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Tibetan sheep are mainly distributed in the Qinghai–Tibet Plateau. Its meat is not only

essential for the local people but also preferred by the non-inhabitant of this plateau also.

To investigate the salient development features and molecular mechanism of the meat

difference of LT muscle caused by different growth stages in Tibetan sheep, the carcass

performance, meat quality, and comparative transcriptome analysis were performed for

investigating the potential molecular mechanism of the meat quality difference of the

LT muscle caused by four growth stages [4-months old (4 months), 1.5-years old (1.5

years), 3.5-years old (3.5 years), and 6-years old (6 years)] in the Tibetan sheep. The

shear force increased with the increase of age (p < 0.05) while the intramuscular fat

(IMF) was the highest at 1.5 y. The AMPK signaling pathway was significantly enriched

in the four comparative groups. The weighted gene co-expression network analysis

(WGCNA) results showed that the hub genes P4HA2, FBXL4, and PPARAwere identified

to regulate the meat quality. In summary, 1.5 years was found to be the most suitable

slaughter age of the Tibetan sheep which ensured better meat tenderness and higher

IMF content. Moreover, the genes LIPE, LEP, ADIPOQ, SCD, and FASN may regulate

the transformation of the muscle fiber types through the AMPK signaling pathway, further

affecting the meat quality.

Keywords: RNA sequencing, Tibetan sheep, muscle tenderness, different growth stages, muscle development,

meat quality

INTRODUCTION

Meat quality traits constitute important economic traits of livestock. The molecular mechanism of
skeletal muscle growth and muscle tenderness is conducive to improving livestock performance
and meat quality. Tibetan sheep (Ovis aries) are mainly distributed on the Qinghai–Tibet Plateau
above 3,000-m altitude. The sheep is wholly adapted to the special ecological environment with
extreme conditions, such as lower temperature, thinner oxygen level, and stronger ultraviolet rays.
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The sheep mainly produces meat and is loved by all the
consumers in Northwest China for its unique flavor and
palatability, which is influenced by the natural environment (1).
However, it remains elusive whether this living environment
is related to the type of muscle energy metabolism in Tibetan
sheep. The number of skeletal muscle fibers is constant in
mammals after birth (2, 3). The growth and development of
muscle fiber mainly includes the increase of the muscle fiber
diameter and the muscle fiber types transition after birth (4).
Moreover, there are real differences in the structure, function,
and metabolism between the different muscle fibers types,
which further influencing the meat quality. Hence, it is crucial
to investigate the skeletal muscles growth and development
in livestock after birth for the meat traits. Tenderness is an
important index to evaluate the meat quality, and also influences
the consumers’ intention for purchase and its market acceptance
(5). Saccà et al. (6) have identified the goat meat tenderness
decreased with the increase of age. Nevertheless, it remains
elusive whether muscle development influences meat tenderness
in livestock after birth growth.

Currently, there have been a lot of studies on the mechanism
of skeletal muscle transcriptome and proteome in the species
such as cattle (7, 8), sheep (9, 10), and goats (11). The previous
studies have demonstrated the important role of the related
genes and signaling pathway in muscle growth and development,
including the myogenic transcription factor Pax3 and Pax7 (12);
the myogenic regulatory factors Myf5, MyoD, and myogenin
(13); the fibroblast growth factor (FGF); and transforming
growth factor β (TGF-β). The skeletal muscle development and
differentiation were regulated through these regulatory factors
andWnt, AMPK,MAPK, and PI3K-Akt signaling pathways (14).
The skeletal muscle is composed of a variety of functionally
diverse fiber types, there are mainly four types of muscle fibers in
the adult mammalian skeletal muscle, including MyHC I, MyHC
IIa, MyHC IIx, and MyHC IIb.

The previous studies have identified that the different types
of muscle fibers to influence many meat quality traits such as
the water-holding capacity (WHC), tenderness, color, juiciness,
and flavor (15). Liu et al. (16) demonstrated CaN/NFAT as an
important signaling pathway, regulating the transformation of
the chicken muscle fiber types. Zhu et al. (17) found MYH6
and Ca2+ signaling pathways to regulate the muscle fiber types
of skeletal muscle in large white pigs. In addition, the previous
studies have also found that increasing the AMPK activity can
change the proportion of fiber types in pork (18). However, the
molecular mechanism of the LT muscle fiber types transition in
the Tibetan sheep at different growth stages, and its influence on
the meat tenderness remains largely unknown.

