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Background: Ginseng has been used in biomedicine to prevent and treat decreased

physical and mental capacities. Total ginsenosides (TG) from ginseng root which have

antitumor and immune-enhancing properties, are the principal active components

of Panax ginseng, while the sulphation-modified TG derivative-3 (SMTG-d3) was

expected to enhance the anticancer activity in conventional medicinal treatments.

Methods: The chlorosulphonic acid–pyridine technique, used for the sulfation

modification of TG to improve their biological activity, and the infrared spectroscopic

characteristics of TG and SMTG-d3 were investigated, and the e�ects of SMTG-d3

on immunocytes and cytokines relevant to tumor treatment were assessed. The

MTT assay was used to assess the e�ect of TG and SMTG-d3 on the cytotoxicity

and T-lymphocytic proliferation against mouse splenocytes. The LDH method was

employed to evaluate NK activity induced by TG or SMTG-d3. The production levels

of splenocytes-secreted IL-2 and IFN-γ and peritoneal macrophages-secreted TNF-α

were determined using mouse ELISA kits.

Results and discussion: It showed that the ideal conditions for the sulfation

modification of TG: the volume ratio of chlorosulfonic acid to pyridine lower than

1:2.5; controlled amount of chlorosulfonic acid; and a yield of 51.5% SMTG-d3 (2 h,

< 45◦C). SMTG-d3 showed two characteristic absorption peaks at 1,230 cm−1 and

810 cm−1, indicating the formation of sulfuric acid esters and the presence of sulfuric

acid groups. SMTG-d3 exhibited higher antitumor immunological activity than TG by

promoting the proliferation of T lymphocytes and the production of IFN-γ and TNF-α,

thus enhancing NK cell activity, and reducing cytotoxicity. The findings imply sulfated

modification represents an e�ective method of enhancing the immunomodulatory

activities of TG and could be used as the basis for developing new drug target

compounds; SMTG-d3 can serve as an antitumor immunomodulator and can be

considered an e�ective and prospective herbal formulation in clinical applications.
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Introduction

The field of complementary/alternative medicine is taking

new horizons in the recent era. Herbal medicines are considered

to be good alternatives to allopatheic medicine (1, 2). Ginseng

(genus Panax, family Araliaceae, Angiosperms, accepted scientific

name: Panax ginseng C.A. Mey.) is a medicinal herb and an

agricultural product that has widely been used in many traditional

medicinal therapies in China, Korea, and Japan for thousands of

years. Specifically, it has been used for prophylaxis and treatment

of decreased physical and mental capacities, including tiredness,

exhaustion, and weakness and during convalescence (3–5). Total

ginsenosides (TG), dammarane-type triterpene saponins, are the

main active components in the root of P. ginseng. The quality and

composition of the active components depend on various factors,

including plant species, cultivation method, age, and the section

of the plant used (6, 7). It has been shown that ginseng can

inhibit the proliferation and motility of cancer cell lines in vitro,

and that it has anticarcinogenic properties in animal models; the

anticarcinogenic effects of ginseng may in part be related to its ability

to inhibit angiogenesis (8–11). Furthermore, anticancer effects of

TG are thought to be mediated by an increase in the production

of interferons and cytokines, which can activate natural killer (NK)

cells and cytotoxic T cells, thereby causing lysis of tumor cells or

inhibition of tumor development (12, 13). Notably, modulation of the

immune response has been recognized as the pharmacological effect

of ginseng, proving that it can modulate multiple immune cell types

in terms of proliferation, phagocytic activity, cytokine expression, and

antibody production (14–16). Studies performed on animal models

have demonstrated that ginseng stimulates a significant immune

response, protecting from both viral and bacterial infections, and

enhances the protection conferred by vaccine treatment (17–19).

