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Introduction: Hexavalent chromium or Cr(VI) is essential to various industries,

such as leather manufacturing and stainless steel production. Given that

inevitable leakage from industries pollutes the soil and thereby a�ects the

soil environment. Microbial communities could improve the quality of the

soil. Abundant bacterial communities would significantly enhance the soil

richness and resist external pressure, benefiting agriculture. But the pollution

of heavy metal broke the balance and decrease the abundance of bacterial

communities, which weak the self-adjust ability of soil. This study aimed to

explore changes in the diversity of soil bacterial communities and to identify the

influences of soil bacterial communities on enzymes in soil polluted by Cr(VI).

Methods: The target soils were sampled quickly and aseptically. Their

chromium content was detected through inductively coupled plasma-mass

spectrometry, and bacterial microbiome communities were explored through

MiSeq high-throughput sequencing. Then, the content of nitrite reductase

and catalases were investigated through enzyme-linked immunosorbent assay

(ELISA).

Results: Chromium content in polluted soils was higher than that in the

control soils at all depths. Sobs, Chao1, Ace, and Shannon diversity estimators

in the control were higher, whereas Simpson’s diversity estimators in the

control soils were lower than those of contaminated samples at all depths.

Contaminants a�ected the composition of the bacterial community. The

soil microbial species were relatively single and inhomogeneous in the

polluted soils. The bacterial phyla in polluted and controlled soils include

Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, which di�er

markedly in abundance.

Discussion: The results of these observations provide insights into the

ecotoxicological e�ects of Cr(VI) exposure to soil microorganisms. To sum

up these results are critical for evaluating the stabilized state of microbial

community structures, contributing to the assessment of the potential risk of

metal accumulation in soils.

KEYWORDS

microbiome, chromium, microbial diversity and structure, soil enzymes, MiSeq high-

throughput sequencing
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1. Introduction

Heavy metals are naturally occurring elements, including

non-essential elements, such as lead (Pb), cadmium (Cd),

and mercury (Hg), and biologically necessary elements,

such as copper (Cu), manganese (Mn), and zinc (Zn).

Some heavy metals in soil are physiologically necessary for

plants and animals, exerting indirect or direct effect on

agricultural output and public health. To date, concern about

heavy metal pollution of soil has grown throughout the

world (1).

Heavy metal pollution is a serious problem because

threatens the natural environment, especially greenhouse

soils, and human health by generating toxicity and

promoting bioaccumulation (2). Soil contaminations threaten

consumer health through food chain accumulation (3, 4).

Large quantities of heavy metals negatively impact soils

by reducing their productivity, especially percentage of

seed germination, and bacterial biomass (5, 6). Previous

research employing fingerprinting techniques demonstrated

that heavy metal contamination has immediate and long-

term consequences on terrestrial microbial communities

(7, 8). The variety and structure of microorganisms are

considerably altered after heavy metal pollution (8–10).

However, few studies have revealed interactions among

microorganisms in heavy metal-contaminated soils,

and the energy and nutrition cycling of soil microbes

are unknown.

In heavy metal-polluted soil, exceeding threshold

levels of heavy metals, such as Cd and Pb, may have a

deleterious impact on the quantity and quality (function

and diversity) of the microbiota. Specifically, the high

accumulation of significant metals might decrease

microorganism community diversity, reducing resistance

and resilience to environmental stress. Cr(VI) is the seventh

most abundant element and is abundant in the Earth’s

crust (11). It is one of the most highly carcinogenic and

soluble elements that exist as oxyanions, such as CrO2−
4

and Cr2O
2−
7 (12). Cr(VI) was widespread use in some

industries, such as leather manufacturing and stainless

steel production; inevitable leakage through industrial

TABLE 1 Attribute of samples collected in the abandoned factory.

Groups Location Soil condition

Control soils N42◦03
′

57.77
′′

-N42◦03
′

57.95
′′

Soil exhibited the normal

traits

E123◦29
′

27.34
′′

-E123◦29
′

27.92
′′

Chromium soils N42◦03
′

57.99
′′

-N42◦03
′

58.31
′′

Soil showed the distinct

yellowish brown

E123◦29
′

28.80
′′

-E123◦29
′

29.38
′′

wastewater leads to soil pollution, which further affects the soil

environment (13).