There is still a lack of systematic research on the regulation
of changes in the muscle fiber types especially during the growth
and development of the skeletal muscle of the animals after birth.
In the few years, the next generation sequencing technology and
bioinformatics methods have developed rapidly, like the RNA-
seq, the molecular mechanism of muscle tenderness changes at
different growth stages in Tibetan sheep was explored simply
and effectively. The comparative transcriptome analysis of the
LT muscle was used for identifying the regulatory genes related

to meat tenderness and meat quality at different growth stages
in Tibetan sheep. Furthermore, the functions and signaling
pathways of DEGs were investigated. The WGCNA regulatory
network was further used to analyze the hub genes related to
meat quality.

MATERIALS AND METHODS

Ethics Statement
The animal study was reviewed and approved by the Faculty
Animal Policy and Welfare Committee of Gansu Agricultural
University (Ethic approval file No. GSAU-Eth-AST-2021-001).

Animals and Muscle Sampling
A total of 16 healthy female Tibetan sheep were selected from
the same flock of the Haiyan County, Qinghai Province, China,
including 4 months (n = 4), 1.5 years (n = 4), 3.5 years (n = 4),
and 6 years (n = 4). For the detailed samples collection process,
see our previous study (19). Then, the initial weight, hot carcass
weight, and dressing percentage were recorded and the meat
quality were determined. The sample collection and processing
for RNA extraction were carried out according to the results of
our previous study (19).

Meat Quality Measurements
The shear force was measured according to the methods as
described by Honikel (1998) (20). The process included the
meat samples from Tibetan sheep for 48 h after slaughter were
cooked in the cooking bags until the internal temperature was
maintained at 75◦C. Then taking out the meat samples and
cooling them, using a sampler with a diameter of 1.27 cm to take
meat slices and measuring shear force by a shearing device (C-
LM3B, Runhu Instrument Co., Ltd., Guangzhou, China). The
intramuscular fat (IMF) and crude protein content in mutton
was determined according to the methods as described by AOAC
(2007) (21). The experiment was repeated 3 times in each
group (22).

RNA Extraction and Sequencing
The total RNA was extracted according to the methods as
described by Bao et al. (23). After the total RNA was extracted,
Illumina TruSeq TM RNA (Illumina, USA) kit was used to
construct cDNA libraries for RNA sequencing and sequenced
using Illumina Novaseq6000 (or other platforms) by Gene
Denovo Biotechnology Co. (Guangzhou, China).

Raw Data Cleaning and Transcriptome
The raw data cleaning was filtered by fastp (v0.18.0) (24). The
detailed process can refer to our previous study (23). Bowtie2
(v2.2.8) (25) was used to identify ribosomal RNA and were
removed. The remaining clean reads were mapped the sheep
Oar_v1.0 reference genome using HISAT2 (26) (v2.1.0). The
software Stringtie (v1.3.4) (27, 28) was used to reconstruct the
transcripts. All software used default parameters.

Differentially Expressed Genes Analysis
The fragment per kilobase of transcript per millionmapped reads
(FPKM) was used to calculate the expression levels of mRNA
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TABLE 1 | Carcass quality and meat quality of Tibetan sheep.

Parameters 4 months 1.5 years 3.5 years 6 years p

Live weight (kg) 14.51 ± 0.50c 26.42 ± 1.59b 34.00 ± 1.90a 33.75 ± 2.62a <0.001

Hot carcass weight (kg) 6.45 ± 0.24c 12.77 ± 1.20b 15.61 ± 1.08a 13.53 ± 1.22b <0.001

Dressing percentage (%) 44.43 ± 1.12b 48.26 ± 1.82a 45.88 ± 0.71b 40.08 ± 1.20c <0.001

IMF (%) 1.60 ± 0.32b 2.46 ± 0.49a 2.36 ± 0.39a 1.63 ± 0.26b <0.001

Shear force (N) 26.87 ± 3.17d 42.86 ± 3.64c 50.77 ± 4.18b 59.96 ± 3.85a <0.001

Protein (%) 17.39 ± 0.14c 19.90 ± 0.18b 21.50 ± 0.41a 21.82 ± 0.16a <0.001

Date shown are means ± SEM and p < 0.05 and different lowercase letters indicate the difference was significant.

using RSEM (29). The DEGs were analyzed by DESeq2 (30) and
edgeR (31). The false discovery rate (FDR) < 0.05 and |log2(Fold
Change)| > 1 were used to identify DEGs.

Gene Ontology (GO) Enrichment and Kyoto
Encyclopedia of Genes and Genomes
Pathway Analysis of the DEGs
In this study, DAVID (http://david.abcc.ncifcrf.gov/) online
analysis software was used for GO function annotation and
KEGG pathway enrichment analysis (32).

Weighted Gene Co-Expression Network
Analysis
The WGCNA was performed using the WGCNA R software
(33) for constructing a co-expression network. The top 50%
of genes with the largest variation for WGCNA were selected
after threshold screening while calculating degree of variation in
the expression level of each gene between samples. For power
processing on the original scaled relation matrix, β = 8 was
finally selected, and the unscaled adjacencymatrix was generated.
In addition, the correlation between the modules and meat
quality traits of the LT muscle of Tibetan sheep were investigated
using Pearson’s correlation.