TG is composed of sapogenin and sugar chains. Because the

aglycone is a relatively stable cycloalkane structure, it is hard to

modify it for structural modification of the TG molecule, whereas

sugar plays an essential role in the structure–activity relationship of

TG, and its modification is more purposeful. Thus, the modification

of TG in this study first focused on the sulfation modification

of sugar or sugar chain. Additionally, according to Miyamoto

et al. (20) there are sulfate groups on the sugar chain of sea

Cucumaria ehinata saponins, and the anticancer activity of sea

cucumber saponins is related to the sulfate groups. Because the

structure of sea cucumber saponins is so similar to that of TG,

we believed that modification of TG by sulfation would alter their

biological activity. However, it is uncertain whether the sulphation

modification of TG can enhance their immunological activity even

further. Thus, increasing attention has been placed on the molecular

modification and structure–activity relationship of TG. The current

study focused on the chlorosulphonic acid–pyridine technique for

the sulfation modification of TG to improve their biological activity;

and the infrared spectroscopic characteristics of TG and SMTG-d3;

to investigate the effects of SMTG-d3 on immunocytes and cytokines

relevant to tumor treatment were assessed. In this study, the effects

Abbreviations: TG, Total ginsenosides; SMTG-d3, sulphation-modified TG

derivative 3; NK cells, natural killer cells; LPS, Lipopolysaccharide; ConA,

Concanavalin A; LDH; lactate dehydrogenase; MTT, methylthiazol tetrazolium;

YAC-1 cells, YAC-1 mouse lymphoma cells.

of TG and sulphation-modified TG derivative-3 (SMTG-d3) on

immune cells and cytokines relevant to tumor therapy were examined

using mouse peripheral blood lymphocytes and mouse peritoneal

macrophages cultured in vitro; and the alterations in immune

activity for the sulfation-modified TG were assessed. This study

can serve as a foundation for subsequent chemical modification,

such as sulfation, to change the pharmacological activity of TG and

monomers contained therein, resulting in saponin derivatives with

higher biological activity and reduced toxicity.

Materials and methods

Chemicals and reagents

Total ginsenosides (TG) (purity: 95.60 %) were purchased

from Hongjiu Biotech. Co., Ltd of Jilin Province (Changchun,

China). Lipopolysaccharide (LPS), Concanavalin A (ConA), lactate

dehydrogenase (LDH), and methylthiazol tetrazolium (MTT) were

obtained from Sigma-Aldrich Co. (St. Louis, USA). Trypsin was

obtained from Life Technologies, Inc. (Carlsbad, USA), and RPMI

1640 media and calf serum were from Gibco Co., (Grand Island,

USA). Chlorosulphonic acid, pyridine, and other reagents were of

analytical grade and were purchased fromTianjin Bodi Chemical Co.,

Ltd., (China). ELISA Kits for mouse IL-2, IFN-γ, and TNF-α were

obtained from Wuhan Boster Bio. Tech., Ltd (Wuhan, China). YAC-

1 mouse lymphoma cells (YAC-1 cells) were obtained from Shanghai

Institute of Material Medica, CAS, China. All cells in this study were

incubated in RPMI-1640 media containing calf serum (10%, v/v) and

antibiotics (1%, v/v, penicillin + streptomycin), at 37◦C in a humid

atmosphere of 5% CO2. For testing, 0.25% trypsin was used to collect

adherent cells in the logarithmic growth phase, and a hemocytometer

was used to count the cells. For in vitro cytotoxicity studies, cells were

seeded into new culture dishes and grown to 80 % confluence before

drug treatment.

Animals

Forty female BALB/c mice (18–22 g) with a clean grade

(Certificate No. SCXK [G] 2015-001) were collected from Laboratory

Animal Center, Lanzhou Veterinary Research Institute, CAAS

(China). An ordinary housing facility was used and complied

with the national standard, Laboratory Animal Requirements of

Environment and Housing Facilities (GB 14925-2001). All animals

were kept under standard environmental conditions (23–25◦C;

relative humidity: 50%; light/dark cycle: 12/12 h). All mice had one-

week pre-experimental acclimation period and access to standard

food and water ad libitum.

