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Automatic monitoring and
detection of tail-biting behavior
in groups of pigs using
video-based deep learning
methods

Franziska Hakansson* and Dan Børge Jensen

Department for Veterinary and Animal Science, Faculty of Health and Medical Science, University of

Copenhagen, Copenhagen, Denmark

Automated monitoring of pigs for timely detection of changes in behavior and

the onset of tail biting might enable farmers to take immediate management

actions, and thus decrease health and welfare issues on-farm. Our goal

was to develop computer vision-based methods to detect tail biting in pigs

using a convolutional neural network (CNN) to extract spatial information,

combined with secondary networks accounting for temporal information.

Two secondary frameworks were utilized, being a long short-term memory

(LSTM) network applied to sequences of image features (CNN-LSTM), and a

CNN applied to image representations of sequences (CNN-CNN). To achieve

our goal, this study aimed to answer the following questions: (a) Can the

methods detect tail biting from video recordings of entire pens? (b) Can we

utilize principal component analyses (PCA) to reduce the dimensionality of

the feature vector and only use relevant principal components (PC)? (c) Is

there potential to increase performance in optimizing the threshold for class

separation of the predicted probabilities of the outcome? (d) What is the

performance of the methods with respect to each other? The study utilized

one-hour video recordings of 10 pens with pigs prior to weaning, containing

a total of 208 tail-biting events of varying lengths. The pre-trained VGG-16

was used to extract spatial features from the data, which were subsequently

pre-processed and divided into train/test sets before input to the LSTM/CNN.

The performance of the methods regarding data pre-processing and model

building was systematically compared using cross-validation. Final models

were run with optimal settings and evaluated on an independent test-set.

The proposed methods detected tail biting with a major-mean accuracy

(MMA) of 71.3 and 64.7% for the CNN-LSTM and the CNN-CNN network,

respectively. Applying PCA and using a limited number of PCs significantly

increased the performance of both methods, while optimizing the threshold

for class separation did result in a consistent but not significant increase of

the performance. Both methods can detect tail biting from video data, but the

CNN-LSTMwas superior in generalizing when evaluated on new data, i.e., data

not used for training the models, compared to the CNN-CNN method.
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1. Introduction

Most commercial pigs in the EU are raised under intensive

conditions that are likely to increase the development of

abnormal social behavior such as tail biting in groups of

pigs (1). Tail-biting behavior, characterized by one pig orally

manipulating another pig’s tail, often develops in situations

where behavioral needs are not met (2), and is considered

an indicator of negative welfare of the animal receiving the

behavior, as well as the animal performing it. The inflicted tail

damage can range from superficial bites and minor scratches

to severe wounds, which in severe cases can get infected.

Secondary infections can result in partial or full loss of an

individual’s tail (3, 4) and carcass condemnation at slaughter

(5). Pigs that are subjected to tail biting experience pain

and stress (6), and may require medical treatment and space

allotment in hospital pens. Tail-biting behavior is therefore

considered both an economic and a welfare challenge in modern

pig farming (7, 8).

Tail biting is a complex problem of multifactorial origin,

and a wide range of risk factors linked to the behavior have

been discussed, such as high stocking density, poor climatic

conditions, inadequate feed and inadequate enrichmentmaterial

[e.g., (3, 9–11)]. Current preventive strategies include the

removal of risk factors that might trigger the development of

biting behavior in groups of pigs, tail docking (i.e., surgically

removing a part of the tail to hamper tail-biting behavior),

supplying enrichment material, or a combination of those.

However, routine tail docking is associated with procedural

(12) and chronic pain (13) and is prohibited by European law

(14). Additionally, intervention strategies are often considered

unfeasible, costly, or time-consuming for the farmer. Hence,

timely detection of the behavior and early intervention still

seem to be the most feasible ways of preventing severe biting

and potential outbreaks. However, as monitoring of tail biting

is often done by direct observation, and intervention is often

applied after the first tail wounds emerged or an outbreak has

occurred, the onset of the behavior and smaller lesions are often

overlooked. Moreover, direct observations are limited to specific

times per day and are time-consuming and subjective. Hence,

there seems to be a need for both continuous and automatic

surveillance tools monitoring the development of tail-biting

behaviors in groups of pigs. Such tools have the potential to

aid pig farmers in their decision making on prevention and

intervention strategies, thus reducing labor costs, and increasing

overall animal welfare.

Previous studies have shown that tail-biting behavior and

other oral and nasal manipulation directed toward pen-mates

are connected (15–17), and that low level biting behavior

can predict outbreaks of tail biting (18). Moreover, early tail

biting was shown to be associated with increased activity,

exploration behavior and a change in tail posture (17, 19–21),

with the latter being proposed as an early detection method

for tail-biting outbreaks (22–24). Using a precision livestock

farming (PLF) approach, D’Eath et al. (25) investigated the

automatic assessment of tail position in pigs with intact tails

using 3D cameras mounted above the feeding area. In their

study, the authors analyzed group level data on pigs’ tail position

using (proprietary) machine vision algorithms. Although the

algorithm identified low hanging vs. not low hanging tails with

73.9% accuracy, the proposed algorithm was not able to detect

a high tail positions or a curly tail, despite them being the

majority tail postures. Moreover, although the authors reported

an increase in low hanging tails prior to a tail-biting outbreak,

tails were also found to be hanging low in situations not related

to tail biting (e.g., moving of animals), indicating that tail

position might not be the most reliable indicator of tail biting.

