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Interplay between swine enteric
coronaviruses and host innate
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Academy of Agricultural Sciences, Harbin, China

Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting,

dehydration, and high mortality in neonatal piglets, causing severe losses

worldwide. SeCoV includes the following four members: transmissible

gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine

delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus

(SADS-CoV). Clinically, mixed infections with several SeCoVs, which are

more common in global farms, cause widespread infections. It is worth

noting that PDCoV has a broader host range, suggesting the risk of PDCoV

transmission across species, posing a serious threat to public health and

global security. Studies have begun to focus on investigating the interaction

between SeCoV and its host. Here, we summarize the e�ects of viral proteins

on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a

theoretical basis for an in-depth understanding of the pathogenic mechanism

of coronavirus.

KEYWORDS

SeCoV, apoptosis, autophagy, innate immunity, across species transmission

1. Introduction

1.1. Swine enteric coronavirus

Coronaviruses are one of the most devastating pathogens. The sudden outbreak

of COVID-19 in 2019 has had a major impact on global public health and economic

development, while the devastating effects of CoVs are not only limited to humans

but also occur in livestock populations. Swine enteric coronaviruses (SeCoV) pose a

huge threat to the global farm industry. Four SeCoVs were identified: porcine epidemic

diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), porcine delta

coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). In

the last century, PEDV and TGEV were first reported (1–3), and then widely spread to

many swine-producing countries in Europe and Asia (4, 5). Recently, PDCoV and SADS-

CoV have emerged as SeCoVs (6, 7), Compared with PEDV and TGEV, the clinical signs

caused by PDCoV and SADS-CoV infection are less severe, and the mortality rate of

newborn piglets is 30–40%. It is worth mentioning that in 2021, US scientists discovered

that the plasma samples of three Haitian children with unexplained fever tested positive

for PDCoV, in which suggesting the risk of PDCoV across species transmission (8).
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SeCoV is a single-stranded, positive-sense RNA virus, and

its viral genome consists of structural proteins, non-structural

proteins, and accessory proteins. Four structural proteins, spike

(S), envelope (E), membrane (M), and nucleocapsid (N) proteins

were identified. The S protein mediates attachment to the host

receptor and is a trimer with an S1 subunit that contains the

large receptor-binding domain (RBD) and an S2 subunit that

contains peptides mediating cell fusion (9). E and M proteins

are responsible for maintaining the structure and size of the

viral envelope (10). The N protein constitutes the only protein

present in the nucleocapsid and wraps the virus genome to

form a nucleoprotein complex (11). ORF1ab encodes non-

structural proteins via nsp3 and nsp5 cleavage, there are 15–

16 functional non-structural proteins (nsps), These nsps are

involved in the replication and transcription of viral RNA and

some nsps also inhibit the host immune response (10, 12),

ORF3, NS6, and NS7 encode accessory proteins to modulate

viral pathogenicity (13) (Figure 1). SeCoV has become a major

cause of lethal watery diarrhea in newborn piglets, imposing

enormous economic losses and a public health burden on the

swine industry worldwide.

1.2. Autophagy induce by SeCoV
infection

Autophagy is a process in which cells use lysosomes to

degrade damaged organelles and macromolecular substances

under the regulation of autophagy-related genes (Atg). Previous

studies have reported that autophagy is an intrinsic host

defense mechanism that mediates the autophagic elimination

of viral constituents or virions by targeting virus particles

or virus component degradation to facilitate host innate and

FIGURE 1

The genome structures of SeCoV.