Soil microbial communities improve soil quality (14, 15).

The diversity of soil microbial communities is related to soil

properties (16). However, how soil bacterial communities

respond to changes in heavy metals, especially Cr(VI),

remains uncertain. Soil bacterial communities are crucial

indicators for soil pollution and can be investigated

through Illumina high-throughput sequencing. In this

study, Cr(VI)-polluted soil samples were examined via

high-throughput sequencing technology, and the responses

of soil bacterial communities to Cr(VI) were determined.

The richness and evenness of microbial composition were

analyzed in uncontaminated and polluted soils collected from

three depths.

In the current study, we used the Illumina MiSeq

technique to analyze microbial communities in

abandoned and heavy metal-contaminated soils. We

postulated that interactions between microbes and

heavy metal contamination in abandoned factory soils

impact microbial communities and that these altered

interactions may have enabled bacteria to adapt to

heavy metals.

TABLE 2 The contents of Cr (mg/L) in di�erent groups.

Depth (cm) Control soils Chromium soils

0–20 4.597± 0.015 162.403± 0.569∗

20–40 3.185± 0.003 136.291± 0.473∗

40–60 1.784± 0.008 102.573± 0.430∗

Data of diverse depths between control and chromium soil groups were represented as

mean ± SD. Values in the same row with “∗” were significantly different (p < 0.05)

in the same depth between control and chromium groups, respectively. All data in the

experiment were performed for triple independent experiments.

FIGURE 1

Rank-abundance curves describing the bacterial abundance and

evenness. All data in the experiment represent three

independent experiments.
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2. Materials and methods

2.1. Field description and sample
collection

This study was conducted in an abandoned factory (42◦

03
′

N, 123◦ 29
′

E) in Shenyang, Liaoning Province, China. This

region typically has a north temperate continental monsoon

climate, characterized by a dry and cold winter, mild and

rainy summer, and strong winds in spring and autumn. Two

land types (uncontaminated and polluted) and three depths

(0–20, 20–40, and 40–60 cm) were used in exploring the

effects of Cr(VI) on soil bacterial communities. Using the

five-point sampling approach and soil samplers, we collected

18 soil samples (50 g each). The samples were separated into

two portions after homogenization and then placed in the

dark. One portion was stored at 4◦C; and the other, at

room temperature. Each land type had three replicated sites

(Table 1).

2.2. Detection of chromium contents in
soils

Microwave digestion and inductively coupled plasma-

mass spectrometry (ICP-MS) were conducted. In brief,

soils (0.2500 g, dried, filtered through a 0.15-mm nylon

screen) were digested in a disintegration tank containing

11mL of a 6:3:2 mixture of nitric, hydrochloric, and

hydrofluoric acid. Then, the mixture was supplemented

with ultrapure water and heated again to discharge acid.

FIGURE 2

Pan-core species analysis was used to analyze total species and core species richness (A, B). The rarefaction curve was drawn to quantify the

soils’ OTU richness (C, D). All data in the experiment represent three independent experiments.
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TABLE 3 Alpha diversity analysis for microbial diversity.

Control soils Chromium soils

0–20 cm 20–40 cm 40–60 cm 0–20 cm 20–40 cm 40–60 cm

Ace 2,030.431± 9.7192 2,185.8218± 33.5308 2,053.4268± 30.1319 1,579.0002± 3.8575∗ 1,683.8215± 9.8606∗ 1,430.823± 179.3792∗

Chao 2,045.4253± 15.8363 2,199.5798± 28.9574 2,090.3491± 34.3777 1,595.0699± 12.2678∗ 1,677.997± 5.1928∗ 1,446.1553± 173.7856∗

Coverage 0.9859± 0.0029 0.9847± 0.0021 0.9868± 0.0009 0.9915± 0.0011∗ 0.9879± 0.002∗ 0.992± 0.0002