Larsen et al. (26) attempted to predict tail-biting events using

sensor data on water usage and temperature at both ends of the

pen, using dynamic linear models and artificial neural networks.

The authors developed several models using the different data

sources, both independently and in combination, and found

that when tested in a real-life setting a combination of data

on water usage and pen temperature resulted in the highest

performance [area under the curve (AUC) = 0.769]. However,

both the sensitivity and the specificity of the model were only

moderate, due to a high level of false alarms being caused by the

pigs’ drinking behavior changing in response to problems other

than tail biting.

Within the last decade, several studies have reported on the

use of video-based automatic monitoring systems to detect and

classify specific behaviors in pigs, such as aggressive behavior

(27–29), nursing behavior (30), feeding/drinking behavior (31),

enrichment use (32) and tail-biting behavior (33). While

earlier studies on image analyses implemented e.g., Linear

Discriminant Analysis on motion history images (28) or used

data on the activity index between subsequent frames as input

into a multilayer feed forward neural network (29), the majority

of the above studies applied deep machine learning algorithms.

However, simple feed-forward neural networks utilizing single

frame image data is not sufficient to capture the temporal

component of fast occurring and rare behaviors, such as tail-

biting behavior (34). To account for temporal information

in behavioral data, recurrent neural networks (RNN) able to

analyse sequential data are implemented [e.g. (32, 33)], often

in combination with tracking algorithms. In their study, Liu

et al. (33) investigated tail-biting behavior in group-housed

pigs using tracking of pairwise interactions and subsequently

analyzing the image data using a convolutional neural network

(CNN) combined with a long short-term memory (LSTM)

network. Although the authors were able to develop a model

that identified 89.23% of the tail-biting interactions correctly, the

performance of a classification model is heavily dependent on

the output of a tracking model. Moreover, combining varying

modeling approaches increases the computational workload

needed to detect biting behavior, which could make an on-farm
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implementation more difficult. It seems reasonable to assume

that simplifying algorithms and optimizing these to the problem

at hand is valuable to the farmer.

Another method for reducing the computational workload

is by dimensionality reduction of the data being used in

the models. Principal component analysis (PCA) is a method

used for dimensionality reduction in many different situations

[e.g., (35, 36)]. When PCA is applied, data with a given

set of dimensions (axis) are transformed to new coordinate

system with an identical set of new axes, where the order

of the axis corresponds to the amount of information that is

contained in that axis alone. Dimensionality reduction is thus

achieved by only using the first NPC dimensions of the PCA-

transformed data, which contain sufficient information for a

given purpose.

The current study aims at developing a video-based deep

learning approach for detecting tail-biting behavior in groups

of pigs without the implementation of a prior tracking

algorithm. To achieve this aim, we intend to apply a pre-trained

CNN for extraction of latent features from the video frames,

combined with two secondary models to analyse sequential data.

Specifically, the two secondary models are a LSTM network

applied to sequences of the extracted image features (CNN-

LSTM) and a CNN applied to image representations of extracted

spatial features (CNN-CNN). Further, the optimal strategy

regarding data pre-processing and model architecture resulting

in the best performance for the given data will be determined for

the two models.

2. Material and methods

2.1. Brief overview

This subsection gives a brief overview of the approach

taken in this study (Figure 1). The subsequent subsections will

elaborate with full details.

1. A pre-trained CNN was used to transform video images

into a 4096-dimensional latent feature vector.

2. Feature vectors of sequential images were combined into

sequences and input into two secondary neural networks,

which would classify each sequence as either containing

or not containing a biting event. Two different types of

secondary networks were used, namely LSTM and CNN.

Different hyper-parameter settings were assessed using 4-

fold cross-validation to determine the set of parameters

resulting in the highest performance, based on data from

eight of the 10 pens included in this study.

3. Using the best set of parameters, final LSTM and CNN

network were trained based on the entire dataset and tested

on data from two pens, which had been held out from

previous trainings.

2.2. Experimental set-up and video
acquisition

The video data used in this study was collected at

a commercial Danish piggery under the approval of the

farm owner/manager during a previous study (21). The data

were collected without interfering with the general on-farm

management. Ethical review and approval was not required for

the study on animals in accordance with the local legislation and

institutional requirements.

The pigs [(Landrace × Yorkshire) × Duroc] used in this

study were piglets prior to weaning (30 ± 1.6 days of age)

and were housed with their dams in free-farrowing pens.

All details on housing and management can be found in a

previous publication (16). Video data were acquired from 26

pens, although only a subsample of 10 pens were used for the

purpose of this study. The included videos were selected based

on the following inclusion criteria: (1) no interference with the

stockperson working in the pen, (2) minimum recording of

55min and (3) piglets were visible for more than 80 % of the

video recording.