Sulphation modification of TG and infrared
spectroscopy analysis

Sulphation-modified TG (SMTG) was prepared using the

chlorosulphonic acid–pyridine method (21, 22). In the present study,

according to the volume ratio of chlorosulfonic acid to pyridine,

reaction temperature, and reaction time, nine treatment schemes

were designed by three-factor and three-level orthogonal test method.
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Nine derivatives were obtained, and nine different conditions were

named in proper sequence from 1 to 9. Explicitly, TG and sulphation-

modified TG derivative-3 (SMTG-d3) were used in the tests below.

The yield of derivative was used as the investigation index. Yield

(%) was calculated as follows: weight of products / weight of total

ginsenosides× 100%.

Fourier-transform infrared (FT-IR) spectra were obtained via

KBr tablets on a Nicolet Avatar FT-IR 360 and Nicolet FT-IR 170 SX

infrared spectrophotometer (Thermo Fisher Scientific).

T-lymphocyte proliferation test

Cytotoxicity of TG and SMTG-d3 against mouse splenocytes

was evaluated by conventional MTT assay as described previously

(23, 24). A suspension of mouse splenocytes was resuspended

at 2.0×106/mL with RPMI-1640 complete media. The cells were

inoculated into 96-well plates with 100 µL per well, and treated

with different concentrations of ConA-containing TG or SMTG-

d3 (50 µL/well, at 5, 10, and 50µg/mL concentrations). The final

concentration of ConA in each well was 10µg/mL. RPMI-1640

medium and ConA were applied to four wells, each for the negative

control and ConA control; each sample had four replicate wells.

The plates were incubated for 44 h at 37◦C under 5% CO2. We

added 20 µL of MTT per well (5.0 mg/mL) and incubated for an

additional 4 h at 37◦C. Then, the supernatant was aspirated, and

100 µL/well of DMSO (dimethyl sulfoxide) was added to dissolve

formazan crystals existing in the viable cells. The absorbance was

determined as the index of splenic T-lymphocyte proliferation using

a microplate reader at 570 nm (Thermo Multiskan Mk3, USA). In

addition, the cytotoxic concentrations of the drug (TG or SMTG-

d3 without ConA), were determined by observing the half-inhibitory

concentration of the drug on mouse T lymphocytes, and the method

was the same as above.

NK-cell activity test

YAC-1 cells were prepared at 1.0×106/mL, and NK activity

induced by TG or SMTG-d3 was measured by the LDH approach

(25). Namely, 100 µL of splenocytes treated with TG or SMTG-d3 (5,

10, and 50µg/mL) was placed in 96-well plates (20 µL drugs+ 80µL

splenocytes), and then 100µL of YAC-1 cells was added (E/T= 50/1).

Additionally, the target cell’s spontaneous-release wells (100µL YAC-

1 cells + 100 µL RPMI-1640) and maximum release wells (100 µL

YAC-1 cells + 1% NP-40) were set as controls; each sample had four

replicate wells. The plates were incubated for 24 h at 37◦C under 5

% CO2. Then, supernatant (100 µL) was aspirated from each well,

added to another culture plate, and pre-warmed at 37◦C for 10min.

We then added 100 µL of LDH substrate solution freshly prepared

into each well, allowed reaction at room temperature for 10–15min

(protected from light), and added 30 µL of citric acid stop solution

(1.0 mol/L) into each well to stop the reaction. The absorbance was

recorded using a microplate reader (570 nm).

The NK-cell activity, expressed as the percentage of release, was

determined by the following formula based on the average values

from the four wells: NK cells activity (%) = (values of experimental

group – values of spontaneous-release group) / (values of maximum-

release group – values of spontaneous-release group)× 100%.

