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An integrated system for the
management of environmental
data to support veterinary
epidemiology

Matteo Mazzucato*, Giulio Marchetti, Marco Barbujani†,

Paolo Mulatti, Diletta Fornasiero, Claudia Casarotto,

Francesca Scolamacchia, Grazia Manca and Nicola Ferrè

Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy

Environmental and climatic fluctuations can greatly influence the dynamics of

infectious diseases of veterinary concern, or interfere with the implementation

of relevant control measures. Including environmental and climatic aspects

in epidemiological studies could provide policy makers with new insights

to assign resources for measures to prevent or limit the spread of animal

diseases, particularly those with zoonotic potential. The ever-increasing number

of technologies and tools permits acquiring environmental data from various

sources, including ground-based sensors and Satellite Earth Observation (SEO).

However, the high heterogeneity of these datasets often requires at least some

basic GIS (Geographic Information Systems) and/or coding skills to use them in

further analysis. Therefore, the high availability of data does not always correspond

to widespread use for research purposes. The development of an integrated

data pre-processing system makes it possible to obtain information that could

be easily and directly used in subsequent epidemiological analyses, supporting

both research activities and the management of disease outbreaks. Indeed,

such an approach allows for the reduction of the time spent on searching,

downloading, processing and validating environmental data, thereby optimizing

available resources and reducing any possible errors directly related to data

collection. Althoughmultitudes of free services that allow obtaining SEO data exist

nowadays (either raw or pre-processed through a specific coding language), the

availability and quality of information can be sub-optimal when dealing with very

small scale and local data. In fact, some information sets (e.g., air temperature,

rainfall), usually derived from ground-based sensors (e.g., agro-meteo station),

are managed, processed and redistributed by agencies operating on a local

scale which are often not directly accessible by the most common free SEO

services (e.g., Google Earth Engine). The EVE (Environmental data for Veterinary

Epidemiology) system has been developed to acquire, pre-process and archive a

set of environmental information at various scales, in order to facilitate and speed

up access by epidemiologists, researchers and decision-makers, also accounting

for the integration of SEO information with locally sensed data.
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1. Introduction

Changes in climate and human activities, as well as the

increasing movements of goods and animals related to

globalization of markets, are considered to be among the key

factors for the spread of emerging infectious diseases, and of

vector borne diseases (VBD) in particular (1). The worldwide

expansion of West Nile Virus (WNV) in the last few decades, and

its endemisation, perfectly exemplify the variations in the spread

of emerging diseases (2). This is also the case of Italy, where WNV

reappeared in 2008, after a 10-year hiatus, and has become endemic

in an ever-increasing number of regions (3).

Both human and veterinary epidemiology has greatly focussed

on studying the environmental factors that contribute to the

introduction and spread of animal diseases, especially with

zoonotic potential (4–6). In particular, the need of understanding

and accounting for local environmental features is acquiring

relevance for epidemiologists, decision makers, and health

operators, to both improve and fine-tune specific monitoring

activities and surveillance plans (7–11).

The main challenges when working with environmental data

are the collection, organization, and analyses of satellite data.

In fact, difficulties in accessing and using data can occur due

to potential differences between what satellite sensors actually

measure and what information is of interest either for decision-

making or for inclusion in ecological and epidemiological analyses

(12). Other problems that could arise include technical issues, such

as the interference of clouds, and lack of technical and cross-

funding resources (13, 14). In addition, there are further barriers

related to the perception of ’readiness for use’ and permissible levels

of uncertainty among different types of users, such as those with

the technical capabilities to process remotely sensed data and end-

users of indicators obtained from satellite data (15). The increasing

availability of environmental datasets does not always translate into

a widespread use for scientific research. Although most of the data-

users belong to the public sector, and Universities in particular,

the number of downloads from this category is very limited (16),

suggesting that most users tend to register to acquire few data.

These project-oriented downloads indirectly imply spending a

significant amount of resources in the data gathering process (i.e.,

searching, understanding and filtering data).