Shannon 5.9618± 0.0403 6.1274± 0.0019 6.2207± 0.0132 5.5873± 0.0251∗ 5.1206± 0.0594∗ 5.0834± 0.0191∗

Simpson 0.0069± 0.0005 0.0052± 0.0001 0.0058± 0.0002 0.0098± 0.0004∗ 0.0264± 0.0029∗ 0.0169± 0.0004∗

Sobs 1,688.6667± 30.0888 1,807± 56.0268 1,798.3333± 35.1331 1,331.3333± 26.0256∗ 1,331± 31.3209∗ 1,202.6667± 112.3848∗

Data of diverse depths between control and chromium soil groups were represented as mean ± SD. Values in the same row with “∗” were significantly different (p < 0.05) in the same

depth between control and chromium groups, respectively. All data in the experiment were performed for triple independent experiments.

FIGURE 3

Venn diagram evaluating the distribution of OTUs among the di�erent treatments to reflect the di�erences and similarities of soil samples (A).

Pie diagrams were used to evaluate the distribution of genus among the C1, C2, C3, T1, T2, and T3 (B), C1, C2, and C3 (C), T1, T2, and T3 (D), C1

and T1 (E), C2 and T2 (F), and C3 and T3 (G), respectively. All data in the experiment represent three independent experiments.

Finally, the solution was placed in a 50mL volumetric

flask, and the volume was determined. The chromium

levels of the soils were analyzed through ICP-MS (Hewlett-

Packard, HP-4500, Avondale, PA, USA) according to previous

methods (17).

2.3. Soil DNA extraction and sequencing

Soil microbial genomic DNA was isolated using an

E.Z.N.A. soil DNA kit (Omega Bio-tek, Norcross, GA, U.S.)

according to the manufacturer’s instructions. DNA extracts

were checked through 1% (w/v) agarose gel electrophoresis

and stored for PCR amplification. The different regions of

the 16S rRNA were amplified using special primers (V3–

V4 regions for forward primers containing the sequence 5
′

-

ACTCCTACGGGAGGCAGCAG-3
′

and reverse primers 5
′

-

GGACTACHVGGGTWTCTAAT-3
′

). The PCR protocol was as

follows: 3min denaturation at 95◦C for the initial amplification,

followed by 27 cycles at 95◦C for 30 s, annealing at 55◦C

for 30 s, extension at 72◦C for 45 s, and a final step at 72◦C

for 10min. PCR products were purified using the AxyPrep

DNA gel extraction kit (Axygen Biosciences, USA) according to

the manufacturer’s instructions and were quantified using the

QuantiFluor-ST sensitive fluorometer (Promega, USA). High-

throughput sequencing was performed on an Illumina MiSeq

sequencing platform (Illumina, San Diego, USA) according to

standard protocols. The obtained raw sequences were filtered

according to quality.

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2022.1066048
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhu et al. 10.3389/fvets.2022.1066048

FIGURE 4

Bacterial community compositions and structures of soil samples. Bar diagrams were made to present the relative abundance levels at the

phylum level of all samples. All data in the experiment represent three independent experiments.

FIGURE 5

Significant di�erences in bacterial community composition (A–L) were analyzed at the phylum level. Values in the same row with “*” were

significantly di�erent (p < 0.05) at the same depth between the control and chromium groups, respectively. All data in the experiment represent

three independent experiments.
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FIGURE 6

Bacterial community analysis was performed to present the relative abundance at the genus level. All data in the experiment represent three

independent experiments.

2.4. Catalase (CAT) and nitrite reductase
(NR) levels of soils

The catalase (CAT) and nitrate reductase (NR) levels

of the soils were determined using commercially available

kits (Cat: ml076929 and ml076879, Mlbio, Shanghai, China).

Other procedures were performed by strictly following the

manufacturer’s instructions.

