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The fermented feed has been used extensively as a growth promoter in

agricultural animal production. However, the e�ects of fermented feed

on swine gut microbiota are still largely unknown. The work presented

here aimed to investigate the growth performance and gut microbiota

of nursery pigs receiving the LPF diet (10% Lactobacillus plantarum and

Pediococcus acidilactici co-fermented feed + basal diet) compared with pigs

receiving the NC diet (basal diet). The data showed LPF diet numerically

improved average daily gain and significantly increased fecal acetate, butyrate,

and total short-chain fatty acid (SCFA) concentrations. Furthermore, gut

microbiota structure and membership significantly changed in response to

the addition of fermented feed in the diet. Gut microbiota results indicated

that LPF treatment significantly enriched SCFA-producing bacteria such as

Megasphaera, Roseburia, Faecalibacterium, Blautia, Selenomonas, Dialister,

Acidaminococcus, Ruminococcus, and Bifidobacterium. Some of these

bacteria also had anti-inflammatory and other beneficial functions. Overall,

these findings suggested that Lactobacillus plantarum and Pediococcus

acidilactici co-fermented feed benefited growth performance and established

potential health impacts on the gut microbiota of nursery pigs.
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Introduction

Nowadays the beneficial effects of fermented feed on

animal growth performance and health have received increasing

attention. Fermentation is a metabolic process that produces

biochemical changes in the primary food matrix through

the action of microorganism enzymes (1). The importance

of fermented feed is to improve the nutrient digestibility

of raw material (e.g., corn and soybean meal) and increase

the availability of vitamins and minerals by reducing the

level of anti-nutritional factors (2). Apart from improved

nutritional quality, fermented feed could benefit animal growth

performance by boosting immune function and improving

intestinal morphology (3, 4). Zhou et al. reported that fermented

feed not only increased serum immunoglobulin levels but

also improved lymphocyte proliferation and transformation

(5). Another study revealed that supplementing piglet diets

with fermented soybean meal significantly increased both

villus height and villus: crypt ratio, which enlarged intestinal

surface area and thereby improved nutrition uptake ability (6).

Furthermore, Kiers et al. determined that fermented soybeans

promoted feed intake and weight gain, as well as reduced

diarrhea incidence of weaned piglets challenged with Escherichia

coli (7).

Evidence is accumulating to demonstrate that incorporating

fermented feed into swine diets has many beneficial effects

on intestinal microbiota. Lactic acid-producing bacteria such

as Lactobacillus plantarum and Pediococcus acidilactici are

commonly used for fermentation, which generates a large

amount of lactic acid and lowers the pH of the feed. Thus, the

fermented feed can inhibit pathogenic bacterial growth, deliver

probiotics, and prevent pathogenic bacteria from attaching to

the intestinal walls (8). Studies have shown that fermented

products reduced the proliferation of certain enteropathogens

like E. coli and Salmonella in both swine and broiler (4, 8).

Although previous studies have remarkably expanded our

knowledge regarding the impacts of fermented feed on gut

microorganisms, they delivered information only on a limited

set of microbial taxa. A gap in the understanding of how

fermented feeds modulate the entire complex gut microbial

ecosystem still exists. In this study, we tested Lactobacillus

plantarum and Pediococcus acidilactici co-fermented feed and

applied next-generation sequencing technology to achieve a

depth insight into how the gutmicrobiota of nursery pigs evolves

under the influence of fermented feed.

Materials and methods

Animal management and care followed the Institute of

Animal Husbandry and Veterinary Medicine of Hebei Province

Animal Care and Use Committee guidelines (IAHVM20190910-

1, Hebei, China).

Animals and experimental design

This study was carried out at a commercial swine farm

(Zhangjiakou, China). On the weaning day, a total of 32 piglets

(body weight 14.65 ± 0.46 kg; 25 ± 1 d of age) were transferred

to a nursery facility and were randomly assigned to the negative

control (NC, n = 16) or fermented feed (LPF, n = 16) groups.