Although the phase of data acquiring has become easier than

in the past also thanks to specific web portals (e.g., United States

Geological Survey’s Earth Explorer; European Union’s Copernicus

Open Access Hub; European Union’s CMEMS), most of them only

allow a few or individual downloads at once. Hence, multiple

downloads require huge “manual work”, or some coding skills to

automate the process with scripts, whose implementation may be

time-consuming. Furthermore, epidemiological researches tend to

rely on a bundle of commonly used environmental variables (such

as temperature, precipitation, plant biomass, humidity, etc.), whose

extraction requires at least some basic GIS skills. In this context,

we present an instrument that might help to fill the gap between

researchers and the most common environmental datasets.

Nowadays, there are online services that offer the possibility of

obtaining ready-to-use satellite data; one of the most widely used is

Google Earth Engine (GEE) (17), which, through a programming

language, can give access to a vast catalog of data, obtained from

different sources, that can be further processed directly in the cloud.

Although they are very powerful, they may have certain limitations,

which may not be acceptable to a public administration (18).

Given these limitations, the Environmental data for Veterinary

Epidemiology system (EVE) has been recently developed and

implemented at the Istituto Zooprofilattico Sperimentale delle

Venezie (IZSVe), an Italian public health institute that conducts

control and research activities in the fields of animal health,

food safety and zoonoses. EVE acquires, processes and stores a

set of environmental information that can be directly used for

the evaluation of epidemiological aspects in the veterinary field.

Although EVE provides some of the functionalities already present

on other accessible online platforms, it is mainly tailored to feed

epidemiological analyses with data obtained via agreements with

local agencies and with a much higher geographical scale than

most of the freely available satellite imagery. Furthermore, EVE

includes a series of procedures to enhance the temporal resolution

and reconstruct data that might be missing in unprocessed

environmental layers.

Hereby we illustrate EVE and its main components, and the

characteristics that make the system particularly useful in studies

aimed at integrating satellite derived information and data obtained

from ground sensors on a very small scale. Although EVE is not

the only available applications, it can be a starting point for similar

tools, when there are comparable limitations and needs. This study

is not intended to publicize a commercial product, but rather as

a sort of guidelines for anyone who needs to implement a similar

system and could benefit from our experience.

2. Materials and methods

2.1. Geographical levels

The data elaborations and storage have been designed

according to three different geographical levels (Figure 1) which

varied for extension, spatial and temporal resolution, and

Coordinate Reference System (CRS).

A) Local level, centered on the north-eastern Italian regions

(i.e., Veneto, Friuli Venezia Giulia and the autonomous

provinces of Trento and Bolzano), hereafter also “Triveneto”;

the level contains remote sensed data at the highest spatial

and temporal definition, and local ground sensed data

(i.e., meteorological stations), in EPSG:32632 - UTM32N

(hereafter UTM32N) CRS;

B) Country level (i.e., Italy); contains remote sensed data with a

lower resolution in UTM32N CRS;

C) Continental level (i.e., western Europe); contains a limited

set of remote sensed data with the lowest resolution, in EPSG:

4326 - WGS84 (hereafter, WGS84) CRS.

Levels A and B contain data derived from different providers,

the grids were resampled to spatial resolutions that are multiples or

submultiples of 1 km, and aligned to a unique main grid, choosing

the resolution value closest to the resolution of the input data.

Conversely, level C uses another CRS and does not spatially overlap

with the previous levels.
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FIGURE 1

Extent for di�erent geographical levels: local, country, continental.

The choice of the different scales derives essentially from

the experiences gained from previous projects that have included

environmental data and from the specific requests of the

Epidemiologists/researchers. Triveneto (local level) is the area of

specific competence for IZSVe and Italy is defined in accordance

with the Country level for research which involves other IZS or

reference laboratories. The continental level covers most of the

European Countries and it has been previously included in works

with neighboring Countries.

Relevant literature was investigated to define the potential set of

climatic and environmental drivers of diseases/species, accordingly

to the needs of epidemiologists/researchers at the IZSVe (i.e.,

for Avian Influenza, and WNV). The main environmental data

catalogs have been queried for both gridded datasets and point data

from ground sensors, to assess their availability and completeness.

International catalogs ranging over continental (e.g., Copernicus

Open Access Hub) or global scale (e.g., Earth Explorer) have

been considered as main sources, as well as different web portals

or services of the Regional Agency for Environmental Protection

(Agenzia Regionale per la Prevenzione e Protezione Ambientale -

ARPA) have been used as local level. Not all data were available as

“open access” and some required a previous registration or, in some

cases, a written request to data owners.