Gene Co-Expression Network
To analyze the selected module gene, The Search Tool for the
Retrieval of Interacting Genes (STRING) database (v11.5) was
used to construct the network. The top-10 connectivity within the
module genes was screened for constructing the network, and it
was displayed by the Cytoscape software (34).

Gene Expression Analysis With RT-qPCR
The real-time quantitative polymerase chain reaction (RT-
qPCR) was used to verify the authenticity of the transcriptome
results according the methods as described by Wen et al. (35).
The primers were designed by Primer (v5.0), and listed in
Supplementary Table 1. GAPDH was used as a reference gene
for calculating the relative expression according to 2−11Ct

method (36).

Statistical Analysis
Statistical analyses included the ANOVA, followed by Duncan’s
multiple range test for multiple comparisons of the difference
of carcass quality and meat quality in SPSS 20.0 software (SPSS,

Armonk, NY, USA). All data in this study were presented as mean
± standard error (SEM), p < 0.05 and different lowercase letters
means that the difference was significant.

RESULTS

Carcass Performance and Meat Quality of
the Tibetan Sheep
As shown in Table 1, the muscle development associated with
live weight and carcass weights was found to increase with the
increase of age. The live weight was increased from 4 months to
3.5 years (p < 0.05). The hot carcass weight was increased from
4 months to 3.5 years (p < 0.05), while the weight was decreased
from 3.5 years to 6 years (p < 0.05). The dressing percentage was
largest at 1.5 years, and then decreased with the increase of age
(p < 0.05). The IMF content was increased from 4 months to
1.5 years (p < 0.05), and then decreased with the increase of age.
The shear force was increased with the increase of age (p < 0.05).
The crude protein was increased with the increase of age, while
there was no significant difference between the 3.5 years and 6
years sheep.

Summary of the RNA-Seq Data
Total 16 libraries were constructed in this study. As shown in
Supplementary Table 2, 91,167,071, 95,150,638, 90,313,673, and
87,472,429 average raw reads were generated from four growth
stages respectively, the correlation coefficient between 4 months,
1.5 years, 3.5 years, and 6 years samples of Tibetan sheep were
0.983, 0.890, 0.962, and 0.990, respectively. Of the remaining
clean reads, there was more than an average of 82 million (92.04
%) mapped to the reference genome.

The criterion of FPKM > 0.01 was used for identifying the
potentially expressed genes (37). A total of 9,912, 10,011, 10,048,
and 9,788 expressed genes were identified in the LTmuscle tissues
from the four growth stages of Tibetan sheep, respectively, and
9,241 genes were co-expressed in four ages.

Analysis of DEGs
To analyze the timing of muscle growth and development in the
Tibetan sheep, the DEGs of the contiguous period transcriptome
comparative groups (4 months vs. 1.5 years, 1.5 years vs. 3.5
years, 3.5 years vs. 6 years, and 4 months vs. 6 years) were
identified, each group was identified with 220, 48, 101, and 678
unique DEGs, respectively (Figure 1A; Supplementary Table 3).
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Overall, there were 666 (385 up-regulated; 281 down-regulated),
179 (86 up-regulated; 93 down-regulated), 272 (94 up-regulated;
178 down-regulated), and 1,202 (501 up-regulated; 701 down-
regulated) DEGs were identified in 4 months vs. 1.5 years, 1.5
years vs. 3.5 years, 3.5 years vs. 6 years and 4 months vs. 6 years
groups, respectively (Figures 1B–F).

GO and KEGG Enrichment Analysis of
DEGs
The GO enrichment analysis can assist in understanding the
function of DEGs between each group more comprehensively,
similar to most studies, the DEGs were significantly enriched
into the following three main GO categories: Biological processes
(BP), molecular functions (MF), and cellular components (CC).
Based on the GO significant enrichment analysis (P < 0.05),
and the annotation of the GO database 666 DEGs of 4 months
vs. 1.5 years group were found to be significantly enriched
to 226 BP, 51MF, and 11 CC (Supplementary Table 4). Most
of the DEGs were mainly divided into the functional groups,
including those related to biosynthesis, nutrient metabolism, and
development (Figure 2A). The GO term involved in the function
of organ growth (GO: 0035265), endochondral bone growth
(GO: 0003416), and regulation of lipid metabolic process (GO:
0019216). Among these terms, the most significantly enriched
GO term constituted a response to the biotic stimulus (GO:
0009607) (p = 7.39E-5). Also, many DEGs were involved in
the coenzyme A metabolic process (GO: 0015936), where the
number of genes enriched in the term of binding (GO: 0005488)
was the most significant. The organs and bones were speculated
to develop first in this stage, and the energy metabolism was
relatively vigorous. The IMF content was found to increase
significantly from the age of 4 months to 1.5 years, possibly
related to the active fatty acid metabolism. The crude protein
content also increased significantly in this stage, and was related
to amino acid metabolism.

