroonian M. bovis sequences in
the African context

We obtained other M. bovis genomes from online repositories
as follows: first, from the Patric (now, BV-BRC) dataset (38), and
second, selecting the appropriate genomes among the ones listed by
Loiseau et al. (39) and obtained from the EBI dataset (for details and
references, see Supplementary Table 2).We selected all the available
sequences sampled in Africa, in order to qualitatively detect
potential genetic similarities between the sampled CameroonianM.

bovis population and other isolates from the African continent, and
thus provide a broader context to our analysis.

When analyzing sequences from Patric, genomes were
shredded into pseudo by Snippy, followed by the process of
alignment and SNP identification described above. The core-
SNP alignments were made with and without the other African
genomes. We used the iqtree web server (40, 41) to compute a
phylogenetic tree (n = 212), which included all the Cameroonian
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high-quality sequences (n = 91) and the other African ones plus
the 1997 reference from the UK (n= 121).

2.4. Cameroonian sequences phylogenetic
analysis

The quantitative analyses were performed on a subsample of
the Cameroonian sequences, obtained after removing the non-
cattle ones, the ones missing the geographical coordinates and
potential outliers, i.e., isolates not clustering within the main
Cameroonian clade. We initially joined the remaining sequences
(n= 64) of the tree using the TN93 genetic distance model and the
neighbor-joining (NJ) algorithm ape package (42) in R v4.0.5 (43),

with the sole purpose of estimating a temporal signal within
the sample in TempEst v1.5.3 (44). We, then, used the sequences
SNP alignment completed with sampling dates, to infer time-scaled
phylogenetic trees using BEAST v1.10.4 (19) with the BEAGLE

library (45) and evaluated the results with Tracer v1.7.2 (46). Since
the sequences had associated geographical location metadata, we
included latitudes and longitudes as an additional continuous space
variable for phylogeographic inference.

To select the best model, we ran a series of exploratory models
using an HKY (47) substitutionmodel, similar to other studies (48–
50) and a strict molecular clock. First, we sequentially selected the
best continuous trait model and then the best bacterial population
size model (tree prior). We tested the Brownian random walk,
Cauchy Relaxed Random Walk (RRW), lognormal RRW, and
Gamma RRW for the former, and constant population, exponential
growth, and Bayesian Skygrid (51, 52) for the latter. In the
exploratory BEAST runs, we chose a truncated (between 0 and
0.1) normally distributed clock rate prior, with mean and standard
deviation set as the slope in the root-to-tip obtained in Tempest; the
chain length was set to 108 and sampled every 104 steps. Themodels
were compared using marginal likelihood estimation (MLE), with
path sampling (PS) and stepping-stone sampling (SS), if they
reached a satisfactory effective sample size (>200). Once the model
features were selected, we ran a final one setting the chain length
to 109 steps and sampled every 105 steps. In this case, we used the
clock rate posterior of the selected exploratory model as a prior for
the final model. The maximum clade credibility (MCC) tree was
extracted with TreeAnnotator v1.10.4 (part of the BEAST suite),
and clades were visually defined within the MCC tree branches.
The MCC tree was plotted against the sequence spoligotype and
MIRU-VNTR typing to visually assess the correspondence between
molecular typing and clades.

2.5. Spatial statistics and environmental
factors analysis

From the final BEAST run, we extracted a set of 100 trees
from the posterior distribution and further analyzed using seraphim
v1.0 (21, 53), to obtain the spatial spread statistics: branch velocity
and epidemic wavefront. The former was calculated for each
branch dividing the geographical distance from the origin to the
destination nodes by the time branch time duration. The epidemic
wavefront shows the geographical range of the epidemic over time:

at each time, it is calculated as the geographical distance between
the positions of the tree’s estimated root and the most distant node
(spatial distance wavefront) or accounting for the distance of nodes
closer to the root (patristic distance wavefront).