adaptive immunity. Increasing evidence indicates that viruses

have evolved various complex strategies to escape or subvert

the antiviral effects of autophagy (Figure 2). For example, SARS-

CoV-2 ORF3a promotes the induction of autophagy via the

classic ATF6 and IRE1-XBP1 UPR pathways to protect the virus

from hydrolysis (14). Furthermore, ORF10 and M of SARS-

CoV-2 promote the accumulation of LC3 in mitochondria and

induce mitophagy, which inhibits RIG-MAVS-triggered IFN

signaling (15, 16). PEDV-triggered autophagy in Vero cells via

both the PERK and IER1 pathways promotes viral replication

(17–19). Additionally, nsp6 and ORF3 of PEDV were able to

induce significant autophagy in IPEC-J2 cells, and nsp6 of

PEDV induced autophagy by inhibiting the PI3K/Akt/mTOR

signaling pathway, which promotes cell damage and enhances

the virulence of PEDV (20). Moreover, PEDV ORF3 protein

triggers the endoplasmic reticulum (ER) stress response by

upregulating the expression of GRP78 protein and activating

the PERK-eIF2α signaling pathway to induce autophagy (21). In

addition, SADS-CoV and PDCoV induce autophagy to facilitate

viral replication via the PI3K/Akt/mTOR signaling pathway in

vitro (22–24).

TGEV infection induces mitophagy to suppress oxidative

stress and apoptosis in porcine epithelial cells (IPEC-J2

cells) to promote cell survival and, possibly, viral infection.

Furthermore, N of TGEV may be involved in mitochondrial

damage and mitophagy induction during TGEV infection (25).

Interestingly, TGEV infection activates autophagy, whereas

autophagy inhibits TGEV replication (26). Upon PDCoV

infection, the upregulation of the LC3-II/LC3-I ratio and the

downregulation of p62 protein levels indicate that PDCoV

infection may induce autophagy, similar to other CoVs (22,

27). Additionally, PDCoV-induced autophagy enhances viral

replication through the p38 signaling pathway (28).
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FIGURE 2

Induction and modulation of host autophagy by SeCoV infection.

1.3. Apoptosis induce by SeCoV infection

Apoptosis refers to the autonomous and orderly death

of cells that is controlled by genes to maintain the stability

of the internal environment. It is involved in the activation,

expression, and regulation of a series of genes. There are

two pathways of apoptosis, extrinsic and intrinsic. The

extrinsic apoptotic pathway is mediated by death receptors

(DRs) on the cell membrane, thereby activating the cascade

of apoptosis signaling pathways. The intrinsic apoptosis

pathway is mainly activated by apoptosis inducers in the

cytoplasm to activate mitochondrial pro-apoptotic factors and

destroy the integrity of the mitochondrial outer membrane.

Subsequently, the increase in mitochondrial outer membrane

permeability (MOMP) promotes the release of cytochrome c

(Cyt c) and apoptosis-inducing factor (AIF), thereby inducing

apoptosis (29).

Apoptosis is considered a host innate defense mechanism

that disrupts viral replication by eliminating virus-infected

cells, but some viruses utilize apoptosis as a mechanism for

cell killing and viral spread (30) (Figure 3). PEDV infection

induces apoptosis via a caspase-independent mitochondrial

AIF-mediated pathway to facilitate viral replication (31–33). It

has been demonstrated that the activation of p38 MAPK and

JNK cascades also contributes to PEDV replication, but they are

not linked to PEDV-mediated apoptosis (34, 35). P53 plays an

essential role in viral infection-induced apoptosis. PEDV and

TGEV induce apoptosis via a P53-dependent pathway (35, 36).

PEDV infection activated P53-puma and reactive oxygen species

(ROS)/p53 signaling pathways to induce apoptosis in Vero cells

and cause cell cycle arrest at the G0/G1 phase (35, 37). The S1

protein of many coronaviruses can induce cell apoptosis; the

PEDV S1 protein is the main inducer of cell apoptosis during

PEDV infection, and PEDV M and nsp1, 2, 5, 6, 7, 9, and 13
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FIGURE 3

Induction and modulation of host apoptosis by SeCoV infection.

also induce cell apoptosis, but to a lesser extent. Similarly, the S

protein of TGEV can strongly induce apoptosis in Vero-E6 cells,

suggesting that S1 is a promising strategy to inhibit coronavirus

infection (38, 39). In contrast, reverse genetics technology has

been used to prove that the PEDV ORF3 protein promotes virus

proliferation by inhibiting cell apoptosis (40).