The acquisition of each type of data has been implemented as

specific, automated procedures directly from web repositories. The

downloading process has been followed by specific operations of

data harmonization. Workflows for different environmental data

or data sources are different, but as an overall principle we have

chosen a unique precise output structure.

Figure 2 reports the general workflow for both Satellite and

Ground sensed data.

2.2. Acquisition and processing of the
satellite data

Land Surface Temperature (LST) is derived from Earth

emissivity, therefore it is available from multiple sources (19–21).

LST is considered being correlated with air temperature, which

has been demonstrated being an environmental driver of WN

fever outbreaks (22, 23). EVE uses satellite products from the

NASA MODerate resolution Imaging Spectroradiometer (MODIS)

on board the satellites TERRA (20) and AQUA (24) (Figure 3).

MODIS LST data have a temporal resolution up to four images

per day, included in the MOD11A1 and MYD11A1 products

(named M∗D11A1 hereafter), and other aggregate products are
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FIGURE 2

General framework representing the flow at macro-level operated by the EVE system to produce the final dataset.

also available, as the 8-days averaged LST (M∗D11A2). In EVE,

LST datasets for both Continental and Country levels derive from

M∗D11A2 products, which are extracted, mosaicked and filtered

with the Quality Control band (QC) in order to produce good

quality raster images with a spatial resolution of 1 km and temporal

resolution of 8 days. On the other hand, the dataset for the Local

Level is modeled and reconstructed from original MODIS daily

data (i.e., M∗D11A1), as illustrated by Neteler (25). In particular,

LST data are cleaned through the QC band, and filtered to eliminate

outliers accounting for: (i) pixel values distribution and (ii) typical

altitudinal LST gradients (i.e., the inverse relationship between

temperature and altitude). Filtered data are then modeled and

reconstructed on the base of the 200m Digital Elevation Model

(DEM), to produce a higher-resolution, gap-free time series of four

images per day, aligned with the other UTM32N gridded data.

The Normalized Difference Vegetation Index (NDVI) is an

index of the phenological state of vegetation and has been used

in relation to several infectious and vector borne diseases [e.g.,

rabies and malaria (26, 27)]. However, the reliability of NDVI

could be hampered due to canopy background (e.g., in densely
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FIGURE 3

Terra and Aqua satellites footprints selected for the Local (blue), Country (blue and green), and Continental (blue, green and red) levels.

forested areas), soil type and specific atmospheric conditions (28,

29). The Enhanced Vegetation Index (EVI) can be used to tackle

these issues (30), with the drawback of being potentially affected

by topographic effects (31). The NDVI and the EVI data over

Continental and Country levels derive from theMODISMOD13A2

product, in which the vegetation indexes are contained as two

separate bands (32). The original spatial resolution is 1 km imagery,

with a temporal resolution of 16 days. In this dataset, each pixel

has the maximum value of vegetation index recorded in the period

of reference, in order to minimize the risk of capturing clouds.

Similarly to LST, both vegetation indexes are extracted from the

original Hierarchical Data Format (HDF) files, mosaicked and

filtered with the QC band. Furthermore, averaged images are

computed from two consecutive images in order to temporally align

the dataset to 8-days LST data (M∗D11A2), thus obtaining raster

images with a spatial resolution of 1 km and temporal resolution

of 8 days. Conversely, the vegetation indices for the Local level are

derived from the high-resolution imagery of Copernicus’s Sentinel-

2 satellites, available starting from 2015, with an original spatial

resolution of 10m (33). The Sentinel-2 constellation, composed

of two satellites, completely covers the Local level area every 5

days, with two intermediate passages on the eastern and western

half of the study area (Figure 4). Only images with a cloud-cover

lower than 80% are considered as eligible for the download and,

once downloaded, the original bands in JP2 format are filtered,

transformed and mosaicked over the study area. Finally, the

vegetation indexes are computed from the Red, Near Infrared, and

Blue bands (the latter for EVI only). Clouds and cloud shadow

pixels are removed according to the Scene Classification Layer

(SCL) raster, downloaded with the tiles. The final raster images are

rescaled to a resolution of 200m, thus being aligned with the other

UTM32N data.

