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Introduction: Diagnostic test evaluation for African swine fever (ASF) in field

settings like Vietnam is critical to understanding test application in intended

populations for surveillance and control strategies. Bayesian latent class analysis

(BLCA) uses the results of multiple imperfect tests applied to an individual of

unknown disease status to estimate the diagnostic sensitivity and specificity of

each test, forgoing the need for a reference test.

Methods: Here, we estimated and compared the diagnostic sensitivity and

specificity of a novel indirect ELISA (iELISA) for ASF virus p30 antibody (Innoceleris

LLC.) and the VetAlertTM ASF virus DNA Test Kit (qPCR, Tetracore Inc.) in field

samples from Vietnam by assuming that disease status 1) is known and 2)

is unknown using a BLCA model. In this cross-sectional study, 398 paired,

individual swine serum/oral fluid (OF) samples were collected from 30 acutely

ASF-a�ected farms, 37 chronically ASF-a�ected farms, and 20 ASF-una�ected

farms in Vietnam. Samples were tested using both diagnostic assays. Diagnostic

sensitivity was calculated assuming samples from ASF-a�ected farms were

true positives and diagnostic sensitivity by assuming samples from una�ected

farms were true negatives. ROC curves were plotted and AUC calculated for

each test/sample combination. For comparison, a conditionally dependent, four

test/sample combination, three population BLCA model was fit.

Results: When considering all assumed ASF-a�ected samples, qPCR sensitivity

was higher for serum (65.2%, 95% Confidence Interval [CI] 58.1–71.8) and

OF (52%, 95%CI 44.8–59.2) compared to the iELISA (serum: 42.9%, 95%CI

35.9–50.1; OF: 33.3%, 95%CI 26.8–40.4). qPCR-serum had the highest AUC

(0.895, 95%CI 0.863–0.928). BLCA estimates were nearly identical to those

obtained when assuming disease status and were robust to changes in

priors. qPCR sensitivity was considerably higher than ELISA in the acutely-

a�ected population, while ELISA sensitivity was higher in the chronically-

a�ected population. Specificity was nearly perfect for all test/sample types.
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Discussion: The e�ect of disease chronicity on sensitivity and specificity could

not be well characterized here due to limited data, but future studies should aim to

elucidate these trends to understand the best use of virus and antibody detection

methods for ASF. Results presented here will help the design of surveillance and

control strategies in Vietnam and other countries a�ected by ASF.

KEYWORDS

Bayesian latent class analysis, ELISA, PCR, African swine fever, diagnostic test,

evaluation, Vietnam

1. Introduction

African Swine Fever (ASF) is arguably one of the most
significant animal disease threats currently facing global pork
production. ASF is a notifiable disease of swine caused by the
ASF virus (ASFV), a large (175–215 nm), icosahedral, enveloped,
double-stranded DNA arbovirus (1). ASFV only infects members
of the Suidae family including domestic pigs and wild boar, and it
is not a threat to human health. ASF was first reported in Kenya in
1921 and now is globally widespread throughout Eastern Europe,
Asia, and Africa (2, 3). Notably, it was detected in the Dominican
Republic and Haiti in 2021 (4). No effective treatments exist for
ASF, and even though promising vaccine candidates have been
developed, their safety is still under evaluation, and it may be some
time until they are regularly available for widespread use (5, 6).
ASF disease control relies on preventing introduction with effective
biosecurity, passive and active surveillance, and early detection
of potential outbreaks followed by quarantine and eradication
through mass depopulation to avoid disease spread (7).

Successful ASF surveillance and control strategies rely on timely
and accurate ASF diagnosis to prevent disease spread and avoid
false-positive ASFmisdiagnosis that can lead to unnecessary culling
of pigs and disruption to industry. Diagnostic assays based on
virus and antibody detection are useful for surveillance, provided
their intended use is appropriately defined and their diagnostic
performance evaluated prior to deployment. Evaluation of the
diagnostic sensitivity (DSe) and specificity (DSp) is part of the
World Organization for Animal Health (WOAH)’s pathway for
test validation, with various methodologies approved for analysis
(8). In initial assessments of DSe and DSp, ideally samples from
positive and negative reference populations that are representative
of the intended target population should be used (8). Estimation
of DSe and DSp would then involve the use of a gold standard
reference test to which the new test is compared to. Although
this method may be acceptable in circumstances where reference
tests with high accuracy are available, the use of samples of known
infection status is ideal for precise and unbiased evaluation of
the diagnostic performance of a test. However, when animals or
samples of unknown status are used or when no suitable reference
test is available, considerable bias may be introduced. This is often
the case in field studies, where it may be possible to determine
the status of the herd or farm but impossible to ascertain the true
disease status at animal level. However, field samples may best
represent the intended use of these diagnostic tests and provide
a more accurate evaluation of their performance, and they are

important in monitoring assay performance after initial validation
(8). To address these concerns, latent class models were developed
to provide a flexible alternative for diagnostic test evaluation (9, 10).

Latent class models use multiple imperfect reference tests
applied simultaneously to one or more populations to estimate the
DSp and DSe of each test (9). These models allow for uncertainty
about the samples’ true status, making them an appropriate fit
for analysis of field samples. They also can address the potential
conditional dependence between tests that have similar biological
basis, providing a more accurate estimate of DSe and DSp (11, 12).
Bayesian latent class models (BLCA) use a Bayesian framework
to formally incorporate prior knowledge to estimate the posterior
probability of each tests’ DSe and DSp. The prior represents how
likely one believes the hypothesis to be true before data has been
collected. In BLCA models of diagnostic test accuracy, priors can
be provided for estimates of the DSe and DSp of each test and
the disease prevalence in each sampled population (13). The use of
thesemodels is supported by theWOAH, and their implementation
has become more common in veterinary medicine over the past 20
years (14–16).

