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Introduction: This study aims to investigate the long-term e�ects of spirulina

supplementation in a high-fat diet (HFD) on rumenmorphology, rumen fermentation,

and the composition of rumen microbiota in lambs. Spirulina is a blue-green

microalgae that has been shown to have high nutritional value for livestock.

Methods: Fifty-four lambs were randomly divided into three groups: a normal chow

diet (NCD) group, a high-fat diet (HFD) group, and a high-fat diet supplemented with

3% spirulina (HFD+S) group. Rumen morphology, rumen fermentation, and rumen

microbiota were analyzed at the end of the study.

Results: Spirulina supplementation improved the concentration of volatile fatty acids

and rumen papilla length. Additionally, there was a tendency for an increase in rumen

weight and an upregulation of the genes Claudin-1, Claudin-4, and Occludin in the

HFD+S group. Pyrosequencing of the 16S ribosomal RNA gene also showed that

spirulina supplementation significantly changed the rumen microbiota composition

in the HFD group, with a decrease in richness and diversity. Specifically, the relative

abundance of Prevotella 9 and Megasphaera was significantly increased in the

HFD group compared to the NCD group, while spirulina supplementation reversed

these changes.

Discussion: This study suggests that 3% spirulina supplementation can improve

rumen development and fermentation, and e�ectively relieve rumen microbe

disorders in lambs caused by a high-fat diet. However, further research is

needed to confirm the findings and to examine the long-term e�ects of spirulina

supplementation in di�erent types of livestock and under di�erent dietary conditions.

KEYWORDS

rumen microbiota, Hu sheep, rumen morphology, spirulina supplementation, rumen

development and fermentation

Introduction

Spirulina is a functional additive that contains several active components, such as phenolic
acids, beta-carotene, vitamins, minerals, tocopherols, fatty acids, and gamma-linolenic acid
(1, 2). It belongs to the Oscillatoriaceae family. It is also rich in antioxidants, including essential
amino acids (3–5). Spirulina also reduce the blood lipid content through its rich content of
gamma-linolenic acid (6). Based on these nutritional benefits, spirulina is now used as a food
supplement for both humans and livestock. Spirulina can be used as an amino acid supplement in
poultry and piglet diets and is effective in relieving sows from nutritional metabolism disorders
due to gestation (7–9). A previous study showed that it was beneficial to lamb growth when they
were fed 20% spirulina supplementation (10). In addition, our previous study found that adding
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3% spirulina to a high-energy diet could improve the immune and
antioxidant capacity of sheep and alleviate lipid metabolism disorder
(6). Researchers have also considered using spirulina to reduce
obesity-associated chronic inflammatory states (11–13). However, the
effects of spirulina in the diet on rumenmicrobiota remain unknown.

The rumen development of lambs can be divided into three
stages: the non-rumination stage from birth to 3 weeks of age,
the transition stage from 3 to 8 weeks of age, and the rumination
stage after 8 weeks of age (14). The morphological development of
rumen epithelium in ruminants may be accompanied by molecular
adaptations of nutrient absorption and metabolism (15). The
diversity of the rumen microbial community is one of the main
ways to understand rumen function (16). Microbes are important for
animal productivity because they help degrade carbohydrates, which
are then turned into volatile fatty acids (VFA) to supply energy for
metabolic functions (17). The rumenmicrobiota also plays a vital role
in the metabolism of fatty acids in dietary fat (18, 19).

According to the previous results of our team, high fat diet has
significant effect on growth performance in Hu sheep. High fat diet
obviously downregulated average daily feed intake and feed/gain
ratio whereas upregulated the GR value (6). Some studies have
connected a high-fat diet to the development of gastrointestinal
diseases (20, 21). However, whether spirulina supplementation
can ameliorate the negative effects of rumen morphology and
the ruminal bacteria imbalance caused by consuming high-fat
diets remains poorly understood. Therefore, the effects of dietary
spirulina supplementation on rumen morphology, fermentation, and
microbiota composition were examined in Hu sheep fed anHFD diet.