A GoPro Hero 3+ camera (Silver edition, hard-box case,

GoPro R© Inc.) was fixed approximately 2m above the floor and

recorded the entire pen area. Video recordings were limited

to the open area of the pen, and piglets in the creep were

not visible. The camera recorded RGB videos with a resolution

of 1,920 × 1,080 pixels in MPEG4 format and a frame rate

of 59.94 frames per second (fps). Videos were recorded prior

to the weaning of the piglets and each pen was recorded

once for 60min. Recordings took place either in the morning

(video start: 09:00) or the early afternoon (video start 12:00)

at randomized order to minimize disturbances by farm staff.

All video data were manually labeled by a single observer

using all occurrence sampling. Biting behavior was labeled

according to the ethogram of Hakansson and Bolhuis (21)

and was assessed individually for all piglets within a pen

(see Table 1). Both tail biting and tail-in-mouth behavior were

assessed to include milder as well as more severe incidences

of tail biting. For later analysis, the two biting behaviors have

been combined.

The computer used to run all codes was equipped with an

Intel R© Xeon R© W-2235 CPU @ 3.80 GHz processor with 128

GB RAM and an NVIDIA RTX R4000 16 GB graphics card.

The operating system running on the machine was Microsoft

Windows Enterprise 10. The software used to implement the

algorithms was R Version 3.6.1 (37) and the library KERAS

(Version 2.9.0).

2.3. Data description and pre-processing

A total of 208 unique biting events were present in the

dataset. Descriptive analysis of the data in this study revealed
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FIGURE 1

Schematic illustration of the processing approach, showing the steps from video acquisition to output generation for the CNN-LSTM and

CNN-CNN networks.

that tail biting durations ranged from 1 to 45s, with 55 % of the

tail-biting events lasting between 1 to 4s. From the continuous

video data, still frames were extracted with a framerate of 10

fps, and the images were subsequently connected with their

respectivemetadata. The data weremanually post-processed and

frames with obstructions (e.g., due to dirt) were removed. The

full dataset consisted of 332.666 images, of which 5.330 images

showed biting behavior (see Table 2).

The datasets from each pen were divided into sub-sequences

of varying lengths (10, 20, and 30 frames). Each sub-sequence

was labeled based on whether or not it contained events of

pigs performing tail-biting behavior. Sequences not showing

incidences of tail biting did include other behaviors of pigs

being in proximity or touching each other (e.g., negative

TABLE 1 Ethogram of biting behavior in piglets, adapted from

Hakansson and Bolhuis (21).

Behavior Description

Tail biting Nibbling, suckling, or chewing at the tail of a pen mate,

causing a reaction from the other pig.

Tail-in-mouth Gentle nibbling, suckling, or chewing of another pig’s tail,

without causing a reaction in the other pig.

social behavior such as play/fight, aggression and mounting, or

nursing behavior).

The images were resized to the dimensions 224 × 224

× 1. For each resized image in the dataset, numeric latent

feature representations were extracted using the pre-trained
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TABLE 2 Descriptive statistics of dataset (CV, Cross-validation).

Pen-ID No. images
without

biting event

No. images
with biting

event

Unique
tail-biting
events

Dataset CV test set

1 29,436 900 32 Test -

2 31,660 1340 52 Test -

3 32,810 190 29 CV/Train CV1

4 32,580 420 16 CV/Train CV1

5 32,550 450 19 CV/Train CV2

6 32,500 500 14 CV/Train CV2

7 32,450 550 32 CV/Train CV3

8 32,950 50 9 CV/Train CV3

9 32,320 680 9 CV/Train CV4

10 32,750 250 21 CV/Train CV4

Total 327,336 5,330 208

vision model VGG-16 (38), which was truncated after the first

fully-connected layer. The truncated model outputted a 4,096-

dimensional (1× 1× 4096) feature vector. Those latent features,

which had a variance of 0 throughout the entire data set,

were removed.

Subsequently, PCA was applied to the remaining latent

features from all images from all pens simultaneously. In this

study, we wanted to know how much the dimensionality of

the latent feature data could be reduced via PCA before being

used as inputs in the secondary models, without reducing the

performance of these secondary models, compared to when all

features are included. Thus, two data sets were used in the

subsequent steps: the data set consisting of the latent feature

vectors (without 0-variance) and the data set consisting of the

principal components of these same feature vectors. Finally,

min-max scaling was applied per feature in the data consisting

of extracted latent features, and per principal component in the

data consisting of the output from the PCA, to normalize the

data to a range from 0 to 1.