Additionally, seraphim allows to statistically test hypothesis on
the effect of environmental layers on the epidemic dynamics; the
effect can either be of “conductance”, when the layer favors the
pathogen diffusion, or “resistance”, when the layer hampers it. We
tested nine layers as follows: elevation, cattle population density,
human population density, two describing the road infrastructure
(number of intersections and total road length), and four land cover
types (waterbodies, forest, grassland, and grazeland, and other
vegetation types, such as mosaic, shrub, and sparse vegetation). The
original raster layers were downloaded from online repositories (see
Supplementary Table 3 for the sources) and adapted to a 5 km ×

5 km grid using QGIS v3.26.1. For each cell, elevation, cattle, and
human populations were averaged for the 5 × 5 km grids, while
road intersections were counted, and road lengths were measured
starting from the same road original raster. For the land cover,
each value represents the percentage of that cell covered by each
land cover type. The original land cover raster included 38 different
cover types. To ease computation, we selected the most relevant for
the study and merged them into four layers as follows: waterbodies,
forest, cropland/grassland, and other vegetation, including mosaic,
shrub, and partial cover (Supplementary Table 4).

First, we ran a preliminary analysis on each variable, to
determine if it could have played a role as conductance or
resistance in the pathogen spread. For each of the 100 extracted
trees, we estimated the correlation between dispersal duration
and environmental distance. The results are summarized by two
statistics as follows: the number of positive variable’s coefficient of
determination out of the 100 trees, and the number of positive Q
statistic, calculated as Q = R2var − R2

null
, that is, the difference

between the correlation R2 for the variable’s raster and for a null
raster, again calculated for each tree (53). For the analysis, we
used two path models as follows: straight line (where the branch
“weight” is calculated by summing the cell values through which the
straight line passes) and least-cost path (where the branch “weight”
is calculated by summing the values between adjacent cells along
the least-cost path).

Once we identified the potential resistance or conductance
factors, we performed 10 tree randomizations and calculated the
statistics again. In this case, we used the Bayes Factor (BFe),
calculated as BFe = pe /(1 – pe), where pe is the probability
that Qobserved > Qrandomized. We used two criteria for tree
randomizations as follows: (1) randomizations of node positions
while maintaining the branches’ lengths, the tree topology, and the
location of themost ancestral node; and (2) randomizations of node
positions while maintaining only the branches’ lengths.

2.6. Genetic distance regression and role of
the cattle movements

We, finally, tested which variables can better explain the genetic
distances between the sampled M. bovis isolates, to understand
the signatures of temporal, spatial, and demographic factors (54,
55). We ran this analysis using a Boosted Regression Tree (BRT)
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regression model (56) in R software [packages dismo (57) and
gbm (58)], a very flexible tool that combines decision trees and
boosting techniques (59). In this model, the dependent variable
was the genetic distance between M. bovis strains, expressed as
SNPs.We tested a total of 28 relational variables, calculated for each
pair of isolates (Supplementary Table 5). Except for the temporal
and spatial distance (which were calculated from the original
isolate metadata) and a binary variable indicating whether two
sequences have the same spoligotype, MIRU-VNTR, and clade
(yes/no), the other variables are associated with theM. bovis isolates
administrative subdivision.

We built two subdivision-level contact networks. The first one
is a spatial network where nodes represent subdivisions, and edges
between them are positive if they share a border. This network is
undirected (edges are not directional) and unweighted (all edge
values are set to 1). For this network, we computed six variables
to be associated with each pair of isolates: degree and betweenness
centrality (60) of both isolates’ subdivisions; shortest path and a
binary variable indicating whether the two subdivisions belonged
to the same network’s community.

The second network represented the cattle movements, and
edges correspond to the number of animals moved between
subdivisions over a year. We built this network by aggregating
the empirical data collected by Motta et al. (22), which originally
reported themonthly number of cattle exchanged betweenmarkets.
For this network, we computed eight variables as follows: degree,
strength, and between centrality of both isolates’ subdivisions;
shortest path and the same community binary variable. The degree
counts the number of each subdivision’s connections, while the
strength is the sum of the number of cattle moved to and from
each subdivision. All networks’ metrics were computed using the
R package igraph (61).

Once we computed all the variables (the full list is presented
in Supplementary Table 5), we trained the BRT model using 75%
of the observations, while the remaining 25% were used for
testing. We evaluated the models based on pseudo-R2 and Root
Mean Squared Error (RMSE) on the test dataset. These were
both calculated using the package caret (62). For BRT, the relative
influence of the variables is determined by the times each variable
is selected to split the data in a decision tree, which, in turn,
is weighted by the improvement in the model fit that resulted
from the variable being used at each split (56). All models were
fitted with a 10-fold cross-validation. The BRT algorithm has two
main parameters as follows: the learning rate, which controls the
contribution of each tree to the finalmodel, and the tree complexity,
which corresponds to the number of nodes in the tree. We ran
some preliminary tests to tune the BRT in order to improve the
predictions. Finally, we set the learning rate to 0.05 and the tree
complexity to 8.