Based on the significant enrichment analysis (p < 0.05),
the DEGs in the 1.5 years vs. 3.5 years group were found
to be significantly enriched in 146 BP, 33 MF, and 10
CC (Supplementary Table 4). The GO term was involved
in the function of synthesis, cell differentiation, and
metabolic regulation (Figure 2B), including regulation of
fatty acid metabolic process (GO: 0019217) and epithelial
cell differentiation (GO: 0030855). Among these terms,
protein heterooligomerization (GO:0051291) (p = 7.77E-
5) was the most significantly enriched GO term. The
protein content increased during this growth stage due
to the functions linked with protein synthesis. Although
DEGs were also enriched in the functions such as fat
synthesis and fatty acid metabolism, the IMF content
decreased compared to that in the 1.5-years old, with no
significant difference. This might be accountable to the
lipids deposited in the subcutaneous fat or other lipids for
providing energy.

Based on the significant enrichment analysis (p < 0.05) the
DEGs in the 3.5 years vs. 6 years groupwere significantly enriched
to 230 BP, 38 MF, and 26 CC (Supplementary Table 4). The

GO term involved in the function of metabolism and regulation
(Figure 2C) included negative regulation of relaxation of muscle
(GO: 1901078), regulation of striated muscle contraction (GO:
0006942), and positive regulation of lipid biosynthetic process
(GO: 0046889). Also, many DEGs were involved in regulating
of autophagy (GO: 0010506). Among these terms, a response to
lipid hydroperoxide (GO:0006982) (p = 0.00018) was the most
significantly enriched GO term. It showed the difference in the
contractility of different types of muscle fibers, and the IMF was
found to significantly decrease due to negative regulation of the
lipid biosynthesis.

Based on the significant enrichment analysis (p < 0.05),
the DEGs in the 4 months vs. 6 years group were significantly
enriched to 337 BP, 46 MF, and 31 CC (Supplementary Table 4).
The GO term involved in the function of development,
differentiation and metabolism (Figure 2D). The most
significantly enriched GO term was the extracellular matrix
(GO: 0031012) (p = 1.84E-12). The DEGs were mainly enriched
in the development, differentiation, and metabolism of the
skeletal muscle and other tissues, it was mainly enriched in the
process of maturation to aging of the body.

The KEGG pathway was used for further analyzing the
potential functional signaling pathways of DEGs (Table 2). The
results showed that the DEGs in the 4 months vs. 1.5 years group
were significantly enriched in the AMPK signaling pathway
(p = 0.00006), and there were 14 DEGs annotated in this
pathway, which were closely related to the connection of the
muscle cells (Figure 3). The lipid metabolism related pathway,
including PPARA, SCD, and APOA1 were significantly enriched
in the PPAR signaling pathway (p< 0.05), and a total of 10 DEGs
were annotated. In addition, the adipocytokine, and antigen
processing signaling pathway, were also significantly enriched (p
< 0.05).

The KEGG enrichment results were shown in
Supplementary Table 5. Specifically, the DEGs in the 1.5
years vs. 3.5 years group were also significantly enriched
(p = 0.038) in the AMPK signaling pathway and ADIPOQ
was annotated (Table 2; Supplementary Figure 1A). Gstm5,
MGST1, and GSTM1 were significantly enriched (p < 0.05) in
glutathione metabolism, and was related to the protein synthesis,
and there were 4 DEGs annotated in this pathway. In addition,
the cell adhesion molecules (CAMs), Apelin signaling pathway
and Insulin signaling pathway were significantly enriched
(p < 0.05).

The DEGs in the 3.5 years vs. 6 years group were significantly
enriched (p = 0.001215) in the cell adhesion molecules (CAMs),
which were related to cell recognition, signal transduction,
activated proliferation, and differentiation. A total of eight DEGs
were annotated in the above pathway. The DEGs in the 3.5
years vs.6 years group were also enriched in the AMPK signaling
pathway (p = 0.079), SLC2A4, and CREB5 were enriched in
this signaling pathway (Table 2; Supplementary Figure 1B). In
addition, insulin resistance, carbohydrate digestion, absorption,
and action were significantly enriched (p < 0.05).