2.4. Training of the secondary models

Data from two randomly selected pens were labeled as the

outer test set and reserved for the assessment of the performance

of the final models. Data from the remaining eight pens were

used as the training data in a 4-fold cross-validation framework,

where the data were iteratively split into inner training and

test sets; in each iteration of the cross-validation, the inner

training set would consist of all data from six of the pens,

while the inner test set would consist of all data from the

remaining two pens. Furthermore, data from one of the six

pens in each inner training set was randomly selected to be

removed from the inner training set and was instead used as the

validation set. In this way, all models were trained, validated,

and tested on mutually independent datasets. Early stopping

was implemented during model training i.e., the training was

stopped when the loss on the validation set had failed to decrease

for 10 consecutive epochs. Before training, the inner training

set was balanced using random under-sampling, so that the

number of training sequences without tail biting would match

the number of training sequences with tail biting. The inner

validation ad test sets were not balanced.

2.5. Parameter tuning

Table 3 provides a brief overview of the parameters which

were optimized using the learning set, and which values each

parameter could take. The following two subsections elaborated

on these parameters.

2.5.1. Input dimensions

Different dimensions were tested and compared for the data

used as inputs in the secondary models.

The first NPC = 2n [where n ∈ (2, 3, 4, 5, 6, 7, 8, 9)]

principal components from the PCA-transformed latent features

were extracted from each sequence, so that the dimensions of the

inputs to the secondarymodels had the dimensionsNObs ×NPC

[where NObs ∈ (10, 20, 30)] for the PCA-transformed features.

The untransformed feature data always had the dimensions

NObs × N, where N is the number of latent features with a non-

zero variance i.e., 3485. These data sequences were used directly

as inputs for the LSTM and were converted to an image to be

used as inputs for the secondary CNN.

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2022.1099347
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hakansson and Jensen 10.3389/fvets.2022.1099347

TABLE 3 Parameter specifications, which were compared by the cross-validation.

Name Definition Values

Input dimensions NObs Number of frames in each sequence 10, 20, 30

NPC Selected number of extracted principal

components

4, 8, 16, 32, 64, 128, 256, 512, 3485

Model architecture Layer Number of LSTM/CNN layer in the secondary NN 1, 2, 3

Nodes Number of nodes divided over the LSTM layer Mean (NPC , 2), mean (NPC , 2)/2, sum (NPC , 2)

1st Filter-size Filter size of the first CNN layer 8, 16, 32, 64

Dropout Dropout rate applied during model training for

CNN/LSTM

0, 0.1, 0.2

2.5.2. Model architectures

For both secondary models, different architectures where

tested and compared.

For the LSTM model, LSTM layers were always followed

by batch normalization. Similarly, for the CNN model each

convolutional layer was always followed by batch normalization.

The number of [LSTM+ batch normalization] and [convolution

+ batch normalization] elements varied between 1, 2, and 3. For

the LSTM model, the number of nodes in the LSTM layer was

based on three different functions of the number of principle

components used as the input, namely mean (NPC, 2), mean

(NPC, 2)/2, and sum (NPC, 2), where 2 is the number of outputs

in the secondary model.

For the CNN model, the number of convolutional kernels

(Filters) would double from the first to the second convolution,

and double again from the second to the third convolution.

The number of filters in the first convolution was varied,

with possible values being 8, 16, 32, and 64. In all cases, the

convolutional kernels had the dimensions 3 × 3. For the LSTM

model, dropout was applied after the last [LSTM + batch

normalization] element. Similarly for the CNN model, dropout

was applied after the last [convolution + batch normalization]

element. Both secondary models were trained with a batch size

of 16. The optimization function Adam was used with an initial

learning rate of 0.001. Figure 2 summarizes the architectures for

the two secondary models.

2.6. Performance evaluation

For evaluating the performance of the trained models when

applied to the inner and outer test sets, the major mean accuracy

(MMA) was used in this study.

A positive prediction is seen when the positive probability

for biting behavior, as outputted by the trained model, is above a

set threshold. The value of the MMA will depend on the value

of this threshold. Conventionally, this threshold is set to 0.5,

which we in this study refer to as the naïve MMA (nMMA). In

this study, however, we also wanted to investigate the potential

for improving the performance by using different thresholds. To

this end, we varied the threshold value between 0 and 1 by steps

of 0.01. For each threshold value, the number of true positive

predictions (TP), the number of false negative predictions (FN),

the number of true negative predictions (TN), and the number

of true positive predictions (TP) was calculated. These were then

used to calculate the sensitivity, specificity, false positive rate

(FPR), and MMA given the threshold, according to Equations

1–4 respectively.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

FPR = 1 − Specificity (3)

MMA = mean (Sensitivity, Specificity) (4)

The threshold which resulted in the best MMA was

identified, and the corresponding best MMA (btMMA)

was saved.

The set of parameter settings, which resulted in the highest

nMMA and btMMA, respectively, were identified in each

iteration of the cross-validation. Furthermore, the effects of each

possible value of each parameter setting on nMMA and btMMA

were estimated using linear mixed-effect models (LMEM) with

nMMA and btMMA, respectively, as the dependent variable.

Each LMEM included pen-ID as a random effect, and the

varying parameter of the data pre-processing and model

architecture as the independent variables.