The Modified Normalized Difference Water Index (MNDWI)

is aimed at detecting water bodies (34), providing indication on
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FIGURE 4

The Sentinel-2 satellite footprints selected for the Local level (blue).

potential breeding foci for arthropod vectors. It is computed for

the Local level only, being obtained from Sentinel-2 imagery with a

process similar to the NDVI and EVI layers for the Local level, and

it is derived from the Green and Shortwave Infrared bands.

Precipitation is a weather data that can influence the

abundance and distribution of arthropod vectors (35). The

datasets (Country and Continental levels) derive from both the

E-OBS dataset, provided by the European Climate Assessment

and Dataset project (for the 2010-2014 period), and the

NASA Global Precipitation Measurement mission (GPM; for

years since 2015). E-OBS data is a gridded dataset obtained

from interpolation of precipitation recorded by a network of

European meteorological stations (36). The version 16.0 of E-

OBS has a daily temporal resolution and a spatial resolution

of 0.25 degrees (about 27 km). The GPM dataset derives from

satellite-based estimation of precipitations (37). The selected

product is the daily GPM_IMERGDF_05 dataset, with a spatial

resolution of 0.1 degrees (about 10 km). EOBS and GPM data

are extracted from NetCDF files, transformed into raster image

and rescaled to the nearest multiple of 1 km (27 km for E-

OBS-derived images and 10 km for GPM). These variables

and indices represent the baseline environmental and climatic

drivers that can significantly influence the ecology and dynamics

of arthropod vectors or pathogens (38), as well as their

potential interactions (39). Therefore, the environmental and

meteorological conditions act as important drivers of spatial

and seasonal patterns of infections, also affecting epidemic

emergences, and shifts in the at-risk populations. Changes in

climate conditions (e.g., global warming, increased flooding and

drought events, desertification) can lead to a marked loss in

biodiversity and to more suitable conditions for the proliferation

of arthropod vectors, but also for food and water-borne
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TABLE 1 Summary of the EVE dataset as of August 2022.

Product Geographical
levels

Source Spatial
resolution

Temporal
resolution

N. Images Min date Max date

LST Local AQUA/TERRA (MODIS) 200m Daily 18,140 01-01-2010 27-07-2022

LST Country AQUA/TERRA (MODIS) 1 km 8 days 2,304 01-01-2010 12-07-2022

LST Continental AQUA/TERRA (MODIS) 1 km 8 days 2,302 01-01-2010 12-07-2022

NDVI Local SENTINEL-2 100 and 200m <5 days 1,094 04-07-2015 22-07-2022

NDVI Country TERRA (MODIS) 1 km 9 days 552 01-01-2010 26-06-2022

NDVI Continental TERRA (MODIS) 1 km 8 days 552 01-01-2010 26-06-2022

EVI Local SENTINEL-2 100 and 200m <5 days 1,057 31-12-2015 22-07-2022

EVI Country TERRA (MODIS) 1 km 8 days 552 01-01-2010 26-06-2022

EVI Continental TERRA (MODIS) 1 km 8 days 552 01-01-2010 26-06-2022

MNDWI Local SENTINEL-2 100 and 200m <5 days 1,093 04-07-2015 22-07-2022

Precipitation Local Meteo stations interpolation 1 km Daily 4,383 01-01-2010 31-12-2021

Precipitation Country E-OBS 27 km Daily 1,826 01-01-2010 31-12-2014

Precipitation Continental E-OBS 27 km Daily 1,827 01-01-2010 31-12-2014

Precipitation Country GPM 10 km Daily 2,373 01-01-2015 30-06-2021

Precipitation Continental GPM 10 km Daily 2,373 01-01-2015 30-06-2021

DEM Local Copernicus 25m, 100m 1

Land Cover Continental CORINE 2006, 2012, 2018

(versions: 2020_20u1)

100m 3 01-01-2006 01-01-2018

diseases (5, 40). A summary of the products obtain by the dataset

are present in Table 1.

2.3. Acquisition and processing of ground
sensed data

Precipitation data (Local level) are obtained from spatial

interpolation of daily data from meteorological stations,

available from four public institutions: the two ARPA of Veneto

(ARPAV) and of Friuli Venezia Giulia (ARPAFVG), plus the

two Autonomous Provinces of Trento (TN) and Bolzano (BZ).

All downloaded data are harmonized, joined to their respective

georeferenced station, and interpolated. The output resolution of

daily images is set to 1 km, thus being temporally and spatially

aligned with the other UTM32N datasets.