There were 24 DEGs in the 4 months vs. 6 years group
were found to be significantly enriched in the axon guidance
(p = 0.0001393), while 15 DEGs were found to be significantly
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FIGURE 1 | Analysis of the DEGs of four groups. (A) The Venn diagram of DEGs. (B) Histogram of DEGs of four comparative groups. (C–F) Volcano diagrams of

DEGs in group of 4 months vs. 1.5 years, 1.5 years vs. 3.5 years, 3.5 years vs. 6 years, and 4 months vs. 6 years, respectively. The abscissa represents the logarithm

of the fold change of DEGs between the two groups, and the ordinate represents the negative log10 value of the FDR of the DEGs between the two groups. A point in

the volcano represents a gene, red represents up-regulated genes, green represents down-regulated genes, and black represents non-differentially expressed genes.
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FIGURE 2 | Histogram diagram of DEGs in GO enrichment. (A–D) Histogram diagram of GO enrichment results of DEGs in group of 4 months vs. 1.5 years, 1.5 years

vs. 3.5 years, 3.5 years vs. 6 years, and 4 months vs. 6 years, respectively.

enriched in the AMPK signaling pathway (p < 0.05) (Table 2;
Supplementary Figure 1C).

Co-Expression Module of WGCNA
The scale-free fit index and mean connectivity were calculated,
selecting the soft-thresholding power of β = 8. The scale
free R2 > 0.8, mean connectivity tends to zero revealed that
the power of β = 8 to power processing could construct
a scale-free network (Figures 4A,B). The weighted gene co-
expression network analysis divided the DEGs of four groups
into various modules. The dynamic shearing algorithm clustered
and partitioned the genes, and the module feature vector of
each module was calculated, merging the similar modules. As a
result, 19 modules were determined (Figure 4C). The significant
negative correlations were found between the MM.green and live
weight (r = −0.89, p < 0.001), hot carcass weight (r = −0.79,
p < 0.001), shear force (r = −0.92, p < 0.001), and crude
protein (r = −0.91, p < 0.001). There were significant positive
correlations found between the MM.gray 60 and shear force
(r = 0.77, p < 0.001), live weight (r = 0.66, p < 0.01), and
crude protein (r= 0.68, p< 0.01). There were significant positive
correlations between the MM.dark-red and IMF (r = 0.52,
p < 0.05) (Figure 4D).

Identification of the Hub Gene and
Construction of the Gene Co-Expression
Network
The hub genes usually refer to the genes with high connectivity

within the module. The gene interaction network of MM.green

module was constructed, and the top five genes (P4HA2,

PLXND1, COL22A1, COL5A1, and NID2) and a transcription

factor (Sox8) were identified as the hub genes (Figure 5A).

P4HA2 and COL5A1 are related to collagen synthesis, COL22A1

is related to skeletal muscle contraction, and the transcription

factor Sox8 is involved in regulating embryonic development.

The top four genes (FBXL4, FBXO32, TBC1D17, and PCMTD2)
and a transcription factor (RORC) were identified with the
highest degree of connectivity in the interaction network of
MM. grey60module as hub genes (Figure 5B). FBXL4 was found
to play a critical role in the cell cycle, FBXO32 was related
to muscle atrophy, and TBC1D17 is related to mitochondrial
autophagy; RORC is a DNA binding transcription factor. The
top four transcription factors (PPARA, ADAM30, UBTFL1, and
EGR2) and a gene (KNDC1) were identified to possess the highest
degree of connectivity in the interaction network of MM.dark-
red module as hub genes (Figure 5C). Among these genes,
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TABLE 2 | The significant KEGG enrichment results of DEGs.

KEGG ID Description Pathway p Q Involved DEGs

4 months vs. 1.5 years

ko04152 Signal transduction AMPK signaling pathway 0.000060 0.005772 LIPE; PCK1; IRS2; PFKFB2;

LEP; EEF2; ACC1

ko03320 Endocrine system PPAR signaling pathway 0.000547 0.039242 PPARA; SCD; APOA1

ko04920 Endocrine system Adipocytokine signaling pathway 0.002160 0.101659 CPT1A; irs1; PRKCQ; ACACB

ko04612 Immune system Antigen processing and

presentation

0.002526 0.101659 HSPA1B; CALR; HLA-A

ko04145 Transport and catabolism Phagosome 0.004407 0.129284 CALR; VAMP3

1.5 years vs. 3.5 years

ko00480 Metabolism of other amino acids Glutathione metabolism 0.003545 0.059359 Gstm5; MGST1; GSTM1

ko04514 Signaling molecules and

interaction

Cell adhesion molecules (CAMs) 0.005995 0.075117 VCAM1; CDH1

ko04371 Signal transduction Apelin signaling pathway 0.012401 0.098774 PRKAG2; EGR1; MYLK4

ko04910 Endocrine system Insulin signaling pathway 0.017059 0.121179 SOCS3; PIK3R3

ko04152 Signal transduction AMPK signaling pathway 0.038030 0.226226 ADIPOQ;