3. Results

3.1. Cameroonian sequences in the African
context

We analyzed 124 M. bovis sequences (nine of the original
133 failed), with 91 having enough read depth and genome
coverage to allow further analyses (see Supplementary Table 6

for further details). Two of these sequences came from isolates
sampled humans, while for a third, the sequencing failed. One
of the excluded sequences was marked as not M. bovis, and
based on the presence of the four RDs 1, 4, 9, and 12 patterns
(33), it was likely M. tuberculosis. All the high-quality M. bovis

sequences were merged into a tree, with other 22 obtained from
the Patric dataset, 99 from EBI, and the 1997 UK Reference to
provide a continental context. The qualitative phylogenetic tree,
in Figure 1, shows that most of the Cameroonian sequences (two
of which obtained from human tissue samples) cluster with the
Ghanaian human samples, and two Nigerians recovered from
unreported hosts. All human samples from West Africa cluster
with cattle sequences, except for the Malian human sequence.
Most sequences (n = 89) belonged to Af1 clonal complex,
and except for one, the spoligotypes were already known; for
the other, we identified a new pattern (hex code: 6F-1F-5F-7F-
BF-40). Being characterized by the absence of spacer 30, this
spoligotype was considered Af1 (63). The dominant spoligotype
was SB0944 (n= 32/89).

Two outlier sequences did not cluster with the rest of the
sampled Cameroonian population. Their average distance from the
rest of the Cameroonian population (respectively, 235 and 231
SNPs) was slightly higher than the average distance of the 1997
UK Reference from the Cameroonian isolates (222 SNPs), and
they did not cluster with any other WGS sequence sampled in
Africa (Figure 1). For both outlier sequences, the spoligotype was
SB2332, found for the first time in Cameroon and submitted for
classification at www.Mbovis.org by Egbe et al. (15). Following
Warren et al. (33), we tested the presence of RDs 1, 4, 9, and
12 patterns, finding only the first one, confirming that they are
likely M. bovis. We compared this spoligotype pattern with all the
others from the www.Mbovis.org database, and we identified four
patterns differing by two spacers as follows: SB0858 sampled in
Spain (64) (different in spacers 20 and 22), SB1102 sampled in
Chad (63) and Cameroon (12) (different in spacers 33 and 34),
SB2333 reported by Egbe et al. (15) (different in spacers 22 and
34), and SB2691 sampled in France (not found in publications,
different in spacers 20 and 34). We also identified 11 patterns
differing by three spacers, sampled in France (65), Portugal (66),
and Spain (64).

3.2. M. bovis evolutionary time scale in
Cameroon

A total of 1,540 SNPs were determined from the Snippy

core-SNP analysis on Cameroonian M. bovis genomes
(Supplementary Figure 2). This was reduced to 1,106 SNPs when
the dataset was reduced to 64 samples with complete metadata and
excluding the non-cattle ones (two sampled in humans), which
were used for the downstream quantitative analysis. The median
SNP distance among the remaining high-quality sequences was
70 SNPs (mean 68, range from 0 to 144, 2.5th and 97.5th quantiles
14 and 118). For two cattle (one from Bibemi and the other from
Touboro), twoM. bovis isolates sequenced were available (obtained
from different tissues). In both cases, the two strains were identical
(Bibemi, 3 and 4; Touboro, 7 and 8, Figure 2), which suggests a
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FIGURE 1

Phylogenetic tree of the African Mycobacterium bovis whole-genome sequences considered in the study. The tree includes 91 high-quality

Cameroonian sequences, 101 from the EBI dataset, 20 from Patric, and the 1997 UK M. bovis reference.

single infection disseminated in different organs rather than two
separate infections.