The time series of ground sensed data for the local level area are

stored in EVE in table format. The core datasets include: (i) daily

maximum, average and minimum air temperature at 2m above

the sea level (asl) (named TMX2, TMD2 and TMN2 respectively);

(ii) daily precipitation (PREC); and (iii) maximum, average and

minimum air relative humidity at 2m asl (UMX2, UMD2 and

UMN2). Meteorological data are acquired separately from their

respective regional/provincial services and harmonized in order

to obtain a table with a common structure. Harmonized data are

cleared from possible errors and are loaded in the EVE database,

combined with information regarding Region, acquisition date

and codified meteorological variables. Tables can be queried to

obtain information for each ground sensed station and used for

further elaboration (e.g., the precipitation values are required to

interpolate values through the GRASS GIS “spline” algorithm to

obtain precipitation over a continuous surface). A summary of the

products obtain by the dataset are present in Table 2.

2.4. Other products

Other geographical data are also stored and available in the

EVE, even though they are not processed by the system. The 2011

version of the DEM from the satellite constellation named ‘Satellite

Pour l’Observation de la Terre’ (SPOT), with the original spatial

resolution of 25m, was resampled and used in the processing of

the environmental data (e.g., DEM values are used in the linear

model to define LST outliers boundaries and reconstruction of

missing data).

Different versions of Corine Land Cover (CLC) (https://land.

copernicus.eu/pan-european/corine-land-cover) are available as

well in the system and a set of procedures have been implemented

to calculate the percentage of land cover in specific areas.

Furthermore, other information was derived from EVE’s

datasets: the variability of LST/vegetation indices/MNDWI values

over an interval of time (with Standard Deviation and Kurtosis);

the number of rainy days, or days exceeding a certain threshold of

precipitation; the Growing Degree Days (GDD), calculated from

temperature records (41); and the De Martonne Index of aridity

(DMI), combining precipitation and temperature (42) to estimate

potential drought conditions that can influence the habitat of larval

and adult mosquitoes (43).
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TABLE 2 List of information acquired by ground station as of August 2022.

Product Geographical
levels

Source Temporal
resolution

N. Records Min date Max date

Air temperature Local ARPAFVG, ARPAV, Meteo

Trentino, Meteo Alto Adige

Daily 3729835 01-01-2008 31-12-2021

Precipitation Local ARPAFVG, ARPAV, Meteo

Trentino, Meteo Alto Adige

Daily 1483680 01-01-2008 31-12-2021

Using the daily LST and Precipitation data covering the Local

level, we have produced raster images representing the monthly

average values for both precipitation and temperature, which were

then used to create a yearly image of the 19 bioclimatic variables

defined by the “biovars” function for the years between 2010 and

2020, using the R library “dismo” (44).

2.5. System implementation

EVE has been implemented with a modular approach, and is

the result of several sequential steps, ranging from data gathering,

processing, storing and querying. The starting point is represented

by the different download and output production workflows, while

the querying procedures have been defined later. All the output

gridded datasets and their assets are archived on a redundant file

server, while most of the raw input data are not saved because of

their elevated volume. On the other hand, the data from meteo

stations are saved on a dedicated schema on an Oracle R© 11g

Database Management System (https://www.oracle.com/).

All the main automated procedures have been implemented

as scripts in the R software 3.3.5 (45) core with some packages

to manage: spatial data [raster (46), rgdal (47), ncdf4 (48)],

interaction with database [rjdbc (49)] and management download

and parsing of the data from the web [httr (50), XML (51)].

Some of the scripts involving MODIS raw data extraction and

reprojection (for LST, EVI and NDVI workflows) derive from the

original code kindly made available by Hengl (52), with specific

adaptation to our study areas. EVE’s R procedures also involve

third party softwares and their extensions: GRASS GIS (53), used

for LST and precipitation modeling at Local level, particularly

the v.surf.rst tool (https://grass.osgeo.org/grass82/manuals/v.surf.

rst.html); the Modis Reprojection Tool (MRT), specific for MODIS

data extraction and transformation from original HDF files (54).