3.5 years vs. 6 years

ko04514 Signaling molecules and

interaction

Cell adhesion molecules (CAMs) 0.001215 0.274657 CLDN4; VCAM1; CNTN2

ko04931 Endocrine and metabolic

diseases

Insulin resistance 0.002760 0.311832 CREB5; RPS6KA6

ko04973 Digestive system Carbohydrate digestion and

absorption

0.021524 0.745368 HK2; ATP1B3

ko04928 Endocrine system Parathyroid hormone synthesis,

secretion and action

0.045204 0.745368 PDE4D; CDKN1A

ko04152 Signal transduction AMPK signaling pathway 0.079958 0.745368 SLC2A4; CREB5

4 months vs. 6 years

ko04360 Development Axon guidance 0.000139 0.041303 RND1; ROCK2; PAK4; NTN3

ko04512 Signaling molecules and

interaction

ECM-receptor interaction 0.000269 0.041303 SDC1; LAMA5; TNC

ko04510 Cellular community Focal adhesion 0.000491 0.050271 MAPK10

ko04068 Signal transduction FoxO signaling pathway 0.004299 0.119973 IGF1R; FoxO6

ko04152 Signal transduction AMPK signaling pathway 0.005885 0.130668 IGF1R; FASN

PPARA was related to fat deposition, EGR2 was involved in fat
metabolism, UBTFL1 was involved in early development and
the origin of embryonic stem cells, ADAM30 was involved in
muscle development.

RT-qPCR Validation
There were 20 genes randomly selected for validation by RT-
qPCR in different compare group, and the RT-qPCR results were
consistent with the RNA-seq results (Figures 6A–D).

DISCUSSION

This study revealed the molecular mechanism of the difference
in the meat yield, meat quality, and muscle tenderness of the
Tibetan sheep at different growth stages. The meat tenderness
mainly influences the consumers’ intention for purchase as
well as the key factor for its market acceptance (4). The IMF
content critically influences the tenderness, juiciness, and flavor,
and has a positive impact on meat tenderness (38). Similar
to the study by Pascual–Alonso et al. (39), the increase in

the sheer force with the increase of age (p < 0.05). In this
study, was the highest in the 6 years Tibetan sheep meat. The
IMF content increased from 4 months to 1.5 years, and then
decreased and this was consistent with the result of Saccà (2019)
study on the goat meat at different growth stages (5). In this
study, the IMF content and dressing percentage of Tibetan
sheep were the highest in 1.5 years; therefore, 1.5 years is the
most suitable slaughter age for Tibetan sheep and yields better
meat quality.

Transcriptome analysis has been applied in many applied
research. This novel study has revealed the molecular mechanism
of differences in Tibetan sheep meat tenderness at different ages
using the RNA-seq approach. In this study, four samples were
selected each group. However, based on the expression of the
entire gene in any two samples, the correlation coefficient of
every two samples were calculated, and the results showed the
correlation coefficients of the Tibetan sheep to be above 0.983,
0.890, 0.962, and 0.990 at 4 months, 1.5 years, 3.5 years, and 6
years, respectively, Hence, the four sample sizes were found to
satisfy the reliability of the RNA-seq results (11).

Frontiers in Veterinary Science | www.frontiersin.org 7 July 2022 | Volume 9 | Article 926725

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Wen et al. mRNA in Muscle Development

FIGURE 3 | AMPK signaling pathway in the 4 months vs. 1.5 years group. The white square represents a gene or protein, the red square is the up-regulated genes in

the pathway at this time, the green square is the down-regulated genes in the pathway at this time.

There are two stages of muscle growth and development in
mammals, before and after birth. During the fetal period of
development stage before birth, a group of mesenchymal cells
located paraxial mesoderm of the embryo can form skeletal
muscle. The precursor myoblasts are formed first, and then the
cell fusion forms multinucleated primitive muscle fibers with a
nucleus in the center after the proliferation of myoblasts. The
number ofmuscle fibers inmammals remains constant after birth
development (1, 2); however, the muscle fiber diameter increases
and the tenderness decreases with age in this growth stage,

and various muscle fibers transform each other simultaneously
(3). The different types of muscle fibers are closely related to
meat color, tenderness, water-holding, juiciness, and flavor. Our
previous study has identified four types of muscle fibers (Types I,
IIa, IIx, and IIb) in the LTmuscle of the Tibetan sheep at different
ages, corresponding to the four myosin heavy chains, MyHC I,
MyHC IIa, MyHC IIx, and MyHC IIb, respectively (40).