Materials and methods

The management of animals and
experimental design

All animal experimental procedures were approved by the Ethics
Committee of Nanjing Agricultural University, China (Approval
ID: SYXK2011-0036). A total of 54 male lambs without castration
(27.5 ± 1.78 kg) at 3 month of age were raised at Qidong Ruipeng
Animal Husbandry, Jiangsu Province, China. The lambs were placed
into three random groups: a normal chow diet (NCD), high-fat
diet (HFD), and high-fat diet supplemented with 3% spirulina
(HFD + S). There were three replicates per group and six lambs
per replicate. Three percent fat was added to the high-fat diet
to increase the energy level. The floors, walls, and fences of the
lamb house were disinfected. Vaccination, parasites, and other
prophylactic measures were carried out during the prefeeding to
make sure that the lambs were healthy. The experiment continued
for 74 days, including a 14 days adaptation period. The feed
formulation described by Liang et al. (6) was carried out and is
presented in Table 1. Powdered spirulina was purchased from a
commercial supplier (Ordos Mengjian Spirulina Co., Ltd., Inner
Mongolia, China).

Sample collection

After 2 months of feeding, five Hu sheep with similar body
weights and body conditions were randomly selected from each

TABLE 1 Diet ingredients and chemical composition from Hu sheep fed

standard (ST) and high-energy (HE) diets divided in supplemented

subgroups: control and spirulina experimental diets.

Items Spirulina NCD HFD HFD + S

Diet ingredients, % DM

Corn 35 44 45

Fat powder 0 3 3

Malt root 3 1.5 1

Soybean meal 10 12 8

Corn germ meal 9 8.5 9

Rice husk 5 3 4

Soybean husk 5 3 2

Pleurotus eryngii residue 5 5 5

Corn husk 18 15 15

Rice bran 5 0 0

Spirulina 0 0 3

Premixa 5 5 5

Total 100 100 100

Chemical composition

DE, MJ/kg 18.1 11.7 13.0 13.1

ME, MJ/kg 16.0 10.0 11.0 11.1

Dry matter, % 93.6 92.5 91.9 92.3

Organic matter, % DM 93.1 92.1 92.8 94.2

Crude protein, % DM 60.0 12.9 12.9 13.0

Ether extract, % DM 5.0 6.0 7.2 7.8

NDF, % DM 15.9 38.4 32.2 30.0

ADF, % DM 0.0 18.3 13.7 12.7

DM, drymatter; DE, digestible energy; ME, metabolic energy; NDF, neutral detergent fiber; ADF,

acid detergent fiber. aThe premix provided the following per kg of diet: vitamin A, 3000 IU;

vitamin D3, 600 IU; vitamin E, 6mg; Cu, 11mg; copper, 11.0mg; Fe, 40.0mg; Mn, 50.0mg; Zn,

50.0mg; Se, 0.15mg; Co, 0.5mg; I, 0.4mg; N, 0.2 g; lysine, 0.025 g.

group and slaughtered without feeding. Immediately after slaughter,
a representative sample of rumen digestive fluid (at least 200ml)
was collected to determine the pH value of rumen fluid by pH
meter (Code: fc230b, Hanna, Italy). Then the rumen fluid was filtered
through four layers of cheesecloth and stored at −20◦C for VFA
concentration analysis (22). Rumen tissues were collected and fixed
with 4% paraformaldehyde for histomorphological analysis. At the
same time, the rumen digesta samples were thoroughly mixed well,
collected into a 5ml cryopreservation tube, and stored at −80◦C for
further analysis.

Analysis of rumen tissue morphology and
rumen fermentation parameters

The VFA concentration in the rumen fluid was analyzed
according to the method reported by Feng and Gao (23). Gas
chromatography (GC-14B; Shimadzu, Japan; capillary column film
thickness: 30m × 0.32mm × 0.25µm; column temperature =

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2023.1001621
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wang et al. 10.3389/fvets.2023.1001621

FIGURE 1

Hematoxylin and eosin staining (HE) sections of lambs’ rumen papillae tissues.

TABLE 2 E�ect of spirulina supplementation on the growth and development of rumen and rumen papillae of Hu sheep fed HDF.