By combining the information from best set of parameters

and the estimated effect of different values of all parameters,

a final set of parameters were selected. Using this final set

of parameters, the final versions of the secondary LSTM and

the CNN model was trained on the entire outer training set

and was tested on the outer test set. The nMMA and btMMA

was identified for the outer test set. In addition, receiver

operating characteristics (ROC) curves were made by plotting

the Sensitivity against the FPR, and the area under this curve
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FIGURE 2

Schematic illustration of the general network architectures for the LSTM (left) and CNN (right) used as secondary models in this study. The

dashed lines indicate elements which were only included in some variations of the architectures being tested and compared.
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(AUC) was calculated as an additional performance metric for

the outer test set.

3. Results

Figure 3 shows violin plots of the variation of nMMA and

btMMA of the two network types across the four folds of the

cross-validation. The highest average values for the performance

metrics of both network types were achieved during fold 4 of

the cross-validation. The summary statistics for the threemetrics

across CV fold and across model types are similar, and the same

variation within the folds of the CV fold exists between LSTM

and CNN models. Generally, the best models were achieved

during fold 3 and 4 of the CV for both networks (see Table 4).

In two folds of the CV, the best LSTM performed slightly better

than the best CNN, while the best CNN performed slightly better

than the best LSTM in the two other folds.

For the LSTM model, the maximum values achieved for the

nMMA and btMMA are 78.1 and 84.5%, respectively. For the

CNN model, the maximum values achieved for the nMMA and

btMMA are 77.6 and 81.9%, respectively. With overall median

and mean values ranging around 0.5–0.65 for the performance

metrics for both model types, the majority of the tested LSTM

and CNN models during cross validation did not achieve

acceptable performance. However, overall max values of 0.80–

0.85 indicate that useful optimal parameter settings exist for both

the LSTM and CNN network. Generally, the best models were

achieved with a sequence length of 30 frames, 64, 128 or 256

extracted PC’s, 2 or 3 network layers and a dropout rate of 0.

While the best btMMA were consistently higher than the

best nMMA for all fold of the cross-validation, the difference

FIGURE 3

Violin plots showing the values for the varying performance metrics (nMMA: naïve major-mean accuracy, btMMA: best-threshold major-mean

accuracy) for the LSTM network (A) and the CNN network (B) across the four folds of the cross-validation.
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between these best performances (4.2 percentage points for both

model types) could not be shown to be statistically significant

(p-values: 0.29 and 0.18 for LSTM and CNN, respectively).

When analyzing the output of the cross-validation of the

LSTM network using LMEM, only the NPC showed a significant

effect for all performance metrics and model types (see Table 5).

For the LSTM network, the number of nodes used in the LSTM

layer had a significant effect on both nMMA and the btMMA,

while the number of layers and the sequence length only affected

btMMA. For the CNN network, the filter size significantly

affected btMMA, but not nMMA. Similar to the LSTM network,

the sequence length affected the btMMA, while the number of

layers in the CNN network affected both the nMMA and the

btMMA. The implemented dropout sizes did not affect any of

the performance metrics for any of the model types.

Figure 4 shows the post-hoc analysis of the effect of varying

NPC on the performance during CV of the LSTM and CNN

networks, compared to not applying PCA for dimensionality

reduction (baseline). For the nMMA, using 16 or less PC was

worse than not applying PCA for both the LSTM and the CNN

network, while using 32 or more principal components resulted

in higher nMMA values. For the btMMA, using 4 PC was worse

than not applying PCA for the LSTM network. For the CNN,

however, all tested values for NPC resulted in higher btMMA

values compared to the baseline. Table 6 shows the results of

the post-hoc analyses of the pairwise difference of the effects of

sequence length, the number of layers, the number of nodes, and

the number of convolutional kernels used during the CVs of the

two network types.

Implementing networks utilizing data sequences of 20 or

30 frames compared to 10 frames significantly increased the

btMMA during CV for both the LSTM networks, while for CNN

network a sequence length of 30 frames compared to 10 or 20

frames increased btMMA significantly.

LSTM networks implemented with 1 layer compared to

2 and 3, and 2 compared to 3 layers, resulted in significant

higher values for the btMMA. Conversely, CNN networks with

2 compared to 1 or 3 layers significantly increased nMMA and

btMMA. For the number of hidden nodes, using the sum of

the number of input nodes and the number of output nodes

resulted in a significantly higher nMMA compared to using

the mean value, but no other significant pairwise effects were

found. Similarly, using the sum increased btMMA compared

to using the mean divided by 2, with no other pairwise

interactions present.

When testing varying number of convolutional kernels

(Filters) of the CNN networks, 8 kernels in the first

convolutional layer significantly increased btMMA compared all

other options, except for 16, while 16 kernels were significantly

better than 32 and 64, and 32 kernels was better than 64.

From the overview in Table 4 and the results of the LMEM

analyses, we decided to implement final LSTM network with the

following parameter:
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TABLE 5 Results of ANOVA analysis on the e�ect of the various parameter regarding data pre-processing and model architecture for nMMA and btMMA.