For tests that provide a continuous outcome, results can
be dichotomized into “positive” and “negative” categories (8).
Additional categories, such as “intermediate” or “suspect”, are
sometimes used as well. These categorical designations are made
by specifying cut-off points. DSe and DSp of a diagnostic test
can be increased or decreased by modifying its cut-off points, but
their relationship is inversely related. Thus, test developers must
choose a cut-off point that balances the desired DSe and DSp of
the diagnostic test for its intended purpose. Receiver operating
characteristic (ROC) curves can be a useful analysis to compare DSe
and DSp over different cut-off points (17). Additionally, the area
under the ROC curve (AUC) provides an estimate of the diagnostic
test’s global accuracy across all assay values and can be used to
compare different assays.

Typically, ASF test assessment and validation have been
performed on experimental samples. However, ongoing ASF
outbreaks in Southeast Asia provide a unique opportunity for field
testing of novel diagnostic tests. Particularly, Vietnam confirmed
its first outbreak of ASF in February 2019 on a backyard pig
farm in Hung Yen Province (18). Since then, ASF spread to all
63 provinces in Vietnam and resulted in an estimated nearly 6
million pigs lost in 2019 (19). Despite continuous efforts from
private and public stakeholders to control the disease, since 2020
up to the present day, new ASF outbreaks continue to be reported
(20, 21). The objective of the this study was to estimate and
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compare the diagnostic performance of a novel indirect enzyme-
linked immunosorbent assay (iELISA) for ASF serum antibodies
(iELISA), developed by Innoceleris Ames, IA, USA and produced
and commercialized by Tetracore (Rockville, MD, USA), and the
VetAlertTM ASFV DNA Test Kit (qPCR, Tetracore) in both serum
and oral fluid (OF) samples collected on farms in Vietnam. Because
no gold standard reference test was assumed and true disease status
of sampled individuals was unknown, we also aimed to compare
estimates from BLCA modeling to those produced when assuming
disease status is known based on history, location, clinical signs,
and duration of the ASF outbreak in Vietnam.

2. Materials and methods

2.1. Study design—Sampling, populations

The study was a prospective, cross-sectional field study to
evaluate the performance of the two diagnostic assays, qPCR and
iELISA, on serum and OF samples in Vietnam. Samples were
collected from dates 2019 to 2021. Selection of farms was not
researcher-driven, but part of ongoing ASFV regulatory activities
by the Vietnamese veterinary services. Farms were from 17
provinces (Bac Giang, Bac Ninh, Dong Nai, Ha Nam, Ha Noi, Ha
Tay, Hai Duong, Hoa Binh, Hung Yen, Nam Dinh, Nghe An, Phu
Tho, Son La, Thai Binh, Thai Nguyen, Vinh Phuc, and Yen Bai).
Sample collection was performed on farms throughout Vietnam
using outbreaks detected/reported by the farm’s veterinarian
and farm owner. ASF-acutely affected, chronically affected, and
unaffected herds were targeted. Acutely affected farms were defined
as those with pigs with severe clinical symptoms of ASF, chronically
affected farms as those with pigs which had developed mild clinical
symptoms of ASF for a period of time (∼6 weeks−2 months), and
unaffected farms as those with no clinical or laboratory history
of ASF at the farm level. On farm, pigs were selected by the
farm’s veterinarian, and on ASF-affected farms specifically, animals
exhibiting clinical signs consistent with ASF were targeted for
sampling. All pigs on farms were eligible for sampling. Paired
individual serum and OF samples were collected from 100 pigs on
30 acutely ASF-affected farms, 98 pigs on 37 chronically affected
farms, and 200 pigs on 20 non-affected farms, for a total of 398
paired samples from 87 farms. The number of samples taken per
acute or chronic farm ranged from 1 to 10, while 10 samples were
consistently collected on each unaffected farm. Farm information
was recorded at the time of sampling including the farm’s province,
farm type, animals per barn and pen, brief history of ASF on the
farm, overall health status of the pigs, and general vaccination
status. Each sampled pig’s age group category was also recorded.

2.2. Sample collection and processing,
ELISA, and PCR protocols

2.2.1. Sample collection and processing
All animal sampling and activities were performed in

accordance with guidelines of the animal ethics committee of
Vietnam National University of Agriculture. Blood was collected
via right jugular vein venipuncture using a 20 gauge or smaller
needle and syringe, with needle size adjusted per pig age. The

8–10mL of blood collected was placed into a glass vial sans
anticoagulant. The blood was allowed to clot at room temperature.
Clotted blood was transferred to the laboratory under refrigerated
conditions by placing the vials on ice gel packs in a transport
container for serum extraction at the laboratory. Clotted blood
was centrifuged for 10min at 1,000 × g (AllegraTM64R Centrifuge,
Beckman Coulter), the sera were separated and aliquoted into 2mL
cryogenic vials, then stored at−80◦C until further use.

Pig OF samples were collected using dry cotton swabs
(prepared on 25 cm wooden stick). The cotton swab was used to
rub inside the oral cavity, tonsils and pharynx of pigs 5–6 times
so that the fluid was absorbed. Afterwards, the cotton swabs were
transferred into a tube with 1.5mL of phosphate-buffered saline
(PBS—Tablets, USA) pH 7.4 and transported to the lab in an ice
box. In the lab, the wooden stick was removed, and the cotton tip
submerged in PBS was transferred into a zip bag. The fluid was
collected by compressing the cotton swab in the bag. Aliquots of
OF were placed into 2mL cryogenic vials and stored at −80◦C
until tested.