The analysis in Tempest showed a slightly positive temporal
signal (coefficient of determination 0.11 and correlation coefficient
0.33) and a slope of 1.267 × 10−2 (Supplementary Figure 3). We
used a sequential approach in BEAST to select the best spatial model
and bacterial population models. Based on the MLE estimation
of the exploratory models (Supplementary Table 7), we determined
the best model included a Gamma Relaxed Random Walk (RRW)
spatial model (first step of the sequential analysis) and the SkygGrid
population model (second step). The final BEAST model was run
with 10 bins and a cutoff of 400 years. The population trend is
shown in Supplementary Figure 4. The model estimates suggest
that the mean age of the root was in July 1950 (95th high-posterior
density, HPD, April 1938–August 1961), while the average clock
rate was 1.32 × 10−7 substitution/site/year (95th HPD 1.20 ×

10−7 – 1.44 × 10−7). The maximum clade credibility (MCC) tree
is presented in Figure 2, which also shows the division in four
clades as follows: clade 1 (green, 22 isolates), clade 2 (blue, 17
isolates), clade 3 (purple, 19 isolates), and clade 4 (red, five isolates).
One sequence was excluded from all clades (Belel, 4; Figure 2,
reported as “no clade” in the figures). The geographical distribution
of the clades is presented in Figure 3, showing the number of M.

bovis isolates per administrative subdivision, which ranged from
1 to 17 (see Supplementary Table 8 for the number of isolates
per clade by regional abattoir). In Figure 4, we superimposed
the MCC tree with spoligotypes; the most prevalent spoligotype,
SB0944, occurred 26 times (out of 64 sequences) and was present in
three of the four clades. The second most prevalent spoligotypes
were SB0953 and SB2312, the first occurring five times in two
clades and the latter occurring five times in one clade only (clade
2). We also superimposed the MIRU-VNTR types, as shown in
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FIGURE 2

Phylogenetic time-scaled MCC tree of the 64 high-quality M. bovis whole-genome sequences sampled in Cameroon in 2012 and 2013. The blue

transparent bars represent the 95th HPD of the internal node dates, while the branch colors represent di�erent clades: 1 (green), 2 (blue), 3 (purple),

and 4 (red). A non-time scaled tree showing the genetic distance between the 64 sequences is presented in Supplementary Figure 6.

Supplementary Figure 5. The most prevalent MIRU-VNTR type
in the sampled population was V89, which occurred nine times;
V82 and V37, respectively, occurred six and four times; and V81,
V76, and V100 all occurred three times. Seven MIRU-VNTR types
occurred two times, while 39 types occurred only once.

3.3. Spatiotemporal pathogen expansion

The estimated mean branch velocity was 53.1 km/year (95th CI
18.4–219.0, temporal trend presented in Supplementary Figure 7).
The wavefront statistics in Figure 5 suggest that the pathogen
expansion was slow until the mid-1960s but accelerated thereafter
to reach the entire study area, with a slow but constant expansion in
the following period. This is reflected in an increase in the branch
velocity at the same time (Supplementary Figure 7), which is
approximately the period when the branches formed the observed
clades (Figure 2). The timing of the different branches in space is
presented in Figure 6 (95th HPD in Supplementary Figure 8, with
nodes colored by estimated/observed date).

We tested the association between nine geographical variables
with the dispersal duration. Table 1 shows the results obtained
using the straight line and the least-cost path models, and the
latter run considering the variables as potential conductance or
resistance factor. A total of six variables resulted in a significant
association (positive coefficients for all at least 95 out of 100 trees
and above 75% of positive Q) as follows: mosaic, shrub, and other

vegetation covers (with both path models as resistance in the least-
cost one); forest cover, elevation, and waterbodies cover (all as
conductance); and cattle density (as resistance). However, when
their statistical significance was tested through randomization, only
forest cover and elevation (both as conductance) showed a Bayes
factor significance [≥ 3 (67)]. The result was robust against two
different tree randomization algorithms for the forest layer, while
for the elevation, this was true only whenmaintaining the branches’
length and excluding the other tree topological characteristics.

3.4. Factors associated with genetic
distance

The RMSE of the boosted regression tree BRT model ran using
all 28 variables was 20.23, while the R2 was 0.450. We simplified the
model using the dismo package, which tests the performance of the
model by dropping the less important variables with a procedure
similar to backward selection in regression (56). The algorithm
brought to eliminating 12 variables (see Supplementary Table 5);
nonetheless, the model run using the remaining 16 variables
performed very similarly to the original one (RMSE = 20.22 and
R2

= 0.452). Therefore, we used the latter to calculate the variable
importance (Figure 7).