Detection of levels of IL-2, IFN-γ, and TNF-α
secretion

In axenic conditions, splenocyte suspensions (2.0×106/mL) and

peritoneal macrophage suspensions (1.0×106/mL) from the mice

were prepared and added to 24-well plates (850 µL/well); meanwhile,

50 µL/well of ConA (in which the final concentration was 5µg/mL)

or LPS (in which the final concentration was 10µg/mL) were added;

then, TG or SMTG-d3 (at 5, 10, and 50µg/mL concentrations) were

added (100 µL/well). The plates were incubated for 24 h at 37◦C

in 5% CO2. Then, the contents of the wells were centrifuged, and

the supernatants were collected (26, 27). The production levels of

splenocytes-secreted IL-2 and IFN-γ, and peritoneal macrophages-

secreted TNF-α, were detected using mouse ELISA kits based on the

manufacturer’s test instructions.

Statistics

The data analysis was performed using SPSS Statistics 25.0 (IBM,

Chicago, USA). One-way analysis of variance (ANOVA) followed by

post hoc multiple-comparison tests (Tukey, Duncan, and Dunnett

two-sided), and two-tailed t test (Dunnett’s T3) were performed to

estimate the significance of differences between the groups of control

and TG or SMTG-d3. Results were expressed as mean values and

standard deviations (mean ± SD), and graphs were drawn using

OriginPro 2017C 64-bit (OriginLab Corporation Northampton, MA,

USA). In all cases, differences were considered statistically significant

when P was lower than 0.05.

Results

Sulphation modification of TG and infrared
spectroscopy

According to the yield index and the degree of substitution of

sulfuric acid groups, the results showed that the order of the three

factors acting on the sulfation modification of TG was as follows: the

temperature of the esterification reaction, the ratio of chlorosulfonic

acid to pyridine, and the reaction time. However, none of the three

factors significantly affected the yield index. The ideal conditions for

the sulfation modification of TG were as follows: the volume ratio of

chlorosulfonic acid to pyridine lower than 1:2.5; controlled amount of

chlorosulfonic acid; the reaction time of 2 h; the reaction temperature

lower than 45◦C; and the yield of SMTG-d3 reaching 51.5 %.

The FT-IR spectroscopy of TG and SMTG-d3 is shown in

Figure 1. Six absorption bands at 1,638 cm−1, 1,330 cm−1, 1,254

cm−1, 1,037 cm−1, 921 cm−1, and 851 cm−1 were the characteristic

absorption bands of TG; there was a strong absorption peak at

3,400 cm−1, indicating the existence of -OH groups; and the

strong absorption at 935–1,044 cm−1, which indicated the stretching

vibration of C-O-C (sugar ring). Compared with the IR spectrum

of TG, two new characteristic absorption bands appeared in the

IR spectra of SMTG-d3, one at near 1,230 cm−1 (describing an
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FIGURE 1

Fourier-transform infrared (FT-IR) spectroscopic analysis of TG and SMTG-d3 TG, total ginsenosides; SMTG-d3, sulphation-modified total

ginsenosides derivative-3.

asymmetrical S=O stretching vibration) and the other at near 810

cm−1 (representing a symmetrical C-O-S vibration associated with

C-O-SO3 group), which were the characteristic absorption peaks of

sulfuric acid bonds.

T-lymphocyte proliferation and NK-cell
activity

The cytotoxicity assay of TG and SMTG-d3 on mouse T

lymphocytes showed that TG significantly inhibited the proliferation

of T lymphocytes at a concentration of 1,000µg/mL (P < 0.01).

In contrast, SMTG-d3 still had a strong promoting effect on the

proliferation of T lymphocytes at the same concentration, and

it significantly boosted the proliferation of splenocytes in the

50–1,000µg/mL range (P < 0.01). Our findings demonstrated a

considerable improvement in SMTG-d3 synergized with ConA to

boost T-lymphocyte proliferation (Figures 2A, B).

Compared with the spontaneous-release group, both TG and

SMTG-d3 significantly promoted the killing effect of NK cells on

YAC-1 cells within the 5–50µg/mL range (P < 0.01). Compared with

the same concentration of TG, SMTG-d3 displayed more powerful

capability (P < 0.01) (Figure 2C).