Items Groups P-value

NCD HFD HFD + S

Emptied rumen weight, g 0.92± 0.12 0.70± 0.10 0.82± 0.13 0.094

Rumen relative weight
(body weight%)

2.21± 0. 24 1.69± 0.27 1.83± 0.17 0.070

Rumen papillae length, mm 2,861.02± 668.44a 1,906.31± 358.18b 2,285.49± 179.16a 0.043

Total epithelia thickness, µm 142.87± 27.82a 117.08± 20.22b 124.42± 13.54a 0.019

Stratum corneum thickness, µm 18.48± 5.07a 10.83± 2.32b 15.02± 5.90a 0.002

Stratum granulosum thickness, µm 15.36± 3.29a 10.34± 1.88b 10.62± 2.13b < 0.001

Stratum spinosum and basale thickness, µm 109.02± 23.91 94.26± 17.50 98.78± 15.97 0.190

In the same row, values with different small letter superscripts indicate significant difference (P < 0.05).

130◦C; injector temperature = 180◦C; detector temperature =

180◦C) was used to determine VFA, which has been used in prior
experiments (24). Crotonic acid was used as the internal standard.

The morphology of the rumen was assessed using the method
described by Ye et al. (25). Rumen tissues were washed in phosphate
buffer saline (PBS) and fixed in 4% formaldehyde before being
embedded in paraffin and stained with hematoxylin and eosin. With
40 × objective lens, measurements of lesions were taken. Each lamb
sample in one group received five slides, with each slide capturing two
photographs. We measured the predefined criteria described earlier,
using Image Pro Plus software (Media Cybernetics, Bethesda, MD,
USA) (26). During the analysis, three extreme samples were removed
from each group, and there were altogether 36 samples.

DNA extraction and high-throughput
sequencing

The lamb rumen content sample was collected for
microbial profile analysis and stored at −80◦C until analysis.
The DNA was isolated using MN NucleoSpin 96 Soi
(MN-MACHEREY-NAGEL, Germany). With the primers
338F (5′ ACTCCTACGGGAGGCAGCA-3′); 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) and the cycling settings
used by Hu et al. (22), the V3–V4 regions of the bacterial 16S RNA
gene were amplified. PCR products were sequenced on the Illumina
MiSeq platform by high-throughput pyrosequencing at Biomarker
Technologies Co., Ltd. (Beijing, China). Trimmomatic V0.33
software filtered the raw reads obtained by sequencing. Cutadapt
1.9.1 software was used to identify and remove primer sequences,

and clean reads without primer sequences were obtained. To acquire
the final effective readings, they were grouped into operational
taxonomic units with 97% similarity (OTU). The chimeric sequences
were identified and deleted using the UCHIME V4.2 program.

RNA isolation, cDNA synthesis and qPCR

The Trizol method described by Liang was used to extract total
RNA from ruminal tissue (6). The RNA concentration was then
quantified using a NanoDrop 2000 Spectrophotometer (Thermo
Scientific, Waltham, MA, USA). The absorption ratio (260/280 nm)
of all samples was between 1.8 and 2.1, indicating high RNA purity.
Total RNA was used for reverse transcription using a PrimeScript R©

RT reagent kit with gDNA Eraser (Takara Bio, Otsu, Japan). The
expression of the target genes was determined using the QuantStudio
5 Real-time PCR Instrument (Applied Biosystems, Foster, California,
USA) with fluorescence detection of AceQ qPCR SYBR Green
Master Mix (Vazyme Biotech, Nanjing, China) under the standard
program. The data of the gene expression were normalized by
the housekeeping gene (actin beta, ACTB) using the 2−11CT

method. The primers and amplicon sizes of the genes are shown in
Supplementary Table S1.

Statistical analysis

The basic data (rumen papillae, thickness, total volatile fatty acid
content and pH) were subjected to one-way analyses of variance
(ANOVA) run using Duncan’s test. The data were processed as mean
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TABLE 3 E�ect of spirulina supplementation on rumen fermentation

parameters of Hu sheep fed HFD.