MYH4 is a differentially expressed gene in the LT muscle of
4 months vs. 1.5 years group, while, there was no difference
in the group of the 1.5 years vs. 3.5 years and 3.5 years vs. 6
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FIGURE 4 | The scale-free fit index and mean connectivity of WGCNA. (A) Abscissa represents the soft threshold (power value, β). Ordinate represents the correlation

coefficient R2. Blue horizontal line represents the correlation coefficient R2 = 0.8, red horizontal line represents the correlation coefficient R2 = 0.9. (B) Abscissa

represents the soft threshold (power value, β), Ordinate represents the mean connectivity. (C) Clustering tree (dendrogram) defined by WGCNA representing the

co-expression modules. Branches of the dendrogram correspond to modules labeled with different colors below the dendrogram. (D) Correlation between modules

and meat quality and slaughter trait according to Pearson correlation.
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FIGURE 5 | The gene co-expression regulatory interaction network. (A–C) Gene co-expression network of the MM.green module, MM.grey60 module, MM.dark-red

module, respectively. Larger and darker colors in large lines in the corresponding network indicate genes with higher connectivity; vee represents transcription factors;

ellipse represent other genes.
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FIGURE 6 | Verification results of DEGs by RT-qPCR. (A–D) Histogram diagram of validation results in group of 4 months vs. 1.5 years, 1.5 years vs. 3.5 years, 3.5

years vs. 6 years, and 4 months vs. 6 years, respectively. Abscissa represents genes in different compare group, ordinate represents the relative fold change. Data

shown on figure are mean ± SEM.

years. MYH1 and MYH4 were differential expressed; however,
MYH2 and MYH7 were not expressed in the group of 4 months
vs. 6 years. MYH1, MYH2, MYH4, and MYH7 encode MyHC
IIx, MyHC IIa, MyHC IIb, and MyHC I types of muscle fibers
in the mammalian skeletal muscle, respectively. Generally, the
type I fibers generally contain more lipids than the type IIb
fibers, whereas a high content of type IIb fiber accounts for the
toughness of the meat (41). The previous studies have identified
the types of muscle fibers in the skeletal muscles to transform
each other with the increase of age (42). Also, AMPK is an
important signaling pathway that transforms the muscle fiber

types, which is mainly linked with the regulation of the energy
and energy regulators of the cells (43). This study, identified
the DEGs in the 4 months vs. 1.5 years group as the most
significantly enriched (p < 0.05) in the AMPK signaling pathway
(p = 0.00006), with 14 annotated DEGs including LIPE, PCK1,
IRS2, PFKFB2, LEP, EEF2, and ACC1, which were closely related
to cell proliferation and metabolism. The lipase E hormone
sensitive (LIPE) is a type of lipid catabolism enzyme, with a
key role in regulating the deposition of fat tissues. The genetic
polymorphism of LIPE has been closely related to the dressing
percentage of sheep (44).
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PFKFB2 is related to cell proliferation (45) and survival (46).
PCK1 was originally identified as a gluconeogenic enzyme and
has been recently shown to possess protein kinase activity (47).
Leptin (LEP) is a kind of adipokines produced by adipocytes
or other cells. In vitro studies have found LEP to stimulate
the activation and proliferation of the endothelial cells (48).
The eukaryotic translation elongation factor (EEF2), controls
the translational elongation of proteins and inhibits protein
production. ACC1 is an acetyl-CoA carboxylase, providing
malonyl-CoA for mitochondrial biogenesis (49). The content of
mitochondria was found to be different for the different types of
muscle fibers, so ACC1 might be involved in muscle fiber types
switching. This study found significant enrichment of PRKAG2,
ADIPOQ, PIK3R3, and ACACA in the AMPK signaling pathway
in the 1.5 years vs. 3.5 years group (p < 0.05). These genes
were mainly involved in the lipid metabolism pathways. PRKAG2
participates in regulating the AMPK activity and further affects
the AMPK signaling pathway. ADIPOQ plays an important
role in fat metabolism regulation, mainly by binding to the
receptors and playing a biological function by acting on the target
tissues. ADIPOQ receptor 1 (AdipoR1) preferentially binds to the
spherical region of ADIPOQ, which is expressed in the skeletal
muscle cells and acts through the AMPK and mitogen activated
protein kinase (MAPK) pathways (50). ACACA is an acetyl-
Coenzyme A carboxylase α is a key rate limiting enzyme for
synthesizing fatty acid, and plays an important regulatory role in
fatty acid biosynthesis (51).