2.2.2. qPCR for ASFV DNA detection
Viral DNA extractions from serum and OF samples were

performed using aMagMAX-96 viral kit (Thermo Fisher Scientific)
with KingFisher Flex 96 Deep-Well Magnetic Particle Processor
(Thermo Fisher Scientific). For the specific detection of ASFV
DNA, the ASF 2.0 PCR dry assay (Tetracore, Inc., Rockville,
MD, United States) was used. The assay, including ready-to-use
reagents, was provided in a dried-down format, which can be stored
and shipped at room temperature. The reagents were rehydrated by
adding 20 µL of the rehydration buffer (TC-9094-064, Tetracore)
to each ASFV reaction tube. The tube was then kept at room
temperature for 5min to allow for rehydration of the dry reagents.
After this step, the tube was briefly vortexed (Cleaver, Scientific
Ltd., Rugby, United Kingdom) for 10 s to fully dissolve the dry
reagents. The rehydrated reagents were then transferred to the
reaction tube and 5 µL of the extracted sample was then added
to the reaction tube and loaded on the real-time PCR Instrument
(CFX96TMReal-Time System, Bio-Rad). Each sample was tested
following these thermal cycling conditions: 95◦C for 2min, 45
cycles of, 95◦C for 15 s, 60◦C for 60 s (Collecting Optical data in
channel FAM). Serum and OF samples with Ct values < 38 were
considered as positive and containing ASFVDNA. Samples with Ct
values ≥ 38 were considered as negative and not containing ASFV
DNA (manufacturer-specified).

2.2.3. ASFV iELISA for antibody detection
In the present study, an ASFV VP30-based iELISA was used

that was originally designed by Innoceleris LLC. and produced and
commercialized by Tetracore Inc. Samples were tested according
to manufacturer’s instructions. With the exception of the wash
solution (provided 20X), all iELISA reagents and controls were
provided ready-to-use. In brief, 100 µL (reaction volume) of pre-
diluted serum (1:100) or OF (1:2) samples were transferred to the
pre-coated iELISA plate. After 45min incubation (19–22◦C), plates
were washed 5 times using 300 µL of 1X wash solution, then 100
µL of enzyme conjugate was added to each well and the plates
incubated (19–22◦C) for 30min. Then, after another washing step,
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the reaction was visualized by adding 100 µL of TMB substrate
to each well and the plates incubated for 10min at 19–22◦C.
Thereafter, 100 µL of stop solution was added to stop the reaction
and the plates were read (450 nm) with a spectrophotometer
(Epoch2, BioTek). The optical density (OD) response was expressed
as sample to positive (S/P) ratios using the equation below.

S/P =
Sample OD− Average Negative Control OD

Average Positive Control OD.− Average Negative Control OD

Serum samples with S/P < 1 considered as negative and
not having ASFV antibodies, while samples with S/P ≥ 1
were considered as positive and having ASFV-specific antibodies
(manufacturer-specified). OF samples with S/P < 0.5 considered as
not having ASFV antibodies, while samples with S/P ≥ 0.5 were
considered as having ASFV-specific antibodies.

2.3. Statistical models

Two methods were used to evaluate the DSe and DSp of
each test and sample type: (1) calculation assuming disease status
in reference populations; and (2) Bayesian latent class analysis
assuming imperfect tests and unknown disease status. For the first
approach, it was assumed that all samples from the ASF-acute and
ASF-chronic populations were disease-positive and that all samples
from the unaffected farms were disease-negative. The continuous
test values for each subject were dichotomized into positive and
negative categories using the cut-offs described in Sections 2.2.2
and 2.2.3. The tests’ DSe using serum or OF were estimated using
the ASF-affected populations, and DSp were estimated using the
unaffected population, by placing the data in a 2× 2 table of disease
and test status. DSe was calculated as the proportion of disease-
positive samples that tested positive, while DSp was calculated as
the proportion of disease-negative samples that tested negative
(Table 1). Ninety-five percent confidence intervals were calculated
using the specified Clopper-Pearson exact method. The tests’ DSe
was calculated individually for the acute and chronic populations,
and then for both populations combined.

2.3.1. Bayesian latent class model
The Bayesian latent class analysis approach to evaluate DSe and

DSp followed that of Dendukuri and Joseph (11) and Branscum
et al. (13). A three population, four tests model with pairwise
dependency was fit using the acute, chronic, and unaffected
populations and each test-sample type combination (Figure 1). The
full model is available in Supplementary material 1. Guidelines for
reporting studies of diagnostic test accuracy using BLCMs were
followed (16) (Supplementary material 2). Because both antibody
and virus detection methods were modeled together, the latent
class here represents infection where viral DNA is present yet is
prolonged enough for antibodies to have been produced.

Covariance was modeled between samples tested by the same
diagnostic test (i.e., between serum and OF samples tested by
iELISA for ASFV antibodies and between serum and OF samples
tested by qPCR for viral DNA, Figure 1), resulting in four pairwise

comparisons. This accounts for the expectation that tests that use
similar biological basis (e.g., detection of ASFV antibody) may
be correlated, meaning the event that they classify individuals
of infected or uninfected status the same will occur more than
by chance. The covariance structure was parameterized using the
approach described by (11) between the DSe or DSp for each pair of
tests, where a Beta (1,1) prior was used to constrain the covariance
estimates to positive values. The overall correlation of test outcome
between pairs of tests for infected (rhoD) and uninfected (rhoDc)
was calculated as described in Branscum et al. (13).