Levels of IL-2, IFN-γ, and TNF-α

According to the detection of the levels of cytokines, TG

exhibited an inhibitory effect on the level of IL-2 secreted by mouse

T lymphocytes in the 5–50µg/mL range after co-culture with T

lymphocytes for 24 h (P < 0.01). SMTG-d3 also showed a significant

inhibitory effect at the concentration of 5µg/mL and 50µg/mL (P

< 0.01), but at the concentration of 10µg/mL, it demonstrated

a promoting effect on the production of IL-2 (P < 0.01), that

is, the effect of SMTG-d3 on IL-2 secretion was of bell-jar type.

Moreover, the effects of TG and SMTG-d3 on IL-2 secretion at

the same concentration also showed significant differences (P <

0.01) (Figure 2D). After TG and SMTG-d3 were co-cultured with

T lymphocytes for 24 h, respectively, the levels of IFN-γ in the

culture supernatant were measured. The results indicated that both

TG and SMTG-d3 were able to significantly promote the secretion

of IFN-γ by mouse T lymphocytes in the range from 5µg/mL to

50µg/mL (P < 0.01). In general, the enhancing capacity of SMTG-

d3 on IFN-γ production was significantly better than that of TG at

the same concentration (P < 0.01) (Figure 2E). After TG or SMTG-

d3 were co-cultured with mouse peritoneal macrophages for 24 h,

TNF-α secretion in the culture supernatant exhibited higher levels

compared with the control (P < 0.01); and the SMTG-d3 promoted

the secretion of TNF-α significantly better than TG at the same

concentration (P < 0.01) (Figure 2F).

Discussion

The chemical modification research of natural active ingredients

has now become a hot topic. Starting with the active ingredients

of natural medicines, structural modification and systematic drug

activity are studied to summarize the correlation between structure

and activity (toxicity), which is then used as the basis for designing

new drug target compounds (28–32). In a previous study, the sugar

chain of TG was modified by chemical modification, and Marek’s

disease was employed as an animal model for the occurrence and

development of viral tumors (33–36). The findings of immunological

activity comparison revealed that there were fewer positive cells in

the TG and its derivative drug groups than in the moroxydine group

in chickens Marek’s disease virus-infected; moreover, TG induced

the apoptosis of MSB-1 cells (Marek’s disease tumor cells) and

inhibited the proliferation of MSB-1 cells. We noticed that sulfated

polysaccharides often had better anti-virus, anti-tumor, and immune-

improving activities (37–40), which suggests that the sulfation

modification of TG should be investigated. TG are best known for

their curative properties in cancer, neurodegenerative disorders, and

cardiovascular diseases, and is composed of sapogenins and sugar

chains. According to the structure–activity relationship of TG, their

biological activity is related to the number of sugar chains present,

implying that sugar chains play an important role in TG (41, 42).

Thus, it is critical to sulfate the sugar chain of TG, change and

enhance the biological activity, and discover more active medications

from it.
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FIGURE 2

In vitro immunological activity of TG and SMTG-d3. Data are presented as mean ± SD. (A) Assay of cytotoxic concentration; (B) T-lymphocyte

proliferation; (C) NK-cell activity; (D) IL-2 production; (E) IFN-γ production; (F) TNF-α production. *P < 0.05, **P < 0.01, compared with the control

group. 1P < 0.05, 11P < 0.01, compared with the TG group of the same concentration. TG, total ginsenosides; SMTG-d3, sulphation-modified total

ginsenosides derivative-3.

In the present study, the chlorosulfonic acid–pyridine method

was used to prepare sulfation-modified TG (SMTG) (21). Three main

factors that affect the sulfation of polysaccharides were selected to

facilitate the investigation and avoid too many experiments; these

factors were the volume ratio of chlorosulfonic acid to pyridine, the

reaction temperature, and the reaction time. We showed that the

main factors affecting the sulfation degree of TG were the ratio of

esterification agent, reaction temperature, and reaction time. We set

the three levels each, and analyzed them according to the yield index

through orthogonal design experiments. The results showed that the

volume ratio of chlorosulfonic acid to pyridine was lower than 1:2.5;

the amount of chlorosulfonic acid was controlled; the reaction time

was 2 h; the reaction temperature was lower than 45◦C; and the

sulfation modification of TG was better. On this basis, the yield of

preparing SMTG-d3 was >50%, and the effect was ideal.