Items Groups P-value

NCD HFD HFD + S

pH 6.75± 0.32 7.07± 0.22 6.75± 0.49 0.318

Acetate,
mmol/L

20.97± 0.87a 11.68± 3.45b 18.28± 3.90a 0.005

Propionate,
mmol/L

14.35± 3.07a 3.90± 0.65c 9.42± 3.37b 0.001

Butyrate,
mmol/L

3.90± 0.56a 1.38± 0.42b 3.49± 1.23 a 0.019

Isobutyrate,
mmol/L

0.31± 0.10 0.39± 0.21 0.47± 0.21 0.291

Valerate,
mmol/L

0.72± 0.29 0.37± 0.01 0.63± 0.30 0.165

Isovalerate,
mmol/L

0.46± 0.10 0.86± 0.56 0.97± 0.54 0.291

Total VFA,
mmol/L

40.17± 3.34a 18.78± 4.41b 32.73± 8.96a 0.002

A/P 1.55± 0.44b 2.98± 0.65a 2.01± 0.29b 0.007

In the same row, values with different small letter superscripts indicate significant difference (P

< 0.05).

values ± SEM. P < 0.05 was considered to be significantly different.
The analysis was performed using SPSS 25.0 (IBM Corp., Armonk,
NY, USA).

Results

E�ect of spirulina supplementation on
rumen development of Hu sheep fed with
HFD

The rumen development characteristics of Hu sheep fed different
diets are shown in Figure 1 and Table 2. Compared with the HFD
group, there was no significant difference in rumen weight (emptied
rumen weight and relative weight) between the NCD group and
the HFD + S group, but there was an increasing trend (P > 0.05).
However, the ruminal papilla length (P < 0.05), the thickness of
total epithelial (P < 0.05), and stratum corneum (SC, P < 0.05) in
the HFD group were significantly lower than those in the other two
groups. The thickness of stratum granulosum (SG, P < 0.001) in
the NCD group were significantly higher than other two groups, but
the thickness of stratum spinosum and basale were not significantly
different among the three groups (SS+ SB, P > 0.05; Table 2).

E�ect of spirulina supplementation on
rumen fermentation of Hu sheep fed with
HFD

The phenotypic characteristics of rumen fermentation in Hu
sheep in the three groups are shown in Table 3. Compared whith
the NCD group, HFD treatment significantly decreased overall VFA,
acetate, propionate, and butyrate concentrations while significantly
increasing the acetate to propionate ratio (P < 0.05). Furthermore,

spirulina supplementation could ameliorate the effect of an HFD on
rumen fermentation. There were no significant variations in the pH
value or the concentrations of isobutyrate, valerate, and isovalerate
among the three groups (P > 0.05).

E�ect of spirulina supplementation on
rumen microbiota diversity of Hu sheep fed
with HFD

To examine the effect of spirulina supplementation on ruminal
microbiota, ruminal bacterial communities were determined by
Illumina HiSeq sequencing of the 16S RNA V3–V4 region. As shown
in Supplementary Table S2, 1,198,763 raw reads were obtained from
the high-throughput sequencing library. Clean reads were obtained
through quality filtering using QIIME1, 1,178,220. A total of the
effective read clustered into operational taxonomic units (OTUs), and
OTUs were formed at the 97% similarity level. All the rarefaction
curves tended to approach the plateau (Supplementary Figure S1).
Notably, the analysis of OTUs number (P = 0.0149), ACE (P =

0.0011) and Chao1 (P = 0.0001) indicated that rumen bacterial
diversity was reduced in both HFD and HFD+ S groups (Figure 2A).
Furthermore, based on the analysis of Bray-Curits Metric and
Principal coordinates (R = 0.296, P = 0.002), the difference in
rumen microbiota composition was found among the three groups
(Figure 2B). Furthermore, a Venn diagram analysis showed 411
common core OTUs in the three groups, as well as 31 and 6
unique OTUs in the NCD and HFD groups, respectively (Figure 2C).
These findings showed that HFD feeding affected the microbiological
composition of rumen contents, but HFD + S had no effect on their
species (P > 0.05).

E�ect of spirulina supplementation on the
bacterial composition of Hu sheep fed HFD

A total of 18 phyla and 158 genera were found in the
rumen microbiota. As shown in Figure 3A, at the phylum level,
four major dominant phyla were identified in three groups:
Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. The
phylum level analysis indicated that HFD and HFD+S feeding
obviously increased the relative abundance of Proteobacteria

and decreased Firmicutes level (P < 0.05), while spirulina
supplementation significantly ameliorated the influences of these
bacteria caused by HFD treatment (P < 0.05). To further identify
the differences among each group, a genus-level analysis was
performed. As observed in Figure 3B, the relative abundance
of Prevotella_9 and Megasphaera significantly increased in the
HFD group compared with the NCD and HFD + S groups (P
< 0.05).