Prior values for each tests’ DSe and DSp using serum and
OF were estimated using previously published reports of the
tests’ performance, experimental studies, and through consultation
with test designers and experts where data was limited (Table 2).
In published reports, the VetAlertTM qPCR has consistently
demonstrated high or perfect DSe and DSp across many different
sample types (23, 24), however OF were not tested. Based on studies
where other ASF DNA PCRs were evaluated using OFs, it was
assumed that DSe of the VetAlertTM qPCR using OF would still
be high but reduced compared to sample types such as whole
blood (25, 26). The iELISA used here was recently evaluated
in experimentally ASF-infected pigs in Russia using both serum
and OF samples across 14 weeks (22). Raw data from those
experiments were used directly to estimate priors by estimating
an average DSe and DSp across timepoints and calculating 95%
Clopper-Pearson exact confidence intervals. Additional results
from samples collected through regulatory veterinary diagnostic
laboratory testing in the United States, currently free of ASF, were
also used to support the assumption of high DSp of the iELISA in
serum and OF (Gimenez-Lirola, unpublished data). Because each
population (acute, chronic, unaffected) was created by sampling a
few pigs from many farms of a known ASF-status, it was assumed
that the disease status of individuals within each sample population
was likely very uniform; i.e., near certain high prevalence in the
acute and chronic populations, and near certain freedom in the
unaffected population. Due to this sampling strategy, reports of
ASF-prevalence in herds in Vietnam were not chosen for informing
the prevalence priors, and subjective estimates from the experts
and authors were used instead (Table 2). No data was available
to estimate correlation between tests, so vague Beta (1,1) priors
were used for all covariance parameters. Using the most likely
value for each estimate and its 95% confidence interval, BetaBuster
(1.0) software was used to obtain the α and β parameters of the
beta distributions for each prior (27). Some of the initial prior
distributions for DSe and DSp were very narrow and resulted
in non-convergence of the model, so the lower 95% confidence
value was decreased by 10% for DSe and DSp estimates when
obtaining the beta parameters in BetaBuster. A hyperprior of the
form Bernoulli (0.001) was used to inform the prior value of the
ASF-unaffected population.

The dichotomized test results were cross-classified in
a contingency table (Table 3) representing all the possible
combinations of test results from the four tests (24 = 16 possible
test combinations). The data was modeled multinomial with
respect to p (the probability of an individual having a particular
combination of test results, i.e., the probability of each cell in the
contingency table) and n (the size of each population sampled).
The probability of a given combination of test results p was
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TABLE 1 Number of correctly classified test results using iELISA serum and oral fluid (OF) antibody tests and qPCR serum and OF DNA tests under the

assumption that all samples from acute and chronically a�ected farms are ASF-positive and all samples from una�ected farms are ASF-negative.

Population iELISA, serum Ab qPCR, serum
DNA

iELISA, oral fluid
Ab

qPCR, oral fluid
DNA

Number of test positive samples

Acute (n= 100) 16 74 11 69

Chronic (n= 98) 69 55 55 34

Acute and Chronic Combined ASF-affected (n= 198) 85 129 66 103

Number of test negative samples

ASF-unaffected (n= 200) 200 200 198 200

FIGURE 1

Overview of BLCA study design and model.

modeled using the prevalence of each population and each tests’
DSe and DSp and pairwise covariances. Five parallel DSe and
DSp schemes (only serum, only OF, only PCR, only iELISA, or all

four tests/samples) were also calculated within the model. Parallel
testing here referred to the interpretation of test results whereby
an animal is considered positive if any of the simultaneously
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TABLE 2 Values and sources of priors used for BLCA model.

Test and sample type DSe/DSp Most likely 95% CI α, β
parameters

References

iELISA, serum Ab DSe 0.82 0.55, 0.99 9.20, 2.80 (22),
Gimenez-Lirola,
unpublished dataDSp 0.99 0.89–1 30.29, 1.30

qPCR, serum DSe 1 0.88–1 23.43, 1 (23, 24)

DSp 1 0.78–1 12.06, 1

iELISA, oral fluid Ab DSe 0.48 0.25–62.6 5.45, 5.82 (22),
Gimenez-Lirola,
unpublished dataDSp 0.99 0.89-1 30.29, 1.30

qPCR, oral fluids DSe 0.95 0.5–1 4.77, 1.20 (23–25)

DSp 1 0.79–1 12.71, 1

ASF-acute population 1 0.1–1 1.30, 1

ASF-chronic population 1 0.1–1 1.30, 1

ASF-uninfected population 0.01 0.002–0.058 1.88, 88.28

Covariance between iELISA serum and oral fluid, infected subjects 1, 1

Covariance between qPCR serum and oral fluid, infected subjects 1, 1

Covariance between iELISA serum and oral fluid, uninfected subjects 1, 1

Covariance between qPCR serum and oral fluid, uninfected subjects 1, 1

95% CI for diagnostic Se/Sp (DSe/DSp) estimates represents relaxed lower CI values.

applied tests are positive and can only be considered negative if
all simultaneously applied tests are negative. Parallel DSe and DSp
were calculated for pairwise parallel testing schemes and for all
four test/sample combinations, adjusting for correlation for test
pairs that were considered dependent (iELISA serum and iELISA
OF; qPCR serum and qPCR OF) following that of Branscum et al.
(13) and Bates et al. (28).

The Bayesian latent class analysis was performed using the
freely available software WinBUGS v1.4.3 within R using the
R2WinBUGS package (29, 30). WinBUGS (Bayesian inference
Using Gibbs Sampling) is a program that allows for Bayesian
inference using Markov chain Monte Carlo (MCMC) methods.
The model was performed using three MCMC chains over 50,000
iterations with an initial burn-in of 5,000 iterations to obtain an
effective sample size of at least 10,000 for the parameters. To
eliminate potential autocorrelation, thinning was applied where
1 in every 10 consecutive samples were selected. Each parameter
in each MCMC chain had a different starting input to ensure
full exploration of the probability space. Convergence was visually
confirmed by examining traceplots and obtaining a Gelmin-
Rubin statistic for each parameter (31). Autocorrelation was
assessed by examining autocorrelation plots. Summary statistics
were generated for the parameters from the posterior density
plots, where the median value represented the 50th percentile
and the 95% credibility intervals represented the 2.5th and 97.5th
percentile values.

2.3.2. Sensitivity analysis
Other model structures and prior distributions were

explored to assess the robustness of the BLCA model

(Supplementary material 3). To assess the effect of the priors

on the posterior distributions, two alternative sets of priors

were used: vague Beta (1,1) distributions or changing by 25% of

their original value. Alternative covariance structures were also

explored. Pairwise dependence was modeled between iELISA and
PCR samples of the same type, i.e., between PCR-serum/iELISA-

serum and PCR-OF/iELISA-OF. Additionally, the original model
was modified by parameterizing the covariance distributions
as uniform using their natural minimum and maximum (11),
allowing covariance take negative values. Due to constraints

imposed on the MCMC sampler by the hyperprior for the
unaffected population’s prevalence, the effects of removing
this hyperprior on convergence and parameter estimates were
also explored.