TGEV induced apoptosis in PK-15 and ST cells but not

in intestinal epithelial cells (41, 42), p53- and ROS-mediated

AIF pathways, and caspase-dependent pathways both played a

dominant role in triggering apoptosis. However, p38 MAPK

signaling was only partially responsible for the activation of

p53 and contributed less to TGEV-induced apoptosis (36, 42–

45). Interestingly, the TGEV N protein is cleaved by caspase-6

and−7 during TGEV-induced apoptosis (46). However, TGEV

N upregulated p53 and p21 and arrested the cell cycle at the

S and G2/M phases, finally resulting in apoptosis of PK-15

cells (47).

PDCoV induces apoptosis to promote viral replication

in both LLC-PK and ST cells but not in infected intestinal

enterocytes in vivo (48). In addition, PDCoV and SADS-CoV

infection induces apoptosis by recruiting Bax or opening the

mitochondrial permeability transition pore (MPTP) and then

releasing Cyt c, sequentially activating initiator caspase-9 and

downstream effector caspase-3, thereby orchestrating the final

apoptotic response to facilitate viral replication in vitro, Intrinsic

caspase-9 dependent apoptosis pathway plays an important

role in the successful replication of PDCoV and SADS-CoV

(49, 50). Further studies showed that caspase-dependent FASL-

mediated apoptotic pathways are also involved in SADS-CoV

infection (50).

1.4. Innate immunity recognition of
SeCoV

1.4.1. Pattern recognition receptors

The innate immune response is the host’s first line of

defense against pathogens. Innate immune cells recognize

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2022.1083605
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Li et al. 10.3389/fvets.2022.1083605

FIGURE 4

Innate immunity and modulatory mechanisms during SeCoV infection.

pathogen-associated molecular patterns (PAMP) by expressing

pattern-recognition receptors (PRRs), including Toll-like

receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like

receptors (NLRs), AIM2-like receptors (ALRs), C-type lectin

receptors (CLRs), and intracellular DNA sensors, such as cyclic

GMP-AMP synthase (cGAS), which are key innate immune

components that recognize viral components such as viral

nucleic acids and proteins (51). Among these receptors, TLRs

and RLRs are the two major receptors responsible for sensing

RNA virus infections and triggering antiviral IFN programs.

The TLR family comprises 10 members (TLR1–TLR10) in

humans and 12 (TLR1–TLR9 and TLR11–TLR13) in mice

(52). TLR1, TLR2, TLR4, TLR5, and TLR6 play pivotal roles

in viral protein recognition (53). The membrane proteins

TLR3, TLR7/8, and TLR9 are used, respectively (54–56). The

RLR family includes three members: retinoic acid-inducible

gene I (RIG-I), melanoma differentiation-associated protein 5

(MDA5), and laboratory of genetics and physiology 2 (LGP2).

RIG-I and MDA5 are activated by immunostimulatory RNA,

which leads to the activation of cytoplasmic kinases that

promote the activation of interferon regulatory factor 3 (IRF3),

IRF7, and nuclear factor-kappa B (NF-κB). Activated IRF3/IRF7

binds to PRD I/III sequences and induces the expression of type

I IFN genes (57). The activated form of NF-κB translocates to

the nucleus and triggers IFN-β expression by binding to PRD II

elements (58). IFN is then secreted, which binds to receptors on

virus-infected cells, as well as uninfected neighboring cells, and

activates the JAK/STAT pathway to generate hundreds of ISGs

to establish an antiviral state (59).

1.4.2. Immune evasion mechanisms of SeCoV

The induction of IFN-α/β is the most rapid and effective

mechanism by which the host initiates innate immune

responses. To counter innate immune signaling, many

coronaviruses have evolved different strategies to develop

multiple strategies to evade the innate immune response and

efficiently promote their replication and infective capacity,

particularly by minimizing IFN production and inhibiting IFN

signaling (Figure 4).
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1.4.2.1. Ubiquitination and deubiquitination induced

by SeCoV

Ubiquitination is a critical biological process in the post-

translational modification of proteins and involves multiple

signaling pathways such as protein metabolism, apoptosis,

DNA damage, cell-cycle progression, and cancer development.