Metric Parameter Variable LSTM CNN

Sum of
squares

Mean
sum of
squares

DF F-value p-value Sum of
squares

Mean
sum of
squares

DF F-value p-value

nMMA Pre-processing Sequence length 0.014 0.007 2 1.511 0.221 0.006 0.003 2 0.557 0.573

NPC 1.171 0.146 8 30.920 < 0.001 5.237 0.748 7 160.185 < 0.001

Model architecture Layers 0.004 0.002 2 0.426 0.653 0.070 0.035 2 6.483 0.002

Nodes 0.042 0.021 2 4.418 0.012 - - - - -

1st Filter-size - - - - - 0.006 0.002 3 0.353 0.787

Dropout 0.002 0.002 1 0.406 0.524 0.001 0.001 1 0.264 0.607

btMMA Pre-processing Sequence length 0.092 0.046 2 12.692 < 0.001 0.338 0.169 2 53.601 < 0.001

NPC 3.585 0.448 8 123.930 < 0.001 2.258 0.323 7 112.202 < 0.001

Model architecture Layers 0.466 0.233 2 64.462 < 0.001 0.168 0.084 2 26.411 < 0.001

Nodes 0.038 0.019 2 5.246 0.005 - - - - -

1st Filter-size - - - - - 0.051 0.017 3 5.346 0.001

Dropout 0.002 0.002 1 0.691 0.406 0.000 0.000 1 0.002 0.963
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FIGURE 4

E�ect of number of principal components (PC) on the variation of nMMA (naïve major-mean accuracy) and btMMA (best-threshold major-mean

accuracy) of the LSTM (A) and the CNN (B) networks. The baseline is not applying principal component analyses to the extracted features.

- Sequence length: 20 and 30.

- NPC : 128 and 256.

- Number of LSTM layers: 1.

- Number of LSTM nodes: sum (NPC , 2).

- Dropout rate: of 0 and 0.2.

Similarly, the following parameters were used for the final

CNN network:

- Sequence length: 10, 20 and 30.

- NPC : 128 and 256.

- Number of convolutional layers: 2.

- Number of convolutional kernels in the first convolutional

layer: 8 and 16.

- Dropout rate of 0 and 0.2.

The final networks were trained on the outer training set and

evaluated using the outer test set.

3.1. Final model evaluation

Figure 5 shows the loss and accuracy on the training and

validation sets during training of the final LSTM and CNN

models.

On 2,110 sequences with of which 74 showed tail-biting

events, the final LSTM model converged with a training’s

accuracy of 98.5% and a validation accuracy of 78.2% after 30

epochs, before it over-fitted. The final CNNmodel converged on

6,332 sequences of which 224 showed incidences of tail biting to

a training’s accuracy of 99.5 % and a validation accuracy of 99.0

%, before it over-fitted the data after 10 epochs.

Table 7 shows the performance metrics and the optimal

parameter settings of the final LSTM and CNN network when

applied to the outer test set. The ROC curve for the final LSTM

model resulted in an AUC of 74%, with the best threshold for

optimal class seperation at 56%. For the CNN model, the best

threshold was at 12%, and the ROC curve resultet in an AUC of
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TABLE 6 Post-hoc analyses on pairwise di�erences of number of nodes, number of layers and sequence length on varying performance metrics

during CV of the two networks.

Variable Comparison LSTM CNN

Metrics Estimate p-value Metrics Estimate p-value

Sequence length 10–20 btMMA −0.010 0.000 btMMA −0.010 < 0.001

10–30 −0.008 0.001 −0.017 < 0.001

20–30 0.002 0.838 −0.007 < 0.001

Number of layers 1–2 btMMA 0.007 0.002 btMMA −0.011 < 0.001

1–3 0.018 < 0.001 0.000 1.000

2–3 0.010 < 0.001 0.010 < 0.001

1–2 - nMMA −0.007 0.003

1–3 −0.001 1.000

2–3 0.006 0.013

Nodes Mean (NPC , 2) – mean (NPC , 2)/2 nMMA −0.003 0.866

Mean (NPC , 2) – sum (NPC , 2) −0.007 0.014

Mean (NPC , 2)/2 – sum (NPC , 2) −0.004 0.228 -

Mean (NPC , 2) – mean (NPC , 2)/2 btMMA 0.004 0.344

Mean (NPC , 2) – sum (NPC , 2) −0.003 0.483

Mean (NPC , 2)/2–sum (NPC , 2) −0.007 0.009

Filter 8–16 btMMA −0.001 1.000

8–32 0.001 1.000

8–64 - 0.006 0.011

16–32 0.003 1.000

16–64 0.007 0.001

32–64 0.005 0.097

FIGURE 5

Accuracy/ Loss plot for the final LSTM (A) and CNN (B) model. (The loss function utilized was the categorical cross entropy).
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TABLE 7 Performance metrics for the final LSTM and CNNmodel.

nMMA btMMA TP FP TN FN Seq. length NPC Nodes 1st Filter-size Layers Dropout

LSTM 71.3% 72.1% 66 956 1,080 8 30 64 Sum - 1 0.2

CNN 64.7% 66.7% 83 141 5,624 484 10 256 - 8 2 0.2

67%. Figure 6 shows image examples of false positive and false

negative classifications obtained when testing the final LSTM

and CNNmodel.