An assumption of BLCA is equal performance of diagnostics
tests across populations (9, 10). Because there was evidence that this
assumption was potentially not met due to different performance
in the acutely and chronically affected populations, a four test, two
population model was fit where population one used the combined
acute and chronic population data and population two used the
unaffected population data. Two additional two-populationmodels
were fit where only the acute or chronic population data were
used for population one, and the unaffected population data
was used for population two. Results from these two models
were compared to the DSe and DSp estimates when assuming
infection status in acute and chronic populations only, respectively.
For all the alternative analytical approximations, formulations,
and parameterizations assessed in the sensitivity analysis here,
variations of<10% in the point estimates and overlapping Bayesian
credibility intervals (BCI) for the posterior values of the assessed
parameters were considered evidence of robustness of the initial
modeling approach.
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TABLE 3 Cross-classified results of iELISA serum (iELISA-S) and OF (iELISA-OF) antibody (Ab) tests and qPCR serum (qPCR-S) and oral fluids (qPCR-OF)

tests used in BLCA representing all 16 possible test combinations, for acute, chronic, and una�ected populations.

Population iELISA-OF
Ab

iELISA-S
Ab

qPCR-OF + qPCR-OF -

qPCR-S + qPCR-S – qPCR-S + qPCR-S –

ASF-affected, acute (n= 100) + + 4 0 4 0

– 2 0 1 0

– + 4 1 3 0

– 33 25 23 0

ASF-affected, chronic + + 9 8 21 17

(n= 98) – 0 0 0 0

– + 5 2 6 1

– 6 4 8 11

ASF-unaffected (n= 200) + + 0 0 0 0

– 0 0 0 2

– + 0 0 0 0

– 0 0 0 198

2.4. ROC curves/AUC calculation

To understand how changes in cut-off values may affect DSe
and DSp, ROC curves were produced and AUC calculated for each
test-sample type combination using the package ROCR in R (17,
32). ASF-acute and -chronic population data were combined into
one ASF-affected population, where all samples were assumed to be
disease-positive. All ASF-unaffected farm samples were assumed to
be disease-negative.

3. Results

3.1. Population and sample characteristics

Farms were distributed across 17 provinces mainly in
Northcentral Vietnam and few in southern Vietnam. Most farms
were located in Hung Yen (n = 22 farms) and Dong Nai (n =

8). In the acute population, 13 farms were classified as intensive
and 17 as small holders, while in the chronic population, 14
farms were considered intensive and 22 as small holders. All ASF-
unaffected farms were considered as industrial farms. As described
in Vietnamese regulations, small holders contain from 10 to 29
animals, intensive farms contain from 30 to 299 animals, and
industrial farms contain 300 ormore animals (33). The age category
of sampled pigs varied by population and farm. Of samples from
acutely affected farms, 45 were grower pigs, 44 from sows, and 11
from weaned pigs. Samples from chronically affected farms were
comprised of 28 growers, 6 finishers, 13 mature, 47 sows, and 4
weaned pigs. On ASF unaffected farms, 90 samples came from sows
and 110 samples from weaned pigs. Sampled weaned pigs across
farm types were of 3–5 weeks of age. Overall, no farms reported
any type of ASF-vaccine usage. Other vaccine usage varied between
farms, with many vaccinating for some combination of circovirus,
parvovirus, foot-and-mouth disease (FMD) virus and/or classical

swine fever (CSF) virus. Few farms also vaccinated for Porcine
Reproductive and Respiratory Syndrome (PRRS).

3.2. Estimates under assumption of true
disease status in populations

The qPCR had greatly increased DSe (serum: 74%, 95% CI
64.3–82.3; OF: 69%, 95% CI 58.97–77.9) compared to the iELISA
(serum: 16%, 95% CI 9.43–24.7; OF: 11%, 95% CI 5.62–18.8)
for both sample types in the acutely affected population and
moderately increased DSe (serum: 65.2%, 95% CI 58.1–71.8; OF:
52%, 95% CI 44.8–59.2) compared to iELISA (serum: 42.9%, 95%
CI 35.9–50.1; OF: 33.3%, 95% CI 26.8–40.4) in the combined
populations (Table 4). The iELISA had higher DSe (serum: 70.4%,
95% CI 60.3–79.2; OF: 56.1%, 95% CI 45.7–66.1) compared to
qPCR (serum: 56.1%, 95% CI 45.7–66.1; OF: 34.7%, 95% CI
25.4–44.98) with both sample types when considering only the
chronically affected population. DSp was high for all test-sample
combinations for all assays, with a minimal decrease in DSp for OF
tested for antibodies by iELISA (99%, 95% CI 96.4–99.9).

3.3. BLCA model

The BLCA model converged well for all parameters with
minimal autocorrelation. Posterior prevalence estimates were high
for the acutely and chronically affected populations and near
zero for the unaffected population (Table 5). The model provided
higher posterior median estimates of DSe for all four test-sample
types (Table 5; iELISA-serum: 46.2%, 95% BCI 39.4–52.9; iELISA-
OF: 36.0%, 95% BCI 29.7–42.9; qPCR-serum: 70.0% 95% BCI
63.6–76.0; qPCR-OF: 53.9%, 95% BCI 46.7–61.0) compared to
the values calculated from the combined, acutely, and chronically
affected populations assuming positive disease status (Table 4),
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TABLE 4 Estimates of diagnostic sensitivity (DSe) of ASFV iELISA and qPCR ASFV DNA assay for serum and oral fluid samples in acute, chronic, and

combined-ASF-a�ected populations assuming true disease status, and diagnostic specificity (DSp) estimates in free-population, with 95%

Clopper-Pearson confidence intervals.