2.5. Bacterial diversity and statistical
analysis

Operational taxonomical units (OTUs) with 97% similarity

were clustered using the algorithm UPARSE version 7.1 (http://

drive5.com/uparse/), and chimeric sequences were identified

and removed using UCHIME. Alpha indices were acquired

via Mothur 1.30.2 (https://www.mothur.org/wiki/Download_
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FIGURE 7

The similarity and di�erences in bacterial community structures in the soil samples were analyzed by heatmap. All data in the experiment

represent three independent experiments.

mothur). Tables for each taxonomy and beta diversity distance

calculation were analyzed with Quiime 1.9.1 (http://qiime.

org/install/index.html). The data were analyzed on the online

platform of Majorbio Cloud Platform (www.majorbio.com)
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FIGURE 8

Soil samples were separated by hierarchical clustering analysis and PCoA. The similarity and di�erences in the bacterial community structures

were determined by hierarchical clustering tree analysis (A). PCoA analysis of the bacterial communities at the OTU level (B). All data in the

experiment represent three independent experiments.

(18–21). The results are presented as the mean ± standard

deviation and were checked by one-way ANOVA or student’s

t-test (t-test) using Statistical Package for the Social Sciences

(version 19.0; SPSS Inc., Chicago, IL, USA). P < 0.05 indicated

statistical significance.

3. Results

3.1. Chromium contents in soils

The measured soil chromium contents varied substantially

between the two land types (uncontaminated and polluted)

and among the three depths (0–20, 20–40, and 40–60 cm).

The concentrations of chromium increased in polluted soils at

all depths compared with those in reference soils. Meanwhile,

chromium content decreased with increasing depth (Table 2).

3.2. Alteration to soil microbial diversity
index

Rank abundance curves were obtained by ranking the

number of species (or OTUs) at a certain taxonomic level

as the horizontal coordinate and the relative percentages of

the number of species at that taxonomic level as the vertical

coordinates. Low-quality reads were removed from the OTUs,

and investigation was conducted using rank abundance curves

for the analysis of bacterial abundance and evenness (Figure 1).

The curve width represented bacterial abundance, and the curve

shape indicated the evenness of soil bacteria. Changes in total

species and core species richness were described through Pan–

Core species analysis (Figures 2A, B).

Alpha (α) diversity measurements were calculated to

describe microbial diversity, such as OTU Sobs, Chao, Ace,

Shannon, Simpson’s, and coverage diversity estimators (Table 3).

Initially, the coverage diversity indicator of each sample was

over 98%, thereby indicating that the identified 16s rDNA

sequences can represent the majority of bacteria present in the

samples. Similarly, the uncontaminated samples had the highest

Sobs, Shao, Ace, and Shannon diversity estimators but had the

lowest Simpson’s diversity estimator in all depths compared with

polluted samples. Table 3 shows that the bacterial microbiomes

ranged from 1,062 to 1,777 in the Sobs diversity estimator,

1,253.3 to 2,190.3 in the Chao diversity estimator, 5.04 to

6.22 Shannon diversity estimator, and 0.00501 to 0.0288 in the

Simpson diversity estimator.

Rarefaction curve analysis was used in comparing the

OTU indicators at different sequencing depths and taxon

richness, and whether the acquired sequence amounts were

sufficiently quantified was determined. The rarefaction

curves in Figures 2C, D showed similar patterns for all

soil samples, showing that soils were equally sampled and

sufficiently sequenced.

3.3. Bacterial community composition
complexity

As shown in Figure 3A, the Venn diagram used to evaluate

out distribution in different treatments at the genus level
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FIGURE 9

The Kruskal-Wallis H-test was chosen to detect the richness of microbial communities exhibited by di�erent samples at the phylum level. All

data in the experiment represent three independent experiments.
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FIGURE 10

LEfSe was used to discriminate the microbial communities of all soil samples. Significantly a�ected microbial taxa were shown in LEfSe

multi-level species hierarchy tree diagram. All data in the experiment represent three independent experiments.

reflected that 263 OTUs were common in all soil samples. In

addition, up to 400 and 433 OTUs belong to uncontaminated

and polluted soils, respectively. C1 and T1 had 366 OTUs,

C2 and T2 had 377, and C3 and T3 had 367. However, C1,

C2, C3, T1, T2, and T3 had 8, 4, 23, 10, 11, and 15 unique

OTUs, respectively. At the genus levels, Acidobacteria was the

dominant bacterium in all soil groups (C1–C3 and T1–T3,

8.06%, Figure 3B), control groups (C1–C3, 10.26%, Figure 3C),

C1 and T1 groups (6.84%, Figure 3E), C2 and T2 groups (5.03%,

Figure 3F), and C3 and T3 groups (7.80%, Figure 3G). However,

Silanimonas was the dominant bacterium in the polluted soil

groups (T1–T3, 8.28%, Figure 3D).