As expected, the most relevant variables were the temporal
distance between the samples (first), and the binary variable
indicating whether the two M. bovis isolates belonged to the
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FIGURE 3

Geographic distribution of the 64 high-quality M. bovis whole-genome sequences in Cameroon. Circle sizes correspond to the number of

sequences per administrative subdivision, and colors represent di�erent clades (clade 1 green, clade 2 blue, clade 3 purple, and clade 4 red).

same clade in the MCC tree (second). The variables describing
the subdivisions’ population were also relevant in the model
(population.y, third, and population.x, fifth), as well as whether
the two isolates shared the same MIRU-VNTR (fourth). This was
more relevant than the two isolates shared the same spoligotypes
(11th), suggesting the former was more useful to discriminate
closer M. bovis strains. The market movement network strength
(i.e., the number of cattle moved from/to a subdivision) was the
most important (sixth and ninth) among network-related variables,
while the betweenness (eighth and 10th) was the only spatial
network variable retained in the simplified model. Interestingly,
when both variables were selected for the same metric, the one
related to the youngest isolate (marked by y) was always preferred
to the one related to the oldest isolate (marked by x). The partial
dependency plots, showing the relationship between SNP distance
and variables, are presented in Supplementary Figure 9.

4. Discussion

We sought to unravel the characteristics of the spread of a
pathogen with zoonotic potential in time and space to improve
our understanding and inform control and preparedness strategies.
Our basic premise is that the accumulation of mutations in the
pathogen’s genome can be used as signatures of transmission
events from host to host across time and space. Within space,
the environment can create barriers that influence the population
dynamics of diseases, i.e., altering host-to-host and pathogen–
host interactions has direct effects on the genetic structure of
the pathogen (68). The availability of high-throughput genomic
techniques means we can interrogate the structural changes linked

to the environment over time to gain critical insights into how
the epidemic has evolved. In this study, we aimed to characterize
M. bovis samples from cattle in Cameroon using genetic and
demographic data to understand whether the pathogen is in a
stable endemic state and the influence on the spread dynamic of
environmental and ecological factors and cattle movements.

4.1. Evidence of dynamic endemicity

An important question was whether the M. bovis outbreak in
North Cameroon was in a steady state, at an endemic equilibrium,
or if it was expanding. Determining whether a pathogen is endemic
has implications on risk perception and consequently on resource
allocation. At the same time, the chances of zoonotic transmission
are likely to be higher in the case of endemicity. In our analysis,
the Bayesian model estimation with SkyGrid as a population
model showed an increasing pathogen effective population size,
corresponding to a constant increase in the disease velocity after the
sudden jump during the mid-to-late 1960s. This suggests that the
pathogen is not in a state of endemic stability, instead, it has been
expanding at various rates over the years. This is in agreement with
a previous publication using spoligotypes and MIRU-VNTR (15)
and with the study by Awah-Ndukum et al. (14). The expansion
of M. bovis might represent an issue for livestock and humans,
particularly as we showed that the bacterium is circulating in both.
At the moment, disease control in the area is absent, while, on the
other hand, the dairy industry in Africa is generally expanding. A
lack of widespread milk pasteurization could lead to an increase in
zoonotic TB cases, which already represent a problematic issue in
the region (11).
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FIGURE 4

Visual comparison between the M. bovis phylogenetic time-scaled MCC tree and the spoligotypes obtained by Egbe et al. (15). A total of 10

sequences were associated with two spoligotypes because multiple samples from the same animal (up to three) were submitted for spoligotyping.

4.2. Genetic diversity of M. bovis in
Cameroon

We observed a high diversity of M. bovis, confirming earlier
observations with molecular typing techniques, providing less
granular information (15), and considering the short time span
of the sampling campaign and the small sample size. This
contrasts with areas such as Great Britain and other European
countries, where strict control measures, such as routine testing
and stamping out of positive individuals, have been in place for
decades. These measures could have resulted in a genetic bottleneck
which hampered the pathogen’s genetic variability, in particular by
reducing the time a pathogen has to develop inside a domestic host

and, therefore, the likelihood of substitutions in the DNA. As an
example, Crispell et al. (55) reported a similar SNP distance range
(0 to 150), albeit across a much bigger sample (n = 230), with a
lower median (20 SNPs) and with isolates dating back two decades,
while in a similar size monophyletic outbreak (n = 64), Rossi et al.
reported a maximum SNP distance of only six SNPs (54). In Spain,
Pozo et al. (69) found a similar SNP distance average and range
(62 and 0 to 150) in a bigger M. bovis population, sampled in
both cattle and wildlife over 13 years. It is noteworthy that high
diversity can be associated with dynamic epidemiology and not
with endemic stability.