E�ect of spirulina supplementation on
rumen microbiota’s key phylotypesbacteria
composition in HFD-fed sheep

The OTUs of each group were compared to identify
the significantly abundant bacterial groups under different
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FIGURE 2

E�ect of high-fat diet and spirulina supplementation on the rumen bacterial communities’ diversity. (A) Comparison of the OUT number, ACE, Chao1 and

Shannon of the α-diversity in NCD, HFD and HFD + S groups. (B) Bacterial communities PCoA based on the OUT level. (C) Based on the OUT level, Venn

diagrams. “*” represents a significant correlation (P < 0.05), “**” represents an extremely significant correlation (P < 0.01), “***” represents an extremely

significant correlation (P < 0.001).

FIGURE 3

The taxonomic profiles for the relative abundance in the ruminal digesta of each group. (A) The relative phylum-level abundance in the ruminal digesta.

(B) The relative genus-level abundance in the ruminal digesta.

diet treatments. Biomarker detection was performed using
linear discriminant analysis (LDA) LEfSe with a 3.5-
threshold value at the genus level (Figures 4A, B). The relative
abundance of Butyrivibrio_2, Lachnospiraceae_UCG_008,
Fibrobacter, and Saccharofermentans were significantly

increased in the NCD group; Succinivibrio, CAG_352,
and Pseudoscardovia were significantly increased in the
HFD group; Erysipelotrichaceae_UCG_002, Dialister, and
Mitsuokella were significantly increased in the HFD + S group
(Figures 4C–J).
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FIGURE 4

High-fat feeding and spirulina supplementation are associated with multiple bacteria. (A) The taxonomic cladogram was obtained from LEfSe analysis. (B)

Linear discriminant (LDA) and e�ect size (LEfSe) analysis of the three groups. (C–J) The relative abundance of bacterial obtained in rumen microbiota

from the LefSe results.
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The relationship between the ruminal
bacterial community and fermentation
parameters in Hu sheep

The concentrations of acetate, propionate, isobutyrate, butyrate,
isovalerate, valerate, total VFA, and the acetate to propionate ratio in
the rumen liquid were measured to assess the relationship between
the top 15 relative abundance ruminal bacterial communities and the
composition of VFA in the rumen liquid. We found five significant
positive correlations, four significant negative correlations, and three
highly significant negative correlations in the correlation analysis
between the ruminal bacterial community and the fermentation
parameters. Prevotella_1 had a significantly negative correlation with
valerate content (P < 0.05); Succinivbrio had a negative correlation
with total VFA, acetate, and propionate concentrations (P < 0.05);
Megasphaera and Erysipelotrichaceae_UCG-002 had a significantly
positive correlation with isovalerate concentration (P < 0.05);
Ruminococcus_1 had a negative correlation with butyrate and valerate
concentrations (Figure 5).

E�ect of spirulina supplementation on
rumen tight junction proteins of Hu sheep
fed HFD

As shown in Figure 6, the mRNA expression of tight junction
proteins Claudin-1, Claudin-4 and Occludin in rumen were
significantly decreased (P < 0.01) by high-fat diets compared with
the NCD, while these were significantly increased by spirulina
supplementation in the HFD+ S group (P < 0.05).

Discussion

The rumen’s development and morphology have an impact on
lambs’ digestibility and growth performance and could be measured
by rumen weight and rumen papilla length (27, 28). There are
several reports on nutrient levels or the composition of feeds that
can affect the rumen histological morphology of ruminants (29–31).
In the present study, compared with the control group, the ruminal
papilla length, thickness of total epithelial, stratum corneum, and
stratum granulosum were significantly lower in the HFD group,
while the rumen’s histological morphology showed no significant
difference in the NCD and HFD+ S groups, which indicated that 3%
spirulina supplementation could ameliorate rumen disorder caused
by an HFD diet. This result is also similar to a previous study in
which HFD leads to damage to the digestive tract (32). Rumen pH
and VFA are both important pointers of rumen fermentation in
ruminants, which can reflect rumen wall function and regulate the
internal environment acid–base balance (33, 34). In this study, there
were no significant variations in pH across the three groups. This
is most likely because the rumen wall has a restricted capacity to
affect VFA transfer as well as the ability of ruminant saliva to dilute
pH. Previous studies have shown that lipid supplementation did not
affect the pH in the rumen, which might indicate that fiber digestion
cellulolytic processes were unaffected or that microbes had adapted
to the diet (35, 36). VFA played an important role in promoting
rumen development (37). Thus, we analyzed the VFA concentrations