Moreover, the download and pre-processing of Sentinel-2 imagery

is done using the library “sen2r” of the R software to automate the

entire process of image acquisition and processing (55). Finally,

an internal catalog has been implemented as a web application

developed in HTML5, PHP5.6, and JavaScript, allowing users to

easily search and filter data.

3. Results

As of August, 2022, all EVE’s gridded datasets cover the whole

2010–2021 period (an example of the LST raster is reported in

Figure 5). There are 40,984 ready-to-use raster images, with a total

volume around 650 Gb (859.3 Gb if assets and some of the raw data

are also included). Table 1 shows the details of the gridded datasets.

The number and type of products are consistent on the three

different scales, with the exception of MNDWI. LST are in Celsius

degrees, while precipitation data are expressed in millimeters of

cumulative rainfall per day.

A total of 413 meteorological stations (Figure 6), 398 of which

were active in 2021 (199 in Veneto, 48 in FVG and 166 between

TN and BZ) are included in the EVE dataset, consisting of almost

eight million records stored in the dedicated Database schema.

Table 2 shows the details of the gridded datasets. The number and

type of products vary among regions, with most stations provided

with sensors that record air temperature (maximum,minimum and

average values in Celsius degree) and precipitation (millimeters of

cumulative rainfall per day). Other products, such as air humidity,

are seldom available outside the Veneto Region.

If required, specific indexes (GDD, De Martonne aridity index

or biovars) are produced from the dataset already produced

by EVE. If necessary, those new outputs are added to the

system automatization.

The EVE web application (Figure 7) allows a quick search and

filtering of gridded data, based on an updated list of all the available

imagery; it also provides information about the meteorological

stations included in the system, such as the sensors active for a

specific period. At the moment, the web application is available

for IZSVe internal users only, and it is used as a data-catalog

listing the available datasets that, in combination with the data-

control pipeline (not described in this paper), allows to assess the

completeness of the information in EVE.

No data policy is currently implemented, given that these data

are for internal use only and/or for partners in specific projects.

4. Discussion

The EVE system has been developed over a period of

about 12 months, during which the developing team was also

involved in a series of other projects and tasks, and became

fully operative in 24 months. Although the system was initially

designed mainly to support the epidemiological analyses of VBD,

EVE was developed to provide data to feed any type of eco-

epidemiological analyses in the remit of the mission of IZSVe.

Therefore, the complexity resulting from the broad scope of the

EVE system utilization prompted the project team to design

an optimized solution that could accommodate a wide array

of preferences in accuracy, level of aggregation, spatial and

temporal resolution, and comparability across different regions and

data layers. Human public health threats, such as the COVID-

19 pandemic and other diseases of potential zoonotic origin,

highlighted the key role of veterinary epidemiology and its tools

for the development of prevention strategies according to a One
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FIGURE 5

Examples of Land Surface Temperature, Precipitation and NDVI at the three geographical levels: (A) Local, (B) Country, (C) Continental. Displayed

data referred to MOD11A1 (day) on 12 January 2020 for local level, MOD11A2 (day) on 09 January 2020 for country and continental levels. To better

represent Precipitation at all geographical levels a base-10 logarithmic scale was chosen. In the NDVI legend values were bound to 0–1 range (and

not the complete −1–1 scale) to facilitate visualizing the vegetation changes.

Health approach. The One Health concept (56), has become even

more important nowadays as many factors have strengthened the

interactions between animals, humankind and the environment.

For example, the expansion of the human population and its

activities into new geographic areas along with climate and land

use changes, such as deforestation, intensive farming practices and

unsustainable agriculture, are leading to disruptions of natural

habitats (57, 58). As a result of these changes, diseases can
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FIGURE 6

Ground sensed data derived from meteo stations located in di�erent regions and autonomous provinces.

rapidly spread or evolve unexpectedly, also through spillover

of pathogens from animals to humans (59). Consequently, the

evolution of the transmission dynamics of such diseases can

become complex to investigate. While the availability of data

obtained through technologies such as digital maps and remotely-

sensed imagery allows exploring the temporal and spatial patterns

of the diseases, the wide array of available information poses great

challenges for data collection, organization and analysis (60). In this

framework, the development of a system for promptly providing

environmental and climatic data has become an essential tool

to perform complex epidemiological analysis on the interaction

between pathogens, host populations, and environment. As a

result, EVE consists of a rich bundle of ready-to-use datasets,

and it has already proven to be a suitable and convenient tool

for saving time during the phases of extraction and preparation

of the environmental data needed for further epidemiological

and ecological analysis (61–63). The system provides data in

multiple formats to its users (e.g., table, raster imagery), so

that researchers can easily acquire the pre-processed data in the

most convenient format that best suits the type of study they

are conducting, without the need of learning complex raw data

processing mechanisms, that would otherwise be required prior

to analyses.