The composition and structure of bacterial communities

in the samples were analyzed at different taxonomic levels.

Uncontaminated and contaminated groups showed analogous

bacterial diversity but differed in terms of abundance

to a certain extent (Figures 4, 6). Bacterial community

analysis revealed relative abundance at the phylum level

(Figure 4). Proteobacteria was the predominant phylum,

and Actinobacteria was the secondary phylum. The relative

abundance of bacterial phyla changed in the two soil types.

In the C1 samples, Proteobacteria was 28.95% of the total

bacteria, and the percentages of Chloroflexi in C1, C2, C3, T1,

T2, and T3 were 21.55, 17.78, 22.24, 8.50, 6.37, and 4.97%,

respectively. Acidobacteria and Chloroflexi decreased, whereas

Proteobacteria and Deinococcus-Thermus were enriched in

the Cr(VI)-polluted soils. At the phylum level, significance

analysis of the relative abundance indicated that the significance

levels of Actinobacteria, Gemmatimonadetes, Firmicutes,

Deinococcus-Thermus, Cyanobacteria, and Nitrospirae

in the chromium groups were higher than those in the

control groups, whereas the significance levels of Chloroflexi,

Acidobacteria, Bacteroidetes, and Planctomycetes were lower

than those of the control groups. Additionally, Latescibacteria

and Ignavibacteriae were unique in the control groups

(Figure 5).

The abundance of relative bacterial community at the

genus level is illustrated in Figure 6. Norank Acidobacteria,

norank Anaerolineaceae, and norank Nitrosomonadaceae

were the dominant genera in the control groups (C1–C3).

However, the dominant genera in polluted soils were diverse

when the contaminants were input. Specifically, Lysobacter

(8.33%), Luteimonast (4.36%), and norank Longimicrobiaceae

(4.04%) were dominant in T1; Silanimonas (15.94%), norank

Gemmatimonadetes (6.71%), and Nesterenkonia (5.45%) were

dominant in T2; and Silanimonas (8.27%), Truepera (7.28%),

and Nesterenkonia (6.52%) were dominant in T3.

A heatmap of microbial communities was further analyzed

for the identification of the similarity and differences among

bacterial community structures in the soil samples. The genera

of the control groups (C1–C3) had a cluster pattern of

bacterial community composition different from the pattern

observed in polluted soils (T1–T3; Figure 7). At the genus

level, the relative abundance of Methylotenera, Rivibacter,
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Nitriliruptoraceae,Wenzhouxiangella, Luteimonas, Silanimonas,

Truepera, and Nesterenkonia in the chromium groups were

higher than those in the control groups, whereas the relative

abundance of Rhodocyclaceae, 43F-1404R, and H16 were lower

than those in the control groups.

Bacterial community composition varied by chromium

content and soil depth. Therefore, the samples were separated by

principal coordinate analysis (PCoA) and hierarchical clustering

analysis, as illustrated in Figure 8B. At the OTU level, the PCoA

indicated the clear separation of the bacterial communities

in different groups. The microbiota of the T1, T2, and T3

samples was distinct from that of the C1, C2, and C3 samples.

The first axis explained the 58.91% cumulative percentage

variance of species, and the second axis explained 15.83%.

The two axes explained a total of 74.74% variance of species.

Meanwhile, further analysis of microbial communities was

executed through a hierarchical clustering tree, which was

used in identifying similarities and differences among bacterial

community structures (Figure 8A). The microbial community

structures in uncontaminated and polluted soils substantially

differed, and these structures were divided into two clusters.