in ruminal digesta. The results showed that HFD decreased the total
VFA, acetate, propionate, butyrate and valerate concentrations in
the rumen, while they were increased by spirulina supplementation.
Moreover, it has been recognized that VFA, a major product of
microbial fermentation, has a wide range of effects on host physiology
(38). Previous studies indicated that the type of feed, time of weaning,
and microorganisms all have a role in the rumen growth process
(39–41). The results of rumen weight, rumen papillae length, and
thickness of ruminal epithelia showed that HFD inhibited rumen
development in lambs and that spirulina supplementation into the
HFD diet could alleviate it, which were consistent with previous
studies (39, 40, 42, 43).

This research used 16S rRNA V3–V4 high-throughput
sequencing technology to assess the microorganism diversity in
high-fat diets supplemented with spirulina, which not only obtained
relatively complete bacteria information but also reduced their
separation and cloning error (27). In the present study, HFD
changed the richness of rumen bacteria, which was confirmed
by community richness estimates according to ACE and Chao1,
while community diversity markers like Shannon were not affected.
Meanwhile, the OTUs results suggested that HFD and spirulina
supplementation could reduce the richness and maintain the
relatively mature structure of the microbiota in the rumen of lambs.
The Venn group figures and OTUs unweighted UniFrac PCoA
further indicated differences in bacterial communities among the
three groups, showing that HFD changed the composition of the
ruminal digesta bacterial community. This change may be caused
by a decrease in total VFA, leading to changes in the ruminal
digesta bacterial community. Lipid supplementation altered the
concentration of all quantified VFA in the rumen, which was
triggered by a larger intake of total fatty acid (44).

The effect of hydrogenated fat on rumen microbiota is
controversial. Some studies reported that the addition of saturated
fatty acids had no significant effect on rumen microbiota (45–47),
while some studies believed that excessive lipid supplementation
would have adverse effects on rumen (19, 48). This may be due to
the toxicity of large amounts of unsaturated fatty acids produced by
the decomposition of excess fat in the rumen to microbiota especially
cellulolytic bacteria. In this study, excessive addition of fat powder
had a negative effect on rumen microbiota. It is worth noting that in
this study, in order to ensure the same level of other nutrients (crude
protein), more corn was added to the diet of the high-fat group. In
our results, the adverse effects of the high-fat group on the rumen
microbiota may also be caused by this reason. Previous studies have
also reported that high-concentrate diet will damage the structure of
the rumen microbiota and affect the rumen function (49, 50).

Studies have shown that in mammals, especially in ruminants,
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria are the
dominant bacteria (51, 52). The dominant bacteria analyzed were also
similar in our study with other previous reports (53, 54). The level
of Firmicutes in the NCD group was significantly higher, while the
level of Proteobacteria was significantly lower than in the HFD and
HFD + S groups. Firmicutes are the main bacteria that decompose
fiber, including many bacteria that can decompose cellulose, and
Proteobacteria is a sign of intestinal bacteria imbalance (55, 56).
This result indicated that HFD might have a negative influence
on rumen fiber digestion and ruminal microbiota balance. The
relative abundances of Megasphaera and Prevotella_9 rose at the
genus level in HFD-fed sheep. Several processes, including protein
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FIGURE 5

(A–C) Relationship between changes of microbial community and fermentation parameters of the ruminal digesta. “*” represents a significant correlation

(P < 0.05), “**” represents an extremely significant correlation (P < 0.01), “***” represents an extremely significant correlation (P < 0.001).

FIGURE 6

Changes in relative mRNA expression of genes related to the tight junction of ruminal tissue in sheep with normal chow diet (NCD), high-fat diet (HFD)

and HFD diet supplemented in spirulina (HFS + S). “*” represents a significant correlation (P < 0.05), “**” represents an extremely significant correlation (P

< 0.01).
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metabolism, carbohydrate metabolism, and lipid metabolism, were
shown to be favorably linked with several Prevotella strains (57).
Increases in energy content generated by lipid supplementation
in the dietary treatments may be one explanation for the rise in
Prevotella percentage in the HFD and HFD+S groups in this study.
Megasphaera was well-known for being a powerful lactate utilizer
in the rumen and for helping to avoid lactic acidosis (58–61). In
addition, LEfSe analysis showed that the increase in the abundance
of Megasphaera in the HFD and HFD+S groups further explained
why feeding on a high-fat diet did not decrease ruminal pH.