Although the data availability and computational power do not

reach the same levels of some more modern cloud-based platforms,

such as GEE, the EVE system presents some unique features, that

make its use more convenient for specific users:

- No limit in the size of the downloaded data, allowing the

acquisition of all the data needed for the analysis, also through

automatic frameworks;

- The use of internal databases, which have data already

structured according to the needs of end-users, also complying

with internal institutional policies on security levels;

- A wider temporal coverage for the Sentinel-2 catalog imagery

compared to GEE (first data available on GEE: 28 March 2017

vs. first Sentinel-2 images on EVE: 4 July 2015).

Moreover, the data included in EVE are harmonized for both

temporal and spatial resolutions within each geographical level,

permitting to query and compare several variables referred to the

same location. All these operations have been standardized, and
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FIGURE 7

Web application used as catalog of EVE data. It presents both satellite images and ground sensed dataset.

can be rapidly performed exploiting the naming convention, which

allows users to search for images by variable type, extent, date and

(in the case of LST) hour. However, the spatial resolution of the

outputs is proportional to the scale of work (the larger the scale,

the finer the details). Therefore, researchers are restricted to an

aprioristic dataset, as it is not recommended to mix data at different

scales, without first further processing. In fact, for some of the

variables different data sources are used to produce final dataset at

various geographic levels (e.g., rainfall on a local scale is obtained

from local meteo-stations, while on a continental scale from GPM

mission), hence, possible inconsistencies night arise when different

geographic levels are compared.

Systems such as EVE have to be constantly updated. This entails

not only the need to rely on the “temporal” continuity of the

sensors (i.e., the same types of data can be constantly retrieved from

the same sensor), but also the need to justify the employment of

resources for updating and maintaining the system, by including it

or its products in research activities. Therefore, once deemed fully

functional, the system was tested in two scientific studies, achieving

excellent results. EVE was first exploited in an epidemiological

study on Avian Influenza (AI), within the project “Dynamics of

avian influenza in a changing world” (EU Horizon 2020 Grant

Agreement no. 727922). The second research involving EVE

datasets dealt with ecological aspects of West Nile Virus (WNV).

In particular, the study aimed at investigating the fluctuations of

Culex spp. mosquitoes population dynamics in North-Eastern Italy

between 2010 and 2018 in relation to environmental variables

already available in EVE or calculated ad hoc (61). Since then, the

system has regularly provided data to analyse and characterize the

epidemiological evolution of diseases and viruses such asWNV and

AI (61, 62), as well as to provide support for defining risk-based

disease control activities.

The above-mentioned case studies are only examples of the

large number of applications of the EVE system in terms of

methodologies and data analyses. Environmental data, indeed,

could be exploited in several types of studies. For example,

spatial epidemiology studies the variation of risk factors of

diseases in space, allowing to investigate the relationship between

environmental factors and the disease incidence in a population

(64). It can also be used for projections of the remote-

sensed variables that are most strongly associated with a

vector/reservoir/disease distribution, to other geographical areas

or future times, to forecast disease risk and guide the application

of control measures and interventions. Ecological niche modeling

can be used to identify environmental factors that shape the

spatial distributions of species, to predict the invasive potential

and the effects of climate change and land use on species

distributions (65). Other examples of how environmental data can

be exploited include disease ecology and biogeography, which focus

on pathogens distribution and abundance across different scales.