All 64 core isolates belonged to the clonal complex Af1,
which was observed in the region in previous studies (63). The
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FIGURE 5

The estimated epidemic wavefront over time (A) and the expansion of the epidemic wavefront on the map (B). (A) mean (lines) and 95th HPD (shades)

of the epidemic wavefront spatial distance (blue) and patristic distance (red) over time. (B) di�erent yellow shades represent the epidemic wavefront

at a sequential point in time [marked by vertical dotted lines in (A)], and lighter shades of yellow correspond to more recent expansion; the estimated

tree’s root location is indicated by the black cross, diamonds represent the internal nodes estimated locations and circles the sampled isolates

(colored by clade: 1, green; 2, blue; 3, purple; and 4, red).

most common spoligotype, SB0944, was found by Müller et al.
(63) as the most prevalent in West Africa and considered the
original of the Af1 clonal complex. Our findings also suggest
zoonotic transmission in West Africa, as sequences recovered from
humans in Cameroon and Ghana clustered with Cameroonian
cattle M. bovis isolates (70). Because it is known that zoonotic
TB represents a minoritarian but still crucial part of all TB
cases in Africa, these results strengthen the case for One-Health
approaches to control, which involve humans, livestock, wildlife,
and environmental health (11, 71). Except for the one sequence
in Mali and the two Cameroonian outliers, all the sequences from
West Africa clustered together, hinting at high connectivity likely
caused by cattle movements throughout the area, as previously
shown by another study (72). Our results showed that the areas
with the highestM. bovis diversity were in the Adamawa and North
regions, both reporting all the clades identified by the maximum
clade credibility (MCC) tree. All clades were also sampled in the
towns of Touboro and Tchollire, both located in the North region
but close to the Adamawa border. Previous studies reported that
this area receive cattle from neighboring country as part of the
transhumance migration, suggesting that cattle movements and
markets play an important role in defining the dynamics of the
pathogen, and therefore influencing its genetic diversity (15, 22).
The Northwest region was underrepresented in the sample, with
only five high-quality sequences on 31 infected cattle detected at
the abattoir. This inherently reduces the level of diversity, which is
far lower than reported using spoligotypes and MIRU-VNTR (15).

Despite covering a smaller portion of the genome and the
higher occurrence of homoplasy with respect to WGS, in other
contexts, spoligotypes have been used as a proxy cluster or to
narrow down potential transmission within the study population

(55, 73). Our results showed that this cannot be conducted for
areas with high diversity such as the one we considered, as we
observed little correspondence between theMCC tree branches and
the spoligotypes. Similarly, other studies pointed out the limitations
of such typing techniques (18), in the case of an expanding
infection where transmission is steadily ongoing, compared with
point-source ones (74). The high SNP distances among the
sampled isolates also precluded the use of methods to infer direct
transmission between hosts (7, 75).

When considering the entire sampled population, therefore
including the sequences with incomplete metadata, we found two
of the 91 sequences not belonging to the clonal complex Af1.
In their spoligotype pattern (SB2332), we noted the absence of
spacer 21 (76), and the closest relatives analyzed by Loiseau et al.
(39) were identified as part of the clonal complex Eu2, including
isolates sampled both in south-western Europe (SB0837, SB1090,
and SB1308) and West Africa [SB1102, isolated in Cameroon as
well (12)]. We can, then, speculate that these sequences likely
belong to Eu2 as well, although we could not exclude one of the
“unknown” clonal complexes identified by other studies (39, 77).
Further development on this point was beyond the scope of this
study, as we focused on the 64 core sequences to gather insights
into the pathogen dynamics in the area.