Table 8 shows the distribution of behaviors other than tail

biting (i.e., negative social behavior, nursing behavior or none

of these behaviors) for the varying datasets utilized during the

final model training and testing. Although there is variation in

the distribution of behavioral categories, none of them is under

or over represented in the utilized datasets.

The results of the prediction of the LSTM and CNN model

in relation to the different behavioral categories is shown in

Table 9. While the LSTM model achieves a sensitivity of 89%

in predicting tail-biting events, the specificity to exclude other

behaviors is lower. In contrast, the final CNN predicts tail-biting

events with a sensitivity of 37%, while the specificity to exclude

other behaviors reaches values above 90%.

4. Discussion

This study compared the achieved performance of two

video-based machine learning approaches to detect tail-biting

behavior in groups of pigs from sequences of video data.

Previous recent research used the pigs’ tail position as a proxy

for tail-biting behavior (25), or deployed a tracking algorithm to

detect and crop areas of pigs in close proximity to each other

to be used in a CNN + LSTM network (33). Contrary to the

mentioned previous research, the current study investigated the

effectiveness of two deep learningmethods tomonitor tail-biting

behavior, by analyzing sequences of image from the whole pen

as a method to capture relevant temporal information in the

data.We implemented a pre-trained CNN, combinedwith either

a LSTM network (CNN-LSTM), or a CNN network (CNN-

CNN) without the use of prior tracking of animal interactions.

This enables the use of video data of groups of pigs for the

detection of biting events, instead of data on individually located

interactions. Moreover, the computational complexity as well

as the workload of our methods compared to the methods

reported by Liu et al. (33) are assumingly lower, making our

methods more easily implementable in the field. To assess

whether the methods can be used to detect tail-biting behavior

in groups of pigs, and to detect the optimal framework for

such methods, varying strategies regarding data pre-processing

and model architecture were systematically assessed for the two

methods. During cross-validation, both network types achieved

similar performance results, which were obtained with similar

parameter settings. Especially, the number of frames and the

number of principal components, which together comprised

the size of the input data, and the number of layers in the

architecture were found to be relevant for the performance of

both type of networks. Principal component analysis was used

to reduce the dimensionality of the input vector (and thus,

the computational workload), and applying PCA to the feature

vectors was found to result in better performances than not

applying PCA and using the raw features. This indicates that

relevant spatial features exist in the data and that only specific

features are necessary in the detection of tail-biting events.

Based on the respective optimal parameter settings, our

final CNN-LSTM network converged with a training’s accuracy

of 98.5% and a validation accuracy of 78.2%, while the final

CNN-CNN network converged to a training’s accuracy of 99.5%

and a validation accuracy of 99%. The results indicate that

both methods are able to learn from the given data and that

combining the pre-trained model VGG-16 with a LSTM or a

secondary CNN without the use of prior tracking can be used

to detect tail-biting behavior in groups of pigs. Our results are in

line with findings by Liu et al. (33), who reported a validation

accuracy of 92.24 % and a trainings accuracy of 98% after 20

epochs of their CNN + LSTM model utilizing the pre-trained

VGG-16 model and prior tracking of animal interactions. In

contrast to Liu et al. (33), the current study however utilized

independent validation sets during the model optimization

process and therefore the achieved validation accuracies of

the methods are more robust in terms of generalizability to

new data.

The current study additionally assessed the generalizability

of the proposed methods in varying settings by evaluating

the final models on an independent test set, which the model

was not trained or validated on. The final models achieved

major-mean accuracies of 71.3 and 64.7% on the final test set

for the CNN-LSTM and the CNN-CNN network, respectively.

This indicates that both developed models can generalize to

unseen data, however, the generalization of the CNN-LSTM

model appears to be superior to that of the CNN-CNN model.

While the optimal number of PC for the LSTM network

was 64, the CNN network performed best when utilizing

256 extracted PCs. Similarly, the optimal sequence length

was 30 s for the LSTM network but only 10 s for the CNN

network. As LSTM networks are capable of learning long-term

dependencies between varying time steps in the data, longer

sequence lengths might capture better the varying durations

of tail-biting events. This might also be relevant, as situations
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FIGURE 6

Examples of FP (1) and FN (2) classifications of tail-biting behavior of the final LSTM (A) and CNN (B) model from subsequent frames. Red

rectangles indicate the area of potential misclassification.
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where one pigs head is close to another pig’s tail i.e., when

they pass by or rest close to each other, are similar to the

duration of biting events. The CNN on the contrary utilized

image representations of the given sequences, which might

have clouded potential long-term dependencies within the data.

As the CNN uses convolutional layers to extract information

of the sequence images, it may be that the current network

architecture was not deep enough to grasp the information in

the data.