Ubiquitin is mainly connected in eight ways (M1, K6,

K11, K27, K29, K33, K48, and K63), and can regulate

different functions of substrate proteins. For example, K48

polyubiquitination mainly plays the role of the ubiquitin-

proteasome system to degrade substrates and proteins, whereas

K63 polyubiquitination mainly regulates endocytosis, protein

interaction, and signal transduction (60).

The CoV N protein, the most abundant viral protein, plays

a key role in IFN interruption. The SADS-CoV N protein

mediates K27-, K48-, and K63-linked ubiquitination of RIG-

I and its subsequent proteasome-dependent degradation to

inhibit the host IFN response (61). The PDCoV N protein

could directly target porcine RIG-I to interfere with its binding

to dsRNA and block its early activation by blocking porcine

Riplet (pRiplet)-mediated K63-linked polyubiquitination, thus

suppressing IFN-β Production (62). In addition, PDCoV N

protein promotes poIRF7 degradation through the K6, K11, and

K29 polyubiquitination-proteasome pathways to reduce type-I

IFN production (63).

The deubiquitinase (DUB) family is responsible for the

specific hydrolysis of ubiquitin molecules from ubiquitin-linked

proteins or precursor proteolysis, which affects the localization,

stability, and function of target proteins in cells, DUB are

widely present in various viruses, and significantly influences

viral activity. Interestingly, all CoV DUB activities are mediated

by PLPs, and the PLPs of human coronavirus NL63 (HCoV-

NL63), SARS-CoV, MHV, and MERS-CoV significantly reduced

the levels of ubiquitinated STING, RIG-I, TBK1, and IRF-

3, thereby negatively affecting the regulation of host antiviral

innate immunity (64). Likewise, PEDV PLP2 and TGEV PL1

strongly inhibit RIG-I- and STING-activated IFN expression via

deubiquitination (65, 66). A recent study showed that SADS-

CoV PLP2 could also function as a DUB, such as PEDV PLP2,

SARS-CoV PLpro, and TGEV PLP1 (67).

1.4.2.2. Protein cleavage

SeCoV encodes non-structural protein 5, also called the 3C-

like protease, and is responsible for coronavirus polyprotein

processing. It cleaves the polyprotein at more than 11 sites

to yield the essential proteins required for virus replication

and pathogenesis. At the same time, the protease can also

use its cleavage activity to cleave host proteins, especially the

key molecules of IFN production and signal transduction, and

play an immunomodulatory role. 3CLpro is an attractive drug

target because it is highly conserved among known coronavirus

species. Many viruses antagonize innate immune signaling by

cleaving 3C-like proteases; for example, porcine sapelovirus

(PSV) 3Cpro inhibits the production of IFN-β by cleaving

MAVS and degrading MDA5 and TBK1 (68). Enterovirus

71 (EV71) 3C interacts with and cleaves TAB2 and TAK1

to interfere with the inflammatory responses (69). Norovirus

(NoV) encoding a 3C-like protease was found to effectively

suppress Sendai virus (SEV)-mediated IFN-β production by

cleaving the NF-κB essential modulator (NEMO) (70). Similar

to NoV and EV71 3Cpro, PEDV and PDCoV encode a 3C-

like protease, nsp5, which is an IFN antagonist that cleaves

NEMO at Q231, suggesting that NEMO may be a common

target for coronaviruses (71, 72). In addition, PDCoV nsp5 also

suppressed IFN signaling by cleaving STAT2, a key molecule in

the JAK-STAT pathway, nsp5 cleaved STAT2 at both Q685 and

Q758 (73).