The FT-IR spectrum was used to analyze the possible

functional groups and bond types. Experimental results from

the IR spectroscopy of TG showed that the band in the region of

3,400 cm−1 corresponded to the hydroxyl stretching vibration and

indicated the existence of -OH groups; the band in the region of

2,920 cm−1 corresponded to a C-H stretching vibration; and the

weak absorption bands at 1,460 cm−1 and 1,380 cm−1 corresponded

to a -CH3 stretching vibration. The absorption at 1,640 cm−1

indicated the C=C stretching vibration; that at 1,150 cm−1 indicated
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the C-O stretching vibration of C-O-C group; and that at 1,110 cm−1

indicated the O-H angular vibration, which illustrated the structure

of TG. In addition to retaining the characteristic absorption peaks of

TG, SMTG-d3 had absorption peaks at 1,230 cm−1 and 810 cm-1,

corresponding to the S=O stretching vibration of OSO−

3 group

and C-O-S stretching vibration, respectively. These two absorption

peaks indicated that the sulphation modification had taken place

in TG, which involved the formation of sulfuric acid esters and the

existence of sulfuric acid groups in the molecule (Figure 1). These

results showed that it was feasible to modify TG and even saponins

by sulfation.

In this study, treatment with 1,000µg/mL TG inhibited

splenocyte proliferation (P < 0.01). However, SMTG-d3 significantly

boosted the proliferation of splenocytes in the 50–1,000 µg / mL

range (P < 0.01) (Figure 2A). These findings indicated that the

sulphation modification markedly reduced the cytotoxicity of TG,

and SMTG-d3 was effective for clinical practice at a lower dose.

Lymphocytes, an essential component of the immune system, are

involved in numerous disease-induced immunological responses.

Tumor immunity is made up mostly of cellular and humoral

immunity, with the former being superior to the latter (43–47).

As a part of the immune response, activated T lymphocytes can

secrete IFN-γ. Our findings revealed that both TG and SMTG-

d3 boosted the proliferation of splenic T lymphocytes in the 5–

50µg/mL range, with SMTG-d3 producing a greater increase in T-

lymphocytes proliferation than TG (P < 0.01) (Figure 2B). ConA

stimulates T lymphocytes primarily as a mitogen; thus, treatment

with ConA induces the cells to move into G1 phase from G0

phase (DNA presynthetic phase); otherwise, the cells remain in

the G0 phase. In this study, the proliferation of T lymphocytes

was significantly enhanced by SMTG-d3, indicating that SMTG-

d3 caused a large number of T lymphocytes to transition from a

resting to an active state by regulating the cell proliferation cycle.

Furthermore, compared with the same concentration of TG, SMTG-

d3 had an obvious synergistic effect with ConA, and showed a

significant positive result in promoting T-lymphocyte proliferation

in vitro.

NK cells can directly destroy tumor cells after activation and

secrete some cytokines, such as interleukins and interferon, which

participate in immune killing and immune elimination (45, 48). Our

data showed that TG and SMTG-d3 both increased the NK-cell

activity in the 5–50 µg / mL range (P < 0.01); however, SMTG-d3

was more effective than TG at enhancing NK cell activity (P < 0.01)