The former refers to disease dynamics at a local level in limited

time periods, while biogeography expands the study over larger

geographical areas and prolonged time windows (66). Beside the

wide availability of analytical methods, there are many diseases

whose ecology study demands the use of environmental data,

and can therefore be investigated with the support of systems

such as EVE. A few examples are the already mentioned zoonotic

VBDs (e.g., Malaria, WNV, Usutu, Eastern equine encephalitis,

Frontiers in Veterinary Science 11 frontiersin.org

https://doi.org/10.3389/fvets.2023.1069979
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Mazzucato et al. 10.3389/fvets.2023.1069979

and Lyme disease), whose ecology and emergence are deeply

intertwined with climatic conditions (temperature, precipitations,

aridity, ecc.) and environmental (NDVI, EVI, land use, water

availability, ecc.), but also non-zoonotic diseases (bluetongue,

African swine fever) that are becoming increasingly important as

a consequence of climate changes, and movements of livestock

and wild populations. The analysis aimed at studying the influence

of environmental and anthropogenic variables on the risk of

AI spread among poultry farms, in study area located in

Italy (62).

The EVE system offers a set of functionalities for the

management of environmental data to be used by researchers as the

starting point for analyses, providing data in pre-defined formats

through a semi-automatic procedure, allowing investigators to

avoid wasting time collecting and preprocessing the raw data.

Researchers without specific knowledge in GIS or remote sensing

can also benefit from the EVE system, given that the output data can

be interpreted with common statistical tools. The standardization

of the processes involving data acquisition and production, on

a well-defined spatial and temporal scale, reduces possible errors

in the data pre-processing and provides a general harmonization

of the data. At present, the EVE system is stable and up-

to-date; however, the EVE system structure and its intrinsic

modularity permit potential future extensions and improvements,

such as integration with new datasets and processing (e.g., new

environmental indexes), without having to re-engineer the entire

system. For instance, the temporal coverage of the GPM has been

planned to be extended to the 2010–2014 period, permitting:

(i) the reduction of missing data, especially at the Country

level, (ii) the enhancement of the rasters spatial resolution (from

27 to 10 km), and (iii) the increase of the dataset consistency.

With reference to VBDs, other important variables include the

air humidity (1, 67), even though there are only few providers

or project that offer this information, and with a sub-optimal

spatial and temporal scale (e.g., https://www.primavera-h2020.eu/

about/project/). Alternatively, the relative humidity data obtained

from meteo stations could be used for deriving a local modeled

continuous dataset. Each present of future module, while exploiting

common intermediate functions and outputs, is dedicated to the

production of specific outputs at multiple scales, optimizing the

computational requirement.

A potential improvement would consist in storing the whole

EVE datasets inside a dedicated Database, in order to better

manage their acquisition and subsequent analysis. Given the

rapid environmental changes and the increase in the quantity of

available data, innovative solutions are needed to elaborate and

produce accurate outputs for the epidemiologists and decision

makers. This would prompt toward a data cube approach (68),

which could improve the efficiency for both data extraction

and analysis, once combined with Machine Learning techniques

and algorithms.

Data from the Copernicus Marine Service portal (CMEMS)

have been already included in specific workflows on shellfish

farming. More specifically, the sea surface temperature and the

oxygen, salinity, chlorophyll and phytoplankton concentrations

products helped in the monitoring activities in a mussel

farm located in the Northern Adriatic Sea. Automating the

acquisition of such datasets could be helpful to implement an

early-warning system.

The platform presented in this work represents a valid and

convenient alternative method for obtaining, pre-processing, and

extracting environmental and climatic data needed for studies

oriented to the analysis of eco-epidemiological aspects of infectious

diseases. Although the needs of the typical end-users are, in most

cases, fulfilled by the acquisition of pre-processed data available on

the various aforementioned official providers, and the availability

of online services allows analyzing data directly on the web through

quite common frameworks, the currently available tools may be not

sufficient to meet all the specific needs of researchers and analysts.

For example, analyses focussed on a local scale would require data

which are not available on such platforms, or the services offered

by them might have some limitations that are too restrictive for the

collection of the necessary data, so proper and effective alternatives

have to be evaluated. Furthermore, if the need of data collection is

frequent as well as the availability of ready-to-use datasets in the

required format, without the concern related to technical aspects

of data acquisition and harmonization, the development of an in-

house system such as the one presented here could represent a

valuable and advantageous solution. From these considerations, it

follows that a technical team with a multidisciplinary background

(IT, GIS, basics of statistics) is mandatorily required for the

maintenance of the implemented system, which in turn might

represent a limit in terms of human and economic resources

available. However, the investment in a dedicated support team

represents a worthwhile opportunity to keep the technologies

constantly up-to-date, allowing the epidemiologists, researchers

and analysts to entirely focus on their study and research goals.
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