Contrary to the study by Liu et al. (33), the current study

utilized data which included other incidences of agonistic

interactions (such as fighting, mounting or other biting)

representative for pig production systems, adding to the

generalizability of the developed models. Moreover, to capture

pre-stages of tail biting which could be meaningful regarding

the early detection of the behavior in pigs, a broader definition

of tail biting was adapted in the current study, including

milder forms of the behavior and events where the victim pig

did not necessarily exhibit a reaction. As a result, most FN

classifications occurred in situations, where pigs were generally

in close proximity to each other, e.g., when they were lying

and huddling or engaging in play/fight behavior. Similarly, FP

classifications were mainly caused by one pigs head being near

to another pigs tail which is similar to results by Liu et al. (33).

These sitations appeared e.g., in social situations, when one pig

investigated the body of another pig (see Figure 6A1), or when

one pig investigated the floor with another pigs backend close

(see Figure 6B1).

Furthermore, when evaluating on test data from only one

pen compared to using both test pens, the sensitivity of the

CNN-CNN but not of the CNN-LSTM increased from 37.1 to

71.1%. A less dramatic difference in sensitivity was also seen

for the two pens when applying the CNN-LSTM approach,

suggesting that something specific about Test pen 2 might be

significantly outside the distribution of the other pens. The

two test sets do not vary substantially in the number of other

behavioral events, and the specificity for the three remaining

behavioral categories is similar when using the individual test

sets and the combined test set. However, in test pen 2 the sow

is standing notably more and for a longer duration compared to

the sows in the other videos.While it seems that the CNN-LSTM

was able to handle this difference in the data, the CNN-CNN

method was not able to generalize adequately when tested on

test pen 2. However, as the trainings and validation accuracies

for the CNN-CNN model were high, implementing the model

using a larger data set might improve its generalizability

to new data.

With a sensitivity of around 90% the CNN-LSTM method

will detect the majority of the tail-biting events, here both

including actual tail bititng and tail-in-mouth behavior, which

has a huge potential in aiding a farmer in the early detection of

tail biting. Being able to detect early stages of tail biting might

enable the farmer to implement intervention strategies, thus
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TABLE 9 Predicted behavioral categories and corresponding specificity of the test sets for the LSTM and CNN network.

Test set Behavior
category

LSTM CNN

Predicted as
no biting event

Predicted as
biting event

Specificity
[%]

Sensitivity [%] Predicted as no
biting event

Predicted
as biting
event

Specificity
[%]

Sensitivity
[%]

Combined Tail biting 8 66 89.19 141 83 37.05

No tail-biting 1,080 956 53.05 5,624 484 92.10

No event 852 833 50.56 4,594 465 90.81

Negative social 74 41 64.35 329 12 96.48

Nursing 154 82 65.25 701 7 99.01

Test 1 Tail biting 2 28 93.33 26 64 71.11

No tail-biting 411 570 41.90 2,633 310 89.47

No event 351 486 41.94 2,213 298 88.13

Negative social 12 16 42.86 78 7 91.76

Nursing 48 68 41.38 342 5 98.56

Test 2 Tail biting 6 38 86.36 115 19 14.18

No tail-biting 669 386 63.41 2,991 174 94.50

No event 501 347 59.08 2,381 167 93.45

Negative social 62 25 71.26 251 5 98.05

Nursing 106 14 88.33 359 2 99.45
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preventing severe tail-biting outbreaks. This might especially

be relevant, as minor tail injuries early in the production often

continue to persist throughout rearing (16), and have been

shown to be a significant risk factor for severe tail damage in

growing/fattening pigs (39). Moreover, other visual indicators,

such as hanging/tucked tails, often occur when tail biting already

is prevalent in the pen or an underlying tail-biting outbreak

might emerge (23, 24).

However, the current CNN-LSTM produces a substantial

number of TN, i.e., in an on-farm situation will indicate that

a biting event happened although there was no real biting

event. Hence, although there clearly is potential for on-farm use

of the proposed methods, especially the CNN-LSTM, further

improvements of the methods are needed. To improve the

generalizability of the proposed methods in the future, the

potential of data augmentation, as well as utilizing varying pre-

trained models to extract spatial features should be explored.

Our study is (to our knowledge) the first of this kind of assessing

the generalizability of the proposed methods to new data to

detect tail-biting events in pigs from video recordings. This is

of high value, as a good generalizability entails that such models

can be used with varying environmental set-ups and at different

pig units. Future studies should evaluate the generalizability of

the methods to different farm setting and to animals at different

stages of the pig production.

5. Conclusion

We explored the applicability of CNN-LSTM and of CNN-

CNN frameworks with our available data, and systematically

assessed the performance and generalizability of the developed

models regarding varying data pre-processing and model

architecture parameters. The results of the study indicate

that the proposed methods can detect tail-biting behavior

from video sequences of entire pig pens, with the CNN-

LSTM model being superior in terms of generalizing to

unseen data, compared to the CNN-CNN model. The study

also found that implementing principal component analyses

on the extracted spatial feature vectors and using a limited

number of PCs as input to the networks can increase the

performance, compared to using all extracted features. Due

to its lower complexity and computational workload and

with a sensitivity of 89% on new data, the CNN-LSTM

seems to be the most promising method considering on-

farm implementation.
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