This study performed a correlation analysis between the ruminal
bacterial community and the fermentation parameters at the
genus level. For example, Succinivibrio was adversely linked to
total VFA, acetate, and propionate levels. Succinivibrio, as the
producer of succinate and acetate, can be converted to propionate,
which promotes the formation of bacterial proteins (27, 62, 63).
Succinivibrio is a member of the Succinivibrionaceae family, and its
main constituent is succinate, which is a precursor to propionate
and acetate (64). Moreover, propionate is an important precursor
of gluconeogenesis. A small amount of propionate absorbed by
rumen epithelium is converted into lactic acid, and the rest enters
the liver to generate glucose through gluconeogenesis or enters the
tricarboxylic acid cycle for oxidation. A recent study reported that
rumen epithelium development may be improved by propionate as
a signaling molecule (65). In this study, the content of propionate
in the rumen was consistent with the development trend of the
rumen. Also, extensive studies have shown that dietary additives
can effectively change rumen fermentation mode, promote propionic
acid production, and inhibit methanogenesis (66, 67). According
to other studies, spirulina is high in gamma-linolenic acid, and
adding it to diet may effectively decrease methane production while
increasing propionate synthesis (6, 68). In this study, the addition
of spirulina significantly reduced acetate and propionate, but the
relationship between spirulina and methane production needs to
be further explored. Erysipelotrichaceae_UCG-002 and Megasphaera

were positively correlated with the concentration of isovalerate.
Previous studies found that members of the Erysipelotrichaceae
family had a strong positive correlation with host cholesterol
metabolites and high-fat or Western diet–feeding mice (18, 69–
71). Bifidobacterium is a key probiotic for maintaining intestinal
microbial equilibrium, forming a healthy gut barrier and lowering
lipopolysaccharide levels (72, 73). Consistent with previous reports,
Bifidobacterium was inversely associated with a high-fat diet (74–
77). Furthermore, Bifidobacterium was positively connected to
isobutyrate, total VFA, and acetate concentrations in the current
investigation. These findings were consistent with prior research
that indicated a link between Bifidobacterium and VFA (78, 79).
Numerous studies have shown that VFAs are an important energy
source for ruminants (80, 81). As a result, it was critical to investigate
VFA metabolism, especially butyrate, which is also recognized
as a rumen development stimulator (82, 83). Also, a previous
study reported that rumen papillae width and length are the most
significant pointers for rating rumen development (84). This study’s
results showed that HFD feeding reduced the content of butyrate
in the rumen and inhibited the growth of the rumen papilla,
but spirulina supplementation effectively alleviated this phenotype.
Another study showed that butyrate could also promote the increase
of rumen weight (85). In this study, the difference in rumen weight
was not significant among the three groups. However, compared

with the HFD group, rumen weight in the HFD+S group showed an
upward trend.

Our findings also demonstrated that the HFD reduced Claudin-

1, Claudin-4, and Occludin mRNA expression. Previous research has
shown that VFA can increase the expression of Claudin-1, Claudin-4,
and Occludin in the rumen epithelium, encouraging rumen papilla
growth (86). These findings also support the deleterious effects
of the HFD on rumen function and the beneficial benefits of
spirulina supplementation. As a result of these observations, the
HFD group’s tight junction impairment might be due to rumen
bacteria structural disorder, decreased fermentation function, and
lower VFA concentration.

In conclusion, this study showed that HFD decreased the length
of rumen papillae and total ruminal VFA concentrations in sheep
and that spirulina supplementation could effectively alleviate these
negative effects. This might be associated with the change in ruminal
microbiota composition in sheep including the significant change
in the relative abundance of Megasphaera and Prevotella_9. These
results suggest beneficial effects of 3% spirulina supplementation on
altering the diversity of ruminal microbiota. This study is meaningful
for further exploring the regulation of rumen development and
microbiota by spirulina supplementation in an HFD-fed diet.
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