The ambient temperature was set at 30◦C upon pig arrival and

was reduced 2◦C per week until a 24◦C setting was achieved.

Each pen was fully slatted (1.8 × 2.0 m2) and was equipped

with a nipple drinker and a feeder for ad libitum access to

diets and water. Each pen housed eight pigs. After a 14-day

adaption period, a 31-day feeding trial was conducted. All pigs

were supplied with a common diet during the adaption period

and then switched to the experimental diets at 39-day old. NC

diet: basal diet; LPF diet: NC + 10% Lactobacillus plantarum

and Pediococcus acidilactici co-fermented feed (M108, Dacheng

(Wanda) Tianjin Co., Ltd, China). Diets meet or exceed the NRC

(9) nutrient requirements and the Supplementary Tables S1, S2

detailed the basal diet and LPF diet formulations.

Data recording and sample collection

Individual pig body weight (BW) was measured at the

beginning and the end of the study. Each dietary treatment data

was used to calculate average daily gain (ADG).

Blood samples (n = 5) were collected into tubes via

jugular vena cava from randomly selected pigs (69-day-old)

at the end of the study and were assayed for total protein

(TP), blood urea nitrogen (BUN), glutamate oxaloacetate

transaminase (GOT), glutamate pyruvate transaminase (GPT),

and superoxide dismutase (SOD). At the same time,∼1 g (n= 4)

and 2 g (n= 10) rectal swab samples for individual animals were

randomly collected for short-chain fatty acid analysis and gut

microbiota analysis, respectively. Samples were temporally kept

on dry ice and then stored in an ultra-low temperature freezer

until further analysis.

Growth performance data analysis

Independent Samples T-Test program in IBM SPSS 22.0

statistical software was used for data statistical analysis and each

animal served as the experimental unit. The probability value of

p < 0.05 was considered significant.

16S rRNA sequencing and data analysis

Microbial genome DNA was extracted from the fecal

samples using the DNeasy PowerLyzer PowerSoil Kit (Qiagen,

Germantown, MD, USA), following the manufacturer’s
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FIGURE 1

E�ects of LPF diet on average daily gain, serum indexes, and fecal SCFAs of nursery pigs compared with NC diet. NC diet: basal diet, LPF diet: NC

+ 10% Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed.

instructions. DNA concentration and purity were decided by

NanoDrop One (Thermo Fisher Scientific, Madison, WI, USA)

and then diluted to 20 ng/µL for downstream application.

The 16S rRNA gene hypervariable regions V3–V4 were

used to identify bacteria and were amplified using primers

341F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT-3′). PCR reaction conditions

are initial denaturation at 98◦C for 2min, followed by 30 cycles,

including denaturation at 98◦C for 15 s, annealing at 55◦C for

30 s, and extension at 72◦C for 30 s, with a final extension at

72◦C for 5min and 4◦C hold. Agarose gel (1.2%) electrophoresis

was applied to assess the success of PCR reactions. In addition,

VAHTS DNA Clean Beads (Vazyme Biotech, Nanjing, Jiangsu,

China) and Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,

Carlsbad, CA, USA) were used to purify and quantify the

amplicons, respectively. Purified PCR amplicons were then

pooled together to generate a sequencing library. Agilent 2100

Bioanalyzer (Agilent, Santa Clara, CA, USA) and the Quant-iT

PicoGreen dsDNA Assay Kit were applied to detect the quality

and the concentration of the library, respectively. To detect

potential bias introduced during PCR amplification and the

MiSeq run, a mock community [ZymoBIOMICSTMMicrobial

Community Standard (Zymo, Irvine, CA, USA)] was included

in the sequencing library as a standard. Finally, the library was

sequenced on the IlluminaMiSeq sequencer withMiSeq Reagent

Kit V3 (600 cycles) to generate paired-end reads.

The fastq files downloaded from the Illumina sequencer

were analyzed using the QIIME2 (2019.4 release) microbiome

bioinformatics platform (10). QIIME 2 plugin DADA2

processed sequencing data including quality control, denoising,

merging, and removing chimera as well as singleton, and

generated a feature table for the downstream analysis (11).