Test Sample Sensitivity,
acutely
a�ected

Sensitivity,
chronically
a�ected

Sensitivity,
combined
a�ected

Specificity,
negative,

i.e., una�ected

iELISA for ASFV Ab Serum 16 (9.43–24.7) 70.4 (60.3–79.2) 42.9 (35.9–50.1) 100 (98.2–100)

Oral fluids 11 (5.62–18.8) 56.1 (45.7–66.1) 33.3 (26.8–40.4) 99 (96.4–99.9)

qPCR for ASFV DNA Serum 74 (64.3–82.3) 56.1 (45.7–66.1) 65.2 (58.1–71.8) 100 (98.2–100)

Oral fluids 69 (58.97–77.9) 34.7 (25.4–44.98) 52.0 (44.8–59.2) 100 (98.2–100)

though the overall trends of test performance were identical.
Posterior DSp estimates were nearly identical between the two
evaluation methods, and overall, 95% BCI were of similar width
to the estimated 95% confidence intervals (Tables 4, 5). Pairwise
correlation for infected subjects (rhoD13) was high between the
iELISA using serum and OF and low-moderate for uninfected
subjects (rhoDc13) though the latter had a very wide 95% BCI.
RhoD24 was low between qPCR serum and OF samples, while
RhoDc24 was low-moderate and, similarly to the iELISA pairwise
correlation, had a very wide 95% BCI. Of the five parallel testing
schemes assessed, using all four test and sample combinations
resulted in the highest parallel DSe with only a small decrease in
DSp. The parallel DSe and DSp of using only qPCR samples or
using only serum samples were similar with overlapping 95% BCI.
The use of only iELISA samples had the lowest parallel DSe.

3.4. Sensitivity analysis

The sensitivity analysis showed that parameter estimates were
robust to changes in priors, hyperpriors, and model structure
across the additional six different four test, three or two population
models that were explored (Supplementary material 3). Removing
the hyperprior allowed for better convergence of the parameter
for the unaffected population prevalence, but with similar final
results. The two population model where acute and chronic
population data were combined also provided similar posterior
medians and overlapping 95% BCI as the three population model
(Supplementary material 3). The two population models where
acute and chronic data were modeled separately showed small
increased estimates for some DSe parameters compared to those
when assuming disease status, but 95% confidence intervals and
95% BCI overlapped.

3.5. ROC curve analysis

The best performing test according to its AUC value was the
qPCR to detect ASF viral DNA in serum samples (Table 6). The
remaining tests, i.e., qPCR to detect ASF viral DNA in OF and
iELISA to detect ASFV antibodies in serum or OF, had similar AUC
values with overlapping 95% confidence intervals. According to the
ROC plots (Figure 2), decreasing iELISA cut-off or increasing PCR
cut-off points to improve DSe would lead to substantial decreases
in DSp with minimal gain in DSe.

4. Discussion

The ever-growing spread of ASF globally makes accurate and
early ASFV detection critical to identify infected populations and
successfully control disease outbreaks. Having reliable and accurate
diagnostic assays not only improves detection but also reduces false
positives, which is also an important component of an efficient
disease response. ASF lacks any pathognomonic clinical signs and
can present indistinguishably from diseases such as classical swine
fever (CSF) or PRRS, among other systemic and hemorrhagic
diseases, making confirmation of infection by diagnostic tests
vitally important (34, 35). Here, we aimed to evaluate the DSe
and DSp of two novel diagnostic tests, iELISA for ASFV antibody
detection and qPCR for ASFV DNA detection, in both serum and
OF samples from pigs under field conditions in Vietnam.

Overall, when population data was combined, qPCR had higher
DSe than iELISA for both serum and OF samples. However,
when considering acute or chronic populations separately, qPCR
had higher DSe in the acute samples, while iELISA had higher
DSe in chronic samples. The dynamics of ASFV viremia and
the host’s antibody response may explain in part the observed
difference in DSe depending on infection stage. ASFV causes an
initial viremia detectable by PCR within days after infection and
is sustained for ∼1 month. In pigs surviving the initial stages
of infection, viremia decreases, and the amount of viral DNA
present in the pig blood or sera may become too low to be reliably
detected via viral DNA detection assays, but antibody testing
allows for detection of the infection during and after cessation
of viremia. ASFV antibodies become detectable ∼7 days post-
infection (dpi), per different antibody detectionmethods, including
indirect immunoperoxidase, indirect immunofluorescence, and
some ELISA (22, 36, 37). Furthermore, antibodies formed as a result
of moderately virulent ASFV infections and/or in pigs that are in
the chronic stage of ASFV infection are more reliably detected 13–
14 days dpi. For example, in experimentally infected pigs, peak
Cq values by qPCR were obtained by 18–19 dpi, with decreasing
amounts of ASFV DNA in blood from 29 dpi onward until only
52% of pigs were qPCR-positive at 91 dpi (38). In contrast, in the
same group of pigs, the percentage of ASFV-Ab positive animals
and blocking values using the INGEZIM PPA COMPAC ELISA
(Ingenasa) steadily increased from 10 dpi until reaching 99–100%
by 63 dpi. In another study, pigs infected with ASFV through direct
contact displayed a relatively steady decline in Ct values of a qPCR
viral DNA tests of whole blood and oropharyngeal swabs from day
13 onward (39). In two surviving pigs, a strong antibody response
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TABLE 5 BLCA posterior estimates of iELISA and qPCR diagnostic sensitivity and specificity (%) in serum and oral fluid samples with 95% Bayesian

credibility intervals (BCI).

