AUTHOR=Zhang Meimei , Bai Haixin , Zhao Yufan , Wang Ruixue , Li Guanglei , Zhang Yonggen , Jiao Peixin TITLE=Effects of supplementation with lysophospholipids on performance, nutrient digestibility, and bacterial communities of beef cattle JOURNAL=Frontiers in Veterinary Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2022.927369 DOI=10.3389/fvets.2022.927369 ISSN=2297-1769 ABSTRACT=

An experiment was conducted to investigate the influences of supplemental lysophospholipids (LPL) on the growth performance, nutrient digestibility, and fecal bacterial profile, and short-chain fatty acids (SCFAs) of beef cattle. Thirty-six Angus beef cattle [565 ± 10.25 kg body weight (BW)] were grouped by BW and age, and randomly allocated to 1 of 3 treatment groups: (1) control (CON, basal diet); (2) LLPL [CON supplemented with 0.5 g/kg LPL, dry matter (DM) basis]; and (3) HLPL (CON supplemented with 0.75 g/kg, DM basis). The Angus cattle were fed a total mixed ration that consisted of 25% roughage and 75% concentrate (dry matter [DM] basis). The results reveal that LPL inclusion linearly increased the average daily gain (P = 0.02) and the feed efficiency (ADG/feed intake, P = 0.02), while quadratically increasing the final weight (P = 0.02) of the beef cattle. Compared with CON, the total tract digestibilities of DM (P < 0.01), ether extract (P = 0.04) and crude protein (P < 0.01) were increased with LPL supplementation. At the phylum-level, the relative abundance of Firmicutes (P = 0.05) and ratio of Firmicutes: Bacteroidetes (P = 0.04) were linearly increased, while the relative abundances of Bacteroidetes (P = 0.04) and Proteobacteria (P < 0.01) were linearly decreased with increasing LPL inclusion. At the genus-level, the relative abundances of Clostridium (P < 0.01) and Roseburia (P < 0.01) were quadratically increased, and the relative abundances of Ruminococcus was linearly increased (P < 0.01) with LPL supplementation. Additionally, increasing the dose of LPL in diets linearly increased the molar proportion of butyrate (P < 0.01) and total SCFAs (P = 0.01) concentrations. A conclusion was drawn that, as a promising feed additive, LPL promoted growth performance and nutrient digestibility, which may be associated with the change of fecal microbiome and SCFAs.