Greengenes reference database (V13_8) trained Naive Bayes

classifier was used to annotate sequences (12, 13).

Alpha diversity and beta diversity were estimated in QIIME2

at a sub-sampling depth of 62380 sequences for each sample.

The analysis of similarity (ANOSIM) was performed to compare

the dissimilarity between the treatments. In addition, the

most differentially abundant bacteria between treatments were

identified by LEfSe (Linear discriminant analysis Effect Size,

LDA score > 2) at each taxonomic rank. Random forest R

package with default setting was used to identify microbial

signatures that best differentiate treatments at the feature

level (14).
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FIGURE 2

LPF diet modulated gut microbiota beta diversity based on (A) Bray-Curtis, (B) Jaccard, (C) Weighted UniFrac, and (D) Unweighted UniFrac

distances. The analysis of similarity (ANOSIM) was applied to estimate the dissimilarity between NC and LPF treatments. NC diet: basal diet, LPF

diet: NC + 10% Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed.

Results

The e�ects of co-fermented feed on
swine growth performance

Experimental data such as BW was provided in

Supplementary Table S3. The results indicated that the

LPF diet numerically improved average daily gain (p =

0.392) and significantly improved the TP concentration

(p = 0.002) as well as SOD (p = 0.017) compared with

the NC diet (Figure 1). We also found that the LPF

diet had no significant impacts on BUN, GPT, and GOT

(Supplementary Table S4).

As shown in Figure 1, the LPF diet numerically improved

the concentrations of propionate, isobutyrate, isovalerate, as

well as valerate (p > 0.05) and significantly improved acetate

(p= 0.020), butyrate (p = 0.017), and total SCFAs (p = 0.035)

compared with NC diet (more detailed information are provided

in Supplementary Table S5).

The influence of co-fermented feed on
gut microbial diversity

The gut microbiota alpha diversity was measured by

the Shannon index, Observed_species, and Chao1, however,

there were no significant differences between the treatments

(Supplementary Figure S1). Beta diversity, including Bray-

Curtis, Jaccard, Weighted Unifrac, and Unweighted Unifrac

distances, was used to determine gut microbiota structural

changes in response to co-fermented feed (Figure 2). The gut

microbiota profiles of the NC and LPF groups were distinctly

different. Principal coordinate analysis (PCoA) based on Bray-

Curtis dissimilarity and Jaccard distance showed remarkable
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FIGURE 3

Gut microbiota compositions at (A) phylum, (B) family, and (C) genus levels for each treatment. NC diet: basal diet, LPF diet: NC + 10%

Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed.

clusters for each experimental group. PCoA based on the

Weighted and Unweighted Unifrac distances also revealed the

distinct changes induced by co-fermented feed. The analysis of

similarities (ANOSIM) confirmed the pattern that the swine gut

microbiome was significantly different between NC and LPF

treatments (Bray-Curtis: R = 0.38, P = 0.002; Jaccard: R =

0.43, P = 0.001; Weighted Unifrac: R = 0.28, P = 0.001; and

Unweighted Unifrac: R= 0.54, P = 0.001).

Gut microbiota composition changes
induced by co-fermented feed

At the phylum level, the two treatment groups had

a similar pattern that the dominant phyla Firmicutes and

Bacteroidetes accounted for more than 95% of total sequences

(Figure 3A). The top 15 bacteria at the family level are shown

in Figure 3B, the most represented bacteria are Prevotellaceae,

Clostridiaceae, and Ruminococcaceae in both groups. But the

subdominant gut microbiota component varied at different

treatments. For example, S24-7 and Streptococcaceae, the

subdominant gut microbiota component in NC (10.7 and

7.4%, respectively) group, strikingly decreased in the LPF (3.8

and 3.1%, respectively) treatment. In addition, the relative

abundance of Veillonellaceae was dramatically promoted by the

LPF diet compared to that in the NC diet (7.5 vs. 1.9%). At the

genus level (Figure 3C), Prevotella is the predominant bacteria

in both groups (NC: 20.1% and LPF: 18.7%) among the top 15

genera. The relative abundance of Lactobacillus (8.6 vs. 3.8%),

Roseburia (4.2 vs. 1.6%), Gemmiger (3.5 vs. 1.4%), Megasphaera

(3.8 vs. 0.3%), and Faecalibacterium (2.7 vs. 1.3%) were largely

enriched by the LPF diet compared to the NC diet. However,

Streptococcus (7.2 vs. 2.9%) dramatically decreased in the LPF

treatment compared to the NC group.