1.4.2.3. Competitive binding

It has been demonstrated PEDV N protein directly interacts

with TBK1, thereby sequestering the association between TBK1

and IRF3, which in turn inhibits both IRF3 activation and

type I IFN production (74). Moreover, the PDCoV N protein

antagonizes IFN-β production by interfering with the binding of

dsRNA and protein activator of protein kinase R (PACT) to RIG-

I (75). The SADS-CoV N protein suppresses the RLRs Signaling

pathway. Moreover, the SADS-CoV N Protein not only blocked

the IPS-1–TBK1 interaction but also disrupted the formation of

the TNF receptor-associated factor 3(TRAF3)–TBK1 complex,

which led to reduced TBK1 activation and IFN-β production

(76). It has been demonstrated PEDV nsp7 antagonizes type I

IFN production, PEDV nsp7 also antagonized IFN-α-induced

JAK-STAT signaling by sequestering the interaction between

karyopherin α1 (KPNA1) and STAT1 (77). Cytoplasmic stress

granules (SGs) can effectively exert antiviral functions; however,

nsp15s of PEDV, TGEV, SARS-CoV, and SARS-CoV-2 have

conserved functions that interfere with chemically induced

SGs formation (78). Coronavirus accessory proteins are species

specific and have low homology with other known proteins.

Although current research has shown that coronavirus accessory

proteins are not necessary for virus replication (79), extensive

reports have indicated that many accessory proteins are involved

in immune regulation and virus virulence. For example, PDCoV

NS6 interacts with the CTD of RIG-I and the Hel and CTD

of MDA5, and this interaction attenuates the binding of RIG-

I/MDA5-dsRNA, resulting in a reduction in IFN-β production

(80). PDCoV NS7a interacts with IKKε, which significantly

disrupts the interaction between IKKε and TRAF3 or IRF3,

thereby inhibiting IFN-β production (81).

1.4.2.4. Impair phosphorylation or suppressed the

nuclear translocation

Post-translational modification of proteins is a critical way

to regulate protein function. Phosphorylation is one of the most

extensively investigated post-translational modifications

involved in the regulation of signal transduction, but
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viral encoded proteins can regulate phosphorylation and