4.3. Tracking the spread of M. bovis in
Cameroon

We acknowledge that our estimates for the most recent
common ancestor (MRCA) have a wide credible interval around it
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FIGURE 6

The Cameroonian M. bovis epidemic estimated expansions in space and time. Nodes are colored by clade (1, green; 2, blue; 3 purple; 4, red; no

clade, light gray; internal nodes, dark gray; tree root, black), while the branches are colored by estimated movement date from 2007 (purple) to 2013

(yellow).

(23 years). This uncertainty is likely due to the short duration of the
sample collection campaign, which also generated a weak temporal
signal, although the coefficient of determination was similar to
other M. bovis studies in highly sampled populations (54, 55).
Nonetheless, our estimates coalesce around 1950, suggesting that
the pathogen has been spreading in the area for at least six decades
at the time of sampling. For the same reason, the estimated clock
rate was higher than others in the literature but in the same order
of magnitude (0.67–1.26× 10−7, n= 2625 (39)].

The estimated MCC tree located at the most recent common
ancestor (MRCA) in Touboro (North region), and from there,
a rapid expansion of the outbreak reached most of the
study area by the early 1970s. From the estimated origin,
the pathogen likely spread first northward to Garoua (in the
same region) and westward to the Northwest region, and later
to the Extreme North and Adamawa regions and again to
the Northwest.

The results of the spatial factor analysis showed that
forest cover and elevation were the only significant ones,
both acting as “conductance”. Forest cover could be a proxy

for potential wildlife interactions, as M. bovis is known to
be quite effective in spreading at the wildlife–livestock (and
humans) interface (71, 78). The elevation as conductance
was counter-intuitive; however, this could be linked to cattle
movements in pastoralist communities within the plateau
located in the study area. This is important because, if
confirmed, altitude could be used as a proxy for the missing
pastoralist movements.

Our regression model performed reasonably well, although
the amount of variability explained was below 50%. However,
our objective was to understand which variables could better
explain the genetic distance between M. bovis isolates, expressed
as SNP distance. Except for the isolates between temporal
distance and clade, the demographic variables were the most
effective in explaining SNP distance, particularly the administrative
subdivision human population size. These variables had a negative
effect on the SNP distance, meaning that a smaller population
was associated with a close relatedness of the M. bovis strains.
This could be an effect of the population distribution on the
country because the northern regions, where cattle are most
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TABLE 1 The results of the analysis on nine spatial variables, assuming two path models, straight line and least cost, and for the least cost path, whether

the variable worked as a conductance or resistance.

Variable Type Path model Number of
positive

coe�cients

Number of
positive

Q statistic

Mean Bayes factor

(Randomization
#1)

(Randomization
#2)

Mosaic_shrub_otherv Resistance Least cost 100 99 1.89 1.83

Forest Conductance Least cost 100 96 3.66 3.66

Mosaic_shrub_otherv NA Straight line 100 89 0.62 1.32

Elevation Conductance Least cost 100 88 2.39 3.00

Waterbodies Conductance Least cost 100 87 1.10 0.97

Cattle_density Resistance Least cost 99 77 2.49 2.88

Cattle_density NA Straight line 100 73 Not run

Cattle_density Conductance Least cost 100 70 Not run

Grassland_cropland Resistance Least cost 100 66 Not run

Grassland_cropland NA Straight line 100 56 Not run

Mosaic_shrub_otherv Conductance Least cost 100 44 Not run

Roads_intersections Conductance Least cost 100 42 Not run

Waterbodies Resistance Least cost 100 38 Not run

Waterbodies NA Straight line 100 27 Not run

Grassland_cropland Conductance Least cost 100 15 Not run

Forest Resistance Least cost 100 12 Not run

Elevation NA Straight line 100 7 Not run

Forest NA Straight line 100 3 Not run

Pop_density Conductance Least cost 99 40 Not run

Elevation Resistance Least cost 99 15 Not run

Roads_length NA Straight line 97 0 Not run

Pop_density NA Straight line 96 16 Not run

Pop_density Resistance Least cost 96 7 Not run

Roads_length Conductance Least cost 92 11 Not run

Roads_length Resistance Least cost 59 0 Not run

Roads_intersections NA Straight line 56 1 Not run

Roads_intersections Resistance Least cost 6 1 Not run

The results show the number of positive coefficients for the 100 sampled trees, the number of positive Q statistics, and the mean Bayes factor calculated over 10 randomizations, testing two

algorithms as follows: (1) randomizations of nodes positions while maintaining branches lengths, tree topology, and location of the most ancestral node; and (2) randomizations of nodes

positions while maintaining only the branches lengths. The randomization algorithm was not run for spatial variables not significant in the preliminary analysis, variables significant in the

randomization analysis were marked in bold.