A heatmap with cluster analysis showed the abundance of

the top 50 bacterial taxa at the genus level, revealing visible

compositional differences between piglets that received LPF

feed and those fed the NC diet (Figure 4). Complete linkage

hierarchical clustering based on Euclidean distance generated

a separation of LPF and NC treatments, except for one sample
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FIGURE 4

Heatmap of the relative abundance of top 50 genera. Clusters based on Euclidean distance using complete linkage clustering. NC diet: basal

diet, LPF diet: NC + 10% Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed.

from the LPF group joined the cluster containing samples from

the NC group.

Linear discriminant analysis of the gut
microbiota

We next performed LEfSe analysis to detect the most

differentially abundant bacterial taxa between the NC

and the LPF groups. A total of 44 represented bacterial

taxa were identified (Figure 5A). Many biomarker

genera like Megasphaera, Roseburia, Faecalibacterium,

Blautia, Selenomonas, Dialister, Acidaminococcus,

Ruminococcus, and Bifidobacterium were significantly

more abundant in the LPF group compared with

the NC group, whereas the relative abundance of

Bacteroides was distinctly decreased by the LPF diet

(Figure 5B).

For the other bacteria such as Gemmiger,

Phascolarctobacterium, Peptococcus, Collinsella, Butyricicoccus,

Oribacterium, Dorea, Bulleidia, Mitsuokella, Veillonellaceae,

OPB56, Tremblayales, Actinobacteria, Coriobacteriia,

Coriobacteriales, Coriobacteriaceae, Actinobacteria,

Campylobacterales, Epsilonproteobacteria, Bifidobacteriales,

and Bifidobacteriaceae were also higher in the LFP group,

whereas the NC group had significantly more abundant

Epulopiscium, Devosia, Anaerovorax, Parabacteroides,

Bacteroidia, Ruminococcaceae, Lachnospiraceae,
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FIGURE 5

(A) Linear discriminant analysis e�ect size (LefSe) of significantly di�erent relative abundant bacterial taxa between groups. (B) Relative

abundance of the important bacteria selected by LEfSe. NC diet: basal diet, LPF diet: NC + 10% Lactobacillus plantarum and Pediococcus

acidilactici co-fermented feed.

Mogibacteriaceae, Rhodobacterales, Hyphomicrobiaceae,

Bacteroidaceae, RF16, and Rikenellaceae.

Gut microbiota signature of pigs fed with
co-fermented diet

Microbial signatures that best differentiate the NC and LPF

treatments were identified by random forest at the species level.

The relative abundances of the top 500 bacterial features were

included in the random forest model and the top 20 bacterial

features that best predicted treatment are listed in Figure 6A.

The relative abundances of these features for individual piglets

are visualized on a heatmap (Figure 6B). Two members of

Lactobacillus (Features #50 and #124) and Blautia (Features

#224 and #440) were more abundant in the LPF group.

Discussion

In the current study, the supplementation of 10%

Lactobacillus plantarum and Pediococcus acidilactici co-

fermented feed numerically increased the ADG, which is

in accordance with previous reports that dietary fermented

feed exhibited beneficial effects on swine production (15–18).

However, several studies showed inconsistent results on the

effects of fermented feed on growth performance. For example,
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FIGURE 6

Gut microbiota signature of the pigs fed with LPF diet was determined by Random Forest. (A) Top 20 most predictive features that di�erentiate

LPF-fed pigs from those fed with NC diet. (B) Heatmap shows the relative abundance of Features (log 10 transformed) selected by Random

Forest. NC diet: basal diet, LPF diet: NC + 10% Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed.