A Kruskal-Wallis H-test was used for detecting richness

exhibited by different samples of microbial communities at

the phylum level. Proteobacteria, Actinobacteria, Chloroflexi,

and Acidobacteria were the dominant bacterial phyla in all

samples, but the C1–C3 and T1–T3 samples differed in the

abundance of these bacteria (Figure 9). In addition, LDA effect

size analysis (LEfSe) was used to discriminate between microbial

communities in uncontaminated soils and those in polluted

soils. Figures 10, 11 show differences in bacterial taxa. The

dominant bacterial phyla were Bacteroidetes, Verrucomicrobia,

Armatimonadetes, Chlorobi, and WS2 in C1; Planctomycetes

and Latescibacteria in C2; Chloroflexi, Acidobacteria, and

Nitrospirae in C3; Proteobacteria, Cyanobacteria, and BRC1

in T1; Gemmatimonadetes, BJ_169, M6__Dependentiae, and

Parcubacteria in T2; and Actinobacteria, Deinococcus_Thermus,

and Firmicutes in T3.

3.4. Correlation among environmental
factors, soil samples, and bacterial floras

The correlation of environmental factors, soil samples, and

bacterial floras were further assessed by redundancy analysis

(RDA) (Figure 12). RDA results illustrated that the sequence

of contributors to the diversification was as follows: bacterial

community’s chromium content > NR > depth > CAT (P <

0.05). The factors involved in chromium content, soil depths,

and enzyme levels explained 85.79% diversity of the bacterial

communities. The RDA1 axis explained 59.52% of the total

variance separating C1–C3 groups from T1–T3 groups.

FIGURE 11

LEfSe was used to discriminate the microbial communities of all

soil samples. LDA discriminant bar charts were used to count

microbial taxa that di�ered significantly in all groups. All data in

the experiment represent three independent experiments.
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FIGURE 12

Based on di�erent environmental factors, RDA result of bacterial communities (A) and heatmap of correlations (B) in soil samples. Values in the

same row with “*, **, and ***” were significantly di�erent (p < 0.05, p ≤ 0.01 or p ≤ 0.01). All data in the experiment are from three independent

experiments.

3.5. Changes in soil enzymes

The content of antioxidant enzymes (NR and CAT)

decreased in Cr(VI)-polluted soils at all depths compared with

those in C1–C3. Moreover, the NR and CAT content increased

with depth (Figure 13).

4. Discussion

According to the national survey bulletin on soil pollution in

China, 34.9% of all wastelands surveyed exceeded the standard

in terms of the amount of pollutants. The involved pollutants

were zinc, chromium, mercury, lead, arsenic, and polycyclic

aromatic hydrocarbons, which were produced by chemical and

metal manufacturing industries (22). In the present study,

chromium content in T1–T3 notably exceeded the highest

national control standard value of 1,300 mg/kg (GB 15618-

2018). The high risk of potentially toxic metals migrating to the

environment can lead to the frequent migration of potentially

toxic metals into the soil (23).

As a result of the influences of soil microbes and soil

environments, differences in soil microbes are inconspicuous

even after long-term succession (24, 25). Hence, bacterial

microbiome communities were used in identifying changes in

Cr(VI)-polluted soils.

In this study, T1–T3 curves were steeper than C1–C3 curves,

indicating that the species uniformity of the control groups

was more consistent than T1–T3. Furthermore, OTU levels

increased with depth in C1–C3, whereas those of T1–T3were the

opposite. The results obtained from the rank abundance curve

highlighted a significant fraction of variations in C1–C3 and

T1–T3 diversities (in horizontal and vertical axes) that can be

attributed to the content, mobility, and permeability of Cr(VI).

Table 2 shows that the chromium content of T1–T3 was higher

than that of C1–C3 and had a decisive effect on the microbiome.

Meanwhile, chromium content at different depths influenced

bacterial taxa distribution and microbiome evenness.