(Figure 2C). These findings indicate that SMTG-d3 may effectively

kill YAC-1 cells or inhibit tumor cell development. Numerous crucial

physiological processes, including immune response and regulation,

and stimulation of cell proliferation and differentiation in vivo,

are affected by cytokines. To further explore the cellular immune

regulation mechanism of TG and SMTG-d3, and given that both

TG and SMTG-d3 had good proliferative effects on T lymphocytes

in vitro, the effects of TG and SMTG-d3 on the cytokines released

by lymphocytes and macrophages were further investigated. IL-

2 is produced by activated T lymphocytes and mainly promotes

the activation and proliferation of T and B lymphocytes. After T

lymphocytes are stimulated by ConA, they begin to secrete IL-2;

meanwhile, they also express a high level of IL-2R. We demonstrated

that both TG and SMTG-d3 had obvious inhibitory effects on the

secretion of IL-2 by mouse T lymphocytes within the concentration

range in this test (P < 0.01) (Figure 2D). Compared with the same

concentration of TG, the effect of SMTG-d3 on inhibiting the

secretion of IL-2 from T lymphocytes was significantly weaker (P

< 0.01) (at the concentration of 10µg/mL). The inhibitory effect of

TG was in a negative dose–response relationship, and the secretion

effect of SMTG-d3 on IL-2 was related to the dosage, showing a bell-

jar type. The results above could be attributed to the antagonism

of ConA by TG or SMTG-d3, as well as the decreased expression

of IL-2R, and suppression of the proliferation signal. In earlier

research (49–52), it was discovered that ginsenosides improved

the reduction of IL-2 secretion in experimental animals under

immunosuppression conditions, but had no appreciable impact on

the immune function in healthy animals, which might indicate the

immunomodulatory effect of ginsenosides. The difference between

our findings and those of the previous studies may stem from

the differences between in vivo and in vitro testing, and pathology

and health, and further research is necessary to determine the

action mechanism.

Many studies shown that activated T lymphocytes secrete IFN-γ,

which can directly inhibit the proliferation of tumor cells and boost

the expression of TNF-α; TNF-α can selectively destroy tumor cells or

permit not-yet-diseased cells to move into an anti-tumor condition

in a paracrine manner (3, 12, 53–55). Our data showed that both

TG and SMTG-d3 significantly promoted the production of IFN-

γ and TNF-α within the range of 5–50µg/mL concentration (P <

0.01); and compared with TG at the same concentration, SMTG-

d3 promoted the secretion of IFN-γ and TNF-α more considerably

(P < 0.01) (Figures 2E, F). Many studies have suggested that the

production of IFN-γ is inhibited in the whole organism and tumor

region in cancer patients (5, 12, 38, 49). Recent discoveries have

revealed that TG and their derivatives play an important role in

assisting tumor cells in apoptosis and differentiation, as well as in

increasing tumor cell sensitivity to chemotherapeutic treatments.

TG in combination with chemotherapeutic medicines are currently

utilized mostly to improve the efficacy of primary lung cancer and

liver cancer treatment (5, 56, 57). Thus, promoting the production

of IFN-γ by SMTG-d3 may be beneficial during radiotherapy and

chemotherapy. Findinds above implying that SMTG-d3 could work

as an antitumor immunomodulator, and serve as foundation for

subsequent chemical modification, such as sulfation to change the

pharmacological activity for TG and monomers contained therein,

resulting in saponin derivatives with higher biological activity and

reduced toxicity.

Conclusions

The capacity of TG and SMTG-d3 to improve immunity was

discovered to be one of the primary mechanisms underlying their

antitumor activity. For their immunoregulatory impact, TG and

SMTG-d3 increased the activity of T lymphocytes, NK cells, and

peritoneal macrophages, and aided in the production of IFN-γ

and TNF-α throughout the antitumor process. Moreover, compared

with TG, SMTG-d3 further enhanced antitumor immunity while

lowering cytotoxicity. Hence, using ginseng’s active ingredients as

a starting point, and examining the relationship between structural

modification and activity (toxicity), could be used as the basis

for developing new drug target compounds; and the customized

derivatives with desirable functional characteristics can be produced.

SMTG-d3 appears to be a promising antitumor immunomodulator,
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and it was expected to give greater value to the anticancer activity in

traditional medicinal therapies.
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