Parameter Posterior estimates and 95% BCI

Test Sample Sensitivity Specificity

ELISA for ASFV Ab Serum 46.2 (39.4–52.9) 99.6 (98.1–99.97)

OF 36.0 (29.7–42.9) 98.5 (96.5–99.6)

rhoD13, serum and OF 73.0 (63.9–81.2)

rhoDc13, serum and OF 24.3 (1.23–70.0)

PCR for ASFV DNA Serum 70.0 (63.6–76.0) 99.6 (98.0–99.99)

OF 53.9 (46.7–61.0) 99.6 (98.1–99.99)

rhoD24, serum and OF 2.14 (0.09–9.78)

rhoDc24, serum and OF 29.2 (1.18–84.56)

Prevalence ASF-affected, acute 99.3 (96.2–99.9)

Prevalence ASF-affected, chronic 95.1 (87.6–99.6)

Prevalence ASF-unaffected 0 (0–0)

Parallel testing scheme Parallel sensitivity Parallel specificity

All test/samples 92.7 (90.0–94.6) 97.3 (94.7–98.9)

iELISA-serum and iELISA-OF 48.2 (41.3–54.8) 98.2 (95.9–99.4)

PCR-serum and PCR-OF 85.6 (81.2–89.1) 99.2 (97.4–99.9)

iELISA-serum and PCR-serum 83.9 (79.8–87.7) 99.0 (97.0–99.8)

iELISA-OF and PCR-OF 70.1 (64.7–76.1) 98.0 (95.6–99.3)

RhoD and RhoDc are the overall correlation between tests within the infected and uninfected subjects, respectively.

was detected by blocking ELISA and IPT from 16 to 76 dpi. For
PCR detection of ASF viral DNA, these dynamics may be further
complicated by infections with moderate and low virulence ASFV
strains, which may induce lower or inconsistent levels of viremia
compared to highly virulent ASFV strains (39). These and the
current results highlight the importance of using both virus and
antibody detection methods in surveillance strategies to increase
the probability of detection, as one method alone may fail to
identify all infected pigs.

Another important characteristic of ASFV infection is its
relatively slow within-herd spread. Though ASFV is sometimes
considered to be highly contagious due to its high lethality, the
initial number of infected pigs is low, and the transmission between
infected and susceptible pigs is gradual compared to other high-
consequence pathogens of swine like foot-and-mouth disease virus
and CSF virus (40). For example, models of ASFV within-herd
transmission have estimated delays in detection of weeks to months
if only using mortality triggers, i.e., having a herd-level mortality
that is higher than baseline, to initiate diagnostic investigation
(41, 42). By this time, the infected population of pigs will be
comprised of pigs at different time points of infection and various
disease state durations. Thus, a limitation of the present study was
the low number of pigs sampled per ASF-affected farms (<10),
which definitively impacted the estimated DSe of the tests. The
use of both virus and antibody detection diagnostic assay, along
with an increased sample size will provide a higher probability of
disease detection and confirmation. Again, this is of considerable
importance in outbreaks caused by ASF strains of low or moderate

TABLE 6 AUC and associated 95% confidence intervals for each

test-sample type.

Test Sample AUC (95% CI)

ELISA for ASFV antibodies Serum 0.712 (0.659–0.766)

Oral fluids 0.778 (0.733–0.823)

PCR for ASFV DNA Serum 0.895 (0.863–0.928)

Oral fluids 0.742 (0.693–0.79)

virulence where pigs are more likely to survive the initial infection
(39). Antibody-detection methods may be particularly useful and
important in countries such as Vietnam, where partial culling
methods are allowed (43). Using this approach, generally, farms
are allowed to cull only ASF-affected animals and units rather
than total depopulation. When unsuccessful, this technique can
lead to farms being chronically affected with ASF, where antibody-
detection would presumably be useful for herd-level surveillance.

The BLCA model’s high correlation for test outcome in
infected subjects between iELISA serum and OF antibodies is
both expected and highlights the importance of incorporating
test dependency in diagnostic test evaluation models. OF is made
of components produced in buccal-associated tissues and from
continuous exchange between the circulatory system and the
buccal cavity through both passive and active processes (e.g.,
ultrafiltration, transudation, selective, and/or receptor mediated
transport) (44). Consequently, what is detected in serum can often
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FIGURE 2

ROC curves (y = sensitivity, x = 1-specificity) for serum samples tested by iELISA, oral fluid (OF) samples tested by iELISA, serum samples tested by

qPCR, and OF samples tested by qPCR. The solid red dot indicates the cut-o� value used for analysis (iELISA serum positive = S/P ≥ 1, iELISA OF

positive = S/P ≥ 0.5, qPCR serum and OF positive = Ct < 38).

also be detected in OF. It is somewhat unexpected that the model
estimated minimal correlation between PCR of detecting ASF viral
DNA in serum and OF samples, and the reason behind this is
unclear. This may be due to the method used to estimate the
upper and lower boundaries for the correlation term, whereby
high performing tests, such as the PCR-serum, result in low upper
boundary values.

The similar AUC estimates and their overlapping CIs for
samples tested by iELISA and OF tested by qPCR likely reflects
their similar performance, depending on the tested population
(e.g., acutely vs. chronically infected). AUC also indicated that
serum samples tested by PCR performed the best overall. Long-
lasting viremia may favor ASFV DNA detection across acute
and chronic disease timepoints in serum compared to OF or
antibody detection. Another consideration is that whole blood is
the preferred diagnostic sample for PCR, having demonstrated a
lower limit-of-detection compared to serum (45). This is likely
because in blood ASFV is mostly associated with red blood cells
(46). Detection via the PCR evaluated here may be improved when
using whole blood samples. The ROC curves themselves indicate
that the current cut-off values for test status established by the
manufacturers are likely appropriate. For example, decreasing the
cut-off value for iELISA in serum samples to 0.46 would achieve a
modest increase in DSe to 56% in the current observed population,

but at the cost of a decrease in DSp to 95%. It seems unlikely
given the high consequences of a false positive for ASF that such a
decrease in DSp would be acceptable for only minor improvements
in Dse.