Biodiversity is evaluated by the richness, evenness, and

α diversity indices of the microbial composition (26). In the

present research, Sobs, Chao, Ace, Shannon, and Simpson’s

diversity indices and coverage indices were assessed to represent

the richness and evenness of a microbial community. The

results of microbial richness in Sobs, Chao, and Ace indices

were similar in different land types but varied by soil depth.

The results of microbial evenness in Shannon and Simpson’s

diversity indices indicated an analogous phenomenon. These

results revealed that soil microbial diversity was stable across
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FIGURE 13

Antioxidant enzyme (NR and CAT) contents of soils (A, B). Data showing the diverse depths between Control and Chromium soil groups are

presented as the mean ± SD. Values in the same row with “*” were significantly di�erent (p < 0.05) in the same depth between the Control and

Chromium groups. All data in the experiment represent three independent experiments.

soil environments; therefore, soil microbial diversity can reflect

soil properties (27). Moreover, the diversity indices of the

microbial composition revealed that the microbial community

is crucial to the preservation of the function and stability of

soil ecosystems (28–30). The results in Figures 2C, D indicate

that the microbial community significantly decreased after being

polluted with Cr(VI).

Proteobacteria and Actinobacteria were the dominant phyla

in all soil samples, consistent with other reports (31, 32). The

properties of Proteobacteria, a slightly acidic and metabolically

diverse species, can explain the high presence of these in

soil samples (33). In addition, Actinomycetale are common in

metal-impacted soils, especially chromium-polluted soils (34–

36). Analysis of the similarity tree of multiple samples indicated

the similar community structures of C1–C3 and Cr(VI)-polluted

soils. By contrast, the relative abundance of strains markedly

differed between the control and polluted soil samples.

The findings revealed that changes inmicrobial diversity and

abundance can affect soil microbial biomass and activity (37).

Therefore, soil microbial community (diversity and structure)

integrated with microbial biomass and activity might be used in

developing an approach for evaluating the risk of contaminated

soils. Thus, a potential method for the bioremediation of

contaminated soil can involve the addition of uncontaminated

soil bacteria and removal of contaminated soil bacteria for soil

microbial stability. Such bacteria include Latescibacteria (which

only existed in control soils), which can degrade organics (38).

The composition of soil bacterial communities is closely

related to soil properties, such as antioxidation enzymes; hence,

information regarding shifts in the antioxidation enzymes of soil

may be used in predicting changes in the bacterial community

after Cr(VI) pollution. In addition, soil microbial biomass and

activity can sensitively assess soil quality. Pb can bind with NH2

and SH enzyme groups, thereby causing enzymes to lose their

activity and preventing them from harming soil microorganisms

(39, 40). Pb might underlie the mechanism for decreasing CAT

and NR levels in Cr-polluted soils.

Previous reports have demonstrated that pollutants, enzyme

levels, and spatial depth can reveal the diversity of soil bacterium

(41, 42). Among the influencing parameters, chromium was

closely related to bacterial communities’ composition and

structure (r2 = 0.9412, P = 0.001), whereas depth was weaker

linked to diversity (r2 = 0.3728, P = 0.03). Soils were

collected at three depths, but the phyla were dominated by

Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria.

The depth-specific differences were not the main factors for

bacterial diversity in this study.

5. Conclusion

MiSeq sequence results showed a significant difference

between Cr(VI)-polluted soils and control soils, regardless

of the depths of Cr(VI)-polluted soils. The data of soil

microbial biomass indicated that the soil polluted with Cr(VI)

suppressed the microbial diversity and antioxidized enzyme

levels, changing bacterial community composition and structure

significantly, revealing the distribution of Latescibacteria and

Ignavibacteriae. The depths values and CAT levels had minor

contributions to bacterial community changes. By contrast,

Cr(VI) contamination was the main factor that affected the

balance of bacterial microbial communities by inhibiting

bacterial diversity, microbial community structure complexity,

and antioxidant enzyme levels. Collectively, differences in

bacterial microbiome communities and antioxidant enzyme

levels of soils can facilitate the assessment of the degree
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of chromium contamination in soil samples. These results

are critical for stabilizing the state of microbial community

structures in view of the potential risk of metal accumulation

in soils.
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