Le et al. reported that Lactobacillus reuteri fermented wheat

failed to improve the growth performance of weaned piglets

(19). Liu et al. also observed that Bacillus subtilis fermented corn

bran had no effects on ADFI and ADG of finishing pigs (20).

The contradictory results could, at least in part, be explained

by the different experimental animal ages and the different

composition of fermented substrates, probiotic strains, as well

as addition amount applied to the diet.

Weaning is the most stressful event in pig life, which could

cause adverse impacts on gut health, such as villous atrophy,

crypt hyperplasia, increased gut permeability, and intestinal

inflammation (21). However, the SCFAs are considered

beneficial to the gut and thus could help reduce weaning stress.

A study conducted by Diao et al. demonstrated that SCFAs

improved intestinal barrier function and reduced E. coli count

in the ileal digesta in weaned piglets. Other studies confirmed

that SCFAs help maintains gut barrier integrity (22, 23), which

prohibits pathogens, toxins, or food proteins to pass into the

blood. In addition, SCFAs have beneficial immune system effects

in the intestinal mucosa (24, 25). Butyrate, a four-carbon short-

chain fatty acid, is a primary energy source for intestinal

epithelial cells and is anti-inflammatory (26). A study showed

that butyrate improved the growth performance of weaning pigs

fed diets containing 0.5% benzoic acid (27). Researchers also

found that amixture of SCFAs (propionic and formic) and capric

acid significantly improved the growth performance of piglets

(28). Overall, these findings suggested that SCFAs could reduce

the detrimental effects of weaning stress and improve the growth

performance of piglets. In the current study, the significantly

increased acetate, butyrate, and total SCFAs may contribute to

improved growth performance.

Consistent with previous studies (27, 29), our data showed

that the Firmicutes and Bacteroidetes were the two dominant

phyla and Prevotella was the most abundant genus in the gut

microbiota of nursery piglets. The abundance of Prevotella

might be linked with the diet style. Studies have shown that

the relative abundance of Prevotella strikingly increased after

the dietary transition from sow milk to corn/soybean meal-

based diets (27). A human study also found that the relative

abundance of Prevotella was associated with dietary habits and

a high percentage of Prevotella could be a consequence of

high fiber intake, improving metabolic energy absorption from

consumed plant polysaccharides (30). These indicated that the

gut microbiota coevolved with the diet.

LEfSe analysis was applied to identify the microbiota that

was significantly changed by the LPF diet. Compared with the

NC diet, LPF treatment significantly enriched SCFA-producing

bacteria such as Megasphaera, Roseburia, Faecalibacterium,

Blautia, Selenomonas, Dialister, Acidaminococcus,

Ruminococcus, and Bifidobacterium (31–41). Some of those

bacteria also have other beneficial functions, for example,

Megasphaera could enhance large intestine functions and

effectively prevent hyper-lactate accumulation-related diarrhea

(42), Roseburia has benefits from immune modulation to

Frontiers in Veterinary Science 08 frontiersin.org

https://doi.org/10.3389/fvets.2022.1076906
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Yang et al. 10.3389/fvets.2022.1076906

inflammatory regulation (43), Blautia and Faecalibacterium

had anti-inflammatory functions to help support gut health

(44–46). In addition, this study indicated that the LPF diet

selectively decreased the relative abundance of Bacteroides, an

acetate producer (47). It may be that co-fermented feed additive

prohibited the growth of Bacteroides directly or assisted the

growth of antagonistic species against Bacteroides within the

gastrointestinal tract. Taken together, our data indicated that

the LPF diet improved the relative abundance of bacteria with

potential probiotic properties.

In conclusion, this study demonstrated that the Lactobacillus

plantarum and Pediococcus acidilactici co-fermented feed

additive improved weaning pigs’ growth performance,

modulated gut microbiota diversity and composition, leading to

enrichments of SCFA-producing bacteria.
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