Based on our results and the particular experimental design
of the present study, ELISA and qPCR diagnostic assays are
best suited for herd-level surveillance. The high DSp of the
tests presented here lends them to have few false positives, a
critical need when performing surveillance in low-prevalence
or disease-free regions to avoid extra unneeded, costly disease
investigations. Field surveillance requires near-perfect DSp because
any false positive results could cause significant disruptions to
production (e.g., quarantines and no animal movements during
the disease investigation) and financial consequences not only
to the pork production system under investigation but to the
whole swine industry if it resulted in a loss of ASF-free status,
falling market prices, trade embargoes, or loss of consumer
confidence and negative reactions to control measures (47, 48).
This emphasizes the importance of establishing cut-off values that
maximize DSp with minimal impact on DSe. Since DSe “evolves”
dynamically during the course of infection (i.e., viremia decreases
over time while antibodies increase over time) continuous active
surveillance may reveal the true status at the next sampling
time point.

Frontiers in Veterinary Science 10 frontiersin.org

https://doi.org/10.3389/fvets.2023.1079918
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Schambow et al. 10.3389/fvets.2023.1079918

When antibody- and virus-detection assays are combined
in parallel testing schemes, these diagnostic assays may provide
suitable herd-level DSe for surveillance strategies. Here, five parallel
testing schemes were considered, varying from only serum, only
OF, only PCR, only iELISA, or all four tests/samples being used.
While the use of all four tests/samples resulted in an acceptable
DSe (92.7%) for herd-level surveillance, it seems unlikely that this
testing scheme would be realistic due to the costs of running
multiple tests. It is likely more convenient to run both assays on
the same sample type, as this would streamline sample collection,
with the added benefit of assessing for presence of both virus and
antibodies simultaneously. Using the values estimated in our BLCA
model, parallel DSe using either serum (83.9%) or OF samples
(70.1%) would likely be acceptable for herd-level testing with
minimal loss in DSp. Another important consideration is that while
in the present study OF were collected individually to correlate
results with pig serum, typically OF samples are collected via pen-
level sampling tools such as cotton ropes (49). This aggregate
sample can be used to detect and monitor pathogens even at low
prevalence, reducing both labor and cost associated with individual
sampling. Future studies should consider evaluating aggregate OF
samples as well to understand their potential for increasing the
probability of ASF detection. Overall, animal health officials and
producers would need to decide acceptable frequencies of false
alarms and how to manage them before deploying any of these
testing schemes. Future studies that incorporate test performance
into disease transmission models could help to elucidate their
potential use in surveillance and reduce uncertainty about their
benefits and drawbacks.

The BCLA provided similar DSe and DSp estimates to those
of the combined population data assuming true disease status. This
may in part be due to the samplingmethods used for selecting farms
and individual animals. Only farms with unequivocal histories of
ASF-status were chosen for sampling, and within ASFV-infected
farms, animals with clinical signs were targeted. This created study
populations for which we could be quite certain of the true disease
status, although by all accounts the disease status was indeed
assumed. BLCA models would likely more applicable for studies
that can only be conducted on pigs of unclear/uncertain disease
status or in herds with variable within-herd ASF prevalence.

Some assumptions of BLCA modeling may limit its use here.
For example, BLCA assumes equal performance of tests across
multiple populations (14). Based on our results, the tests had
high variability of performance depending on the potential time
point in disease. To understand how this and the prior choice
may affect the model estimates, six other model structures and/or
prior specifications were explored. Sensitivity analysis results were
robust to these changes (Supplementary material 3), indicated by a
<10% change in the posterior point estimates and overlapping BCI.
Two additional two population, four test models were evaluated
where the acute or chronic populations were included one at a
time alongside the ASF-unaffected populations. These models were
compared to the estimates from the ASF-acute or ASF-chronic
specific DSe and DSp estimates when assuming disease status is
known. Results showed minimal variability and overlapping BCI
with the 95% confidence intervals (Table 4, ASF-acute and ASF-
chronic). In future works, more complex analyses with detailed
data that incorporate timepoint as a covariate into the model might

help address this concern. Also, BLCA tends to be more difficult
to apply to study designs using tests with different definitions of
true disease status (e.g., presence of viral DNA vs. presence of
antibodies) (14). Here, the tests’ characterization of disease status
varies considerably over time due to differing presence of viremia
and antibodies. Despite these limitations, the ability to incorporate
imperfect reference tests and correlation between tests likely has
created less biased estimates of disease Se and Sp in the present
study and is a strength of BLCA.

We acknowledge that there were some limitations in data
collection that prevented further analyses. The sample collection
did not follow a predefined scientific approach, but instead was
a part of ongoing ASF regulatory activities. Consequently, the
samples come with the limitations of field data, and ASF-status
was assumed based on farm history. BLCA was used here to help
obtain accurate DSe and DSp estimates despite these limitations.
To obtain a suitable number of samples for analysis, many Vietnam
farms were sampled (n= 87), but for many acutely and chronically
affected farms, as few as 1–3 animals sampled per farm. This
was most likely due to low within-herd prevalence of sick pigs
to sample, the slow within-farm spread of ASFV, and the need
to adequately represent differential stages of the infection across
individual animals. The exact time point of infection for sampled
pigs from acute and chronic farms was unknown, so it was
difficult to assess the true impact of infection time point on test
performance. It is unclear howmuch further in disease progression
all chronic farms were compared to acute farms. As this is clearly
an important factor to ASF test performance, future longitudinal
studies with repeated sampling of individuals over time would be
highly beneficial to understand these dynamics. Additionally, other
important covariates of test status were not collected and could
not be included in the analysis. Factors such as breed, presence
of individual clinical signs, and accurate pig age all might be
important for test performance but could not be considered in the
present study. Finally, it is unknown how well these results may
generalize to pigs of European or American origin; thus these tests
may perform differently in other swine populations.

In summary, these results are an important evaluation of
novel ASF diagnostic tests in field settings that provides real-
world context about their performance. Animal health officials and
epidemiologists can use these results to appropriately apply these
diagnostic tests in surveillance and control strategies in Vietnam
and other ASF-affected countries.
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