concentrated, are less populated compared with the cities in
the south. The simplified model performed similarly to the
full model, suggesting some variables were not important in
explaining the genetic distance. Beyond the human population
size, also the other demographic variables (population and cattle
density) were retained. Conversely, only five network-related
variables were retained, three for the cattle movement network
(out of eight) and two for the spatial network (out of six).
All network-related variables had a positive effect on the SNP
distance, with the number of cattle moved in or out of a
subdivision (i.e., strength), having the higher predictive effect.
Interestingly, this result was similar to other studies where cattle

movements alone could not fully captureM. bovis genetic diversity
(54, 55).

4.4. Limitations

The major limitation of this dataset was the short data
collection time window, less than a year and a half, which resulted
in uncertainty in the MRCA estimate and a weak temporal signal.
While we can speculate the sampled bacterial population already
reached the entire study area before the 1970s, a wider sampling
time window would likely allow a stronger temporal signal and
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FIGURE 7

Relative influence of the most relevant variables in the simplified

boosted regression tree (BRT) model used to explain the SNP

distance between the 64 high-quality M. bovis isolates. Many

variables are calculated between isolates pairs, x refers to the oldest

isolate’s subdivision, and y to the youngest one.

improve our estimate of the MRCA, which might be prior with
respect to the current estimate. In turn, this affected the pathogen’s
expansion patterns, including the branch velocity and wavefront,
which are also limited by the sampled area size. The spatial
uncertainty might also be affected by the absence of dense cattle
movement records, so the known spatial coordinates associated
with each sequence correspond to the last village the animal lived in.
The Adamawa and Northwest regions are home to 1.25 million and
450.000 cattle, respectively (22), and while this abattoir-based study
provides a very informative snapshot of theM. bovis population in
North Cameroon, it adds to the calls to improve cattle records and
movement routine data collections in LMICs (79), as well as bTB
detection efforts.

The low-quality WGSs disproportionally affected the
Northwest region, as presented in Supplementary Table 7.
This could have hampered the representativeness of the M. bovis

diversity in that region, reducing the number of clades observed.
The Adamawa region was the most represented, despite most of
the sequences excluded from the quantitative analysis because of
missing coordinates, which came from the Ngaoundere abattoir.
The bacterium diversity in the Northwest might also be affected
by the demographic of the slaughtered cattle in the region (13)
because the region is highly populated by humans and more
isolated in the trade network (22), and local animals of both
sexes and at any age are slaughtered. Conversely, young male
calves from the Adamawa, North, and Extreme North regions
are often sent to richer southern regions to maximize their
economic values, leaving the older cows to be slaughtered. By being
exposed to the M. bovis for longer, the latter has more chances

to develop lesions. On the contrary, these trends likely reduce
the impact of missing information on the previous location of
the animals because these animals have more chances of being
reared locally.

In agreement with many studies and with the vSNP analysis
result, we used AF2122/97 as a reference genome (49, 50, 54, 55,
77, 80, 81). To account for genes, absent in M. bovis, Loiseau
et al. (39) used M. tuberculosis H37Rv, a choice driven by the
different purpose of their study compared with ours (define the
origin and the global population structure of M. bovis). Generally,
the pipelines used to call the SNPs differed in many of the
aforementioned studies, contributing to the uncertainty of the
estimates and potentially generating biases in the analysis results
and the clock rate calculations.

5. Conclusion

In conclusion, our study indicates endemic stability of M.

bovis is unlikely in North Cameroon, but rather the disease is
slowly expanding over time. Our findings highlight the importance
of collecting data in underrepresented areas to enrich insights
into the current body of literature, predominantly from developed
countries. Moreover, our results pave the way for future research
aimed to understand whether the observed M. bovis high-genetic
diversity affects the spread dynamics.

Our findings underscore the need to adopt a One-Health
surveillance strategy for M. bovis control (11). More studies on
combining tools such as phylogeography, statistical modeling,
landscape, and ecology will be beneficial tomap spread patterns and
effectively inform control and preparedness strategies (54).
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