dephosphorylation to promote proliferation. The PEDV E

protein has been found to block the production of IFN, but

little is known about the process by which the E protein

subverts host innate immunity. A previous study showed

that PEDV E protein is responsible for inducing ER stress

through activation of the PERK/eIF2α branch and activation

of NF-κB (82). Further studies showed that PEDV E protein

remarkably suppressed IFN-β production by interfering with the

translocation of IRF3 from the cytoplasm to the nucleus through

direct interaction with IRF3 (83, 84). PEDV N protein blocks

NF-κB nuclear translocation to antagonize IFN-λ production

(85). The PEDV M protein plays an important role in viral

assembly, viral budding, and host immune mediation. PEDV

M protein interacts with IRF7 and significantly suppresses

its phosphorylation and dimerization of IRF7, leading to

decreased expression of type I IFN (86). Existing study has

been identified the sole accessory protein ORF3 of PEDV as

NF-κB antagonist, it inhibits the phosphorylation of IκBα, in

addition, PEDV ORF3 inhibits NF-κB activation by interfering

the phosphorylation and expression of p65, as well as interfering

nuclear translocation of p65, which ultimately leaded to

the inhibition of IL-6 and IL-8 production (87). As a key

virulence factor for coronaviruses, nsp1 impedes host protein

expression via multiple mechanisms. Of the 21 PEDV proteins,

nsp1, nsp3, nsp5, nsp7, nsp14, nsp15, nsp16, ORF3, and E

inhibited NF-κB activity, and nsp1 appeared to be the most

potent inhibitor. Nsp1 interfered with the phosphorylation

and degradation of IκBα, and thus blocked p65 nuclear

transport; however, PEDV nsp1 did not interfere with IRF3

phosphorylation and nuclear translocation, which interrupted

the enhanceosome assembly of IRF3 and CREB-binding protein

(CBP) by degrading CBP, resulting in the inhibition of ISGs

expression (88, 89). Furthermore, nsp1 was found to suppress

type III IFN activity by blocking the nuclear translocation

of interferon regulatory factor 1 (IRF1) and reducing the

number of peroxisomes (90). PEDV, TGEV, and SARS-CoV

nsp1 significantly inhibited the phosphorylation of STAT1 at

S727, interfering with the effect of IFN-I, and nsp1 also arrested

host cells to stay in the G0/G1 phase (91, 92). In contrast,

PEDV nsp1 inhibited CCAAT/enhancer-binding protein β

(C/EBP-β) phosphorylation to reduce complement component

3 (C3) expression, which is considered to play a crucial role in

preventing viral infection (93). Nsp14 of CoV has ExoN and

guanine-N7-methyltransferase (N7-MTase) activities (94, 95),

playing a key role in viral mRNA cap synthesis, CoV replication

and transcription, Howerver, the function and mechanism

by which nsp14 modulates and manipulates host immune

responses remain largely unknown, Recently study showed

PEDV nsp14 remarkably decreased NF-κB activation and

proinflammatory cytokines expression, it interacted with Iκκs

and p65 to inhibite the phosphorylation of Iκκs. Furthermore,

nsp14 suppresses TNF-α-induced phosphorylation and nuclear

import of p65 (96). TGEV nsp3 has been shown to strongly

inhibits NF-κB signaling by suppressing Iκβα degradation

and inhibiting p65 phosphorylation and nuclear translocation

(97). Nsp15 encodes an endoribonuclease that conserves all

coronaviruses. The nuclease activity of nsp15 plays a critical

role in viral evasion by triggering an innate immune response.

PDCoV nsp15 significantly inhibits IFN-β production by

disrupting the phosphorylation and nuclear translocation of

p65, independent of its endoribonuclease (98). TGEV ORF7

binds to the catalytic subunit of protein phosphatase 1 (PP1c)

and regulated the dephosphorylation of eIF2α to counteract

host cellular defenses (99). In addition, deletion of ORF7

increased innate immune responses and acute tissue damage,

demonstrating antagonism from the opposite perspective (100).

1.4.2.5. Degradation and inactivation induced by SeCoV

In addition, SeCoV can antagonize the host innate

immune response through degradation and inactivation. PEDV

suppresses type I interferon response by stimulating epidermal

growth factor receptor (EGFR) activation, which is responsible

for STAT3 expression (101). PEDV nsp15 directly degrades the

mRNA of TBK1 and IRF3 depending on its EndoU activity to

inhibit the production of IFN and ISG and antagonize the host

innate response to promote replication (102). CoV nsp14 can

degrade dsRNA PAMPs to prevent IFN induction during CoV

infection (103). Of the 21 PEDV proteins, nsp1, nsp3, nsp7,

nsp14, nsp15, and nsp16 were found to inhibit IFN-β and IRF3

promoter activity (89). Further studies showed that nsp1, nsp3,

nsp5, nsp8, nsp14, nsp15, nsp16, ORF3, E, M, and N suppressed

type III IFN activity (90).

2. Discussion

SeCoV is a pathogenic microorganism that seriously

threatens the pig industry and causes massive economic

loss. The above evidence reveals the viral immune evasion

mechanisms of SeCoV, where the origin of SeCoV and the

interaction between the virus and host need to be further

elucidated. Furthermore, the rapid global spread of highly

pathogenic of SARS-CoV, MERS-CoV, and SADS-CoV-2 pose a

concern about cross-species transmission, such as the discovery

of PDCoV in Haitian children. It is evident that proper

surveillance of viral biodiversity can be used to prevent

animals becoming mixers and intermediate hosts of various

coronaviruses in the future. Morever, an important feature

of the epidemiology of SECoV is the emergence of several

different variants, which vary in their transmissibility, virulence,

clinical disease presentation, and vaccines response, resulting in

unforeseeable epidemic scope and pathogenicity. Up to now,

porcine aminopeptidase N (pAPN) has been identified as a

receptor for TGEV, but the receptors of PEDV, PDCoV, and
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SASD-CoV remain unknown, hindering the development of

vaccines and drugs.

Exploration of these programs will help us further

understand how SeCoV exists to ensure their survival, and also

provide us with new ideas for developing drug targets for the

prevention and treatment of SeCoV.
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