The genes of SREBF1, PRKAG2, CREB5, and SLC2A4 were
significantly enriched in the AMPK signaling pathway in the
3.5 years vs. 6 years group (p < 0.05). The sterol regulatory
element binding proteins (SREBPs) maintain lipid homeostasis
by regulating target genes (52). Solute carrier family 2 member
4 (SLC2A4) has been related to the contraction of the skeletal
muscles (53). Fifteen DEGs including ACACB, IRS2, IGF1R,
Ppp2r2d, PCK1, LIPE, SCD, and FASN were found to be
significantly enriched in the 4 months vs. 6 years group (p< 0.05)
in the AMPK signaling pathway.ACACBwas possibly involved in
regulating fatty acid oxidation rather than fatty acid biosynthesis,
thereby affecting the milk production of dairy cows (54). The
type 1 insulin-like growth factor receptor (IGF1R) located on
the cell membrane, is activated by the insulin-like growth factor
(IGF1 or IGF2) and regulates the growth and differentiation of
the cells, as well as the growth, development, and senescence of
higher animals (55). SCD is stearoyl-CoA desaturase, previously
identified to reduce adipogenesis in skeletal muscle upon
inhibition of the SCD gene expression (56), while the knockout
of SCD has been found to accelerate the accelerated fatty acid
catabolism (57). FASN is a fatty acid synthase regulating the
content of the saturated fatty acids in milk and meat (58), and
further improving a human healthy diet.

In addition, the PPAR signaling pathway, glutathione
metabolism, cell adhesion molecules (CAMs), insulin signaling
pathway, and FoxO signaling pathwaywere significantly enriched
in this study. The peroxisome proliferator activated receptor
(PPAR) is a member of type II nuclear receptor superfamily, and
a type of nuclear transcription factor activated by the ligands,
which critically regulates lipid metabolism, adipogenesis, insulin

sensitivity, inflammation, cell growth, and differentiation (59).
There were significant enrichment of the genes PPARA, SCD,
and APOA1 (p < 0.05) in the PPAR signaling pathway. These
genes are related to lipid metabolism and also play a positive
effect in regulating the muscle fiber types (60). The IGF-I of the
insulin signaling pathway stimulates the differentiation rate of the
myoblasts and affects the expression of the myogenic regulatory
factor family genes (61). The FoxO signaling pathway is critical
for cell proliferation, apoptosis, autophagy and inflammation
(62, 63). The possible interaction of the signaling pathways
involved in muscle, fat, and connective tissue development,
form a complex regulatory network that affects muscle fiber
development and type composition. These signaling pathways
might be involved in muscle development and transformation of
the muscle fiber type.

In this study, MM.green, MM.grey60, and MM.dark-red
related to the meat quality and slaughter performance were
identified using WGCNA. Among these modules, P4HA2,
PLXND1, COL22A1, COL5A1, NID2, and Sox8 were identified as
the hub gene in the interaction network of MM.green module.
FBXL4, FBXO32, TBC1D17, and PCMTD2 were identified as
the hub gene in the MM.grey60 module. PPARA, ADAM30,
UBTFL1, EGR2, and KNDC1 were identified as the hub gene
in the MM.dark-red module. P4HA2 is an important factor
affecting hypoxia-inducible factor 1α (64), is a central gene for
the Tibetan sheep to adapt to high altitude hypoxic conditions.
PLXND1 regulates the cell patterns by regulating the structure of
the cytoskeleton and adhesion proteins (65). COL22A1 encodes
collagen, and knocking out the COL22A1 gene in zebrafish can
lead to muscle atrophy (66), showing that COL22A1 is related to
muscle development. The SOX family is a type of transcription
factor regulating the genes related to organ development. and
cell stemness and differentiation; SOX8 not only participates
in the normal physiological functions but also closely affects
the occurrence and development of tumors (67). The proteins
FBXL4 and FBX032 are related to the cell cycle transition,
apoptosis, transcription regulation, cell signal transduction,
and other various physiological functions by recognizing and
degrading substrate proteins (68). TBA1D17 might be involved
in mitochondrial autophagy, and the content of mitochondria in
muscle cells might be related to the muscle fiber types switching.
PPARα regulates the expression of many proteins related to fat
metabolism homeostasis (69). This study, investigated changes in
the multiple genes involved in muscle growth and the difference
in meat tenderness of LT muscle in Tibetan sheep at different
ages. The DEGs, GO terms, KEGG signaling pathway and
hub genes helped to better understand the muscle growth and
development and meat quality of Tibetan sheep at different ages,
which would benefit in improving the meat quality in the Tibetan
sheep in the future.

CONCLUSION

In conclusion, the results indicated 1.5 years as the most suitable
slaughter age of Tibetan sheep. The KEGG enrichment results
showed that LIPE, LEP, ADIPOQ, SCD, and FASN might be
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participated in the AMPK signaling pathway to regulate the
muscle development and muscle fiber types transformation
of Tibetan sheep, thereby effecting the meat quality. P4HA2,
COL22A1, COL5A1, FBXO32, TBC1D17, and Sox8 were related
to the meat tenderness and protein content. PPARA, EGR2, and
ADAM30 were related to the IMF content. This study provides
a theoretical foundation for studying the mechanism for the
difference of Tibetan sheep meat quality at the molecular level
and further to improve the meat quality traits.
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