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Parainfluenza virus type 3 (PIV-3) and coronaviruses (CoV) are commonly

found in respiratory tracts of ruminants and capable of causing clinical

disease. Here, we investigated the cause of ill-thrift and sudden death in a

five-month-old male fallow deer which occurred in December 2019. The calf

was one of the five calves in a herd of 170 deer that, along with three adult

hinds, died during a 2-week period. The deer calves were in a shed, sharing

airspace with young cattle that had been reported to be coughing. Significant

gross pathology was observed in the respiratory and alimentary tracts of the

deer calf and histopathology of the lung and trachea was suggestive of likely

involvement of PIV-3. Strong and specific cytoplasmic labeling of bronchiolar

epithelium and terminal airway, alike those seen with PIV-3 pneumonia in

cattle, was observed using a polyclonal bovine PIV-3 antibody. Metagenomic

analysis detected a PIV-3 and a CoV in the lung tissue. The PIV-3 L protein

gene had the highest sequence identity with those of bovine PIV-3 (83.1 to

98.4%) and phylogenetically clusteredwith bovine PIV-3 in the genotypeC. The

CoV spike protein gene shared 96.7% to 97.9% sequence identity with those

of bovine CoVs, but only 53.1% identity with SARS-CoV-2 reference virus. We

believe this is the first report of PIV-3 and CoV co-infection in fallow deer and

their association with fatal pneumonia; major pathology caused by PIV-3.
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fallowdeer (Damadama), deer coronavirus, deer parainfluenza virus, deer pneumonia,
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Introduction

Bovine parainfluenza virus type 3 (BPIV-3) is one of the main pathogens involved

in the bovine respiratory disease complex, with potential to increase susceptibility to

other respiratory pathogens. In cattle, the manifestation of BPIV-3 infection could range

from subclinical to acute respiratory disease, with high fever, a nasal discharge and

coughing. Co-infection of BPIV-3 with other viral, bacterial and mycoplasmal pathogens

such as bovine respiratory syncytial virus (BRSV), bovine herpesvirus 1 (BoHV-1),

Mycoplasma bovis, Pasteurella multocida and Mannheimia haemolytica are generally
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common in cattle. The involvement of more than one pathogen

is likely to exacerbate respiratory system pathology. BPIV-3

infection has been serologically detected in several domestic and

free-ranging ungulates, including cattle, goats, sheep, camels,

and new-world camelids (1). Cross-species infection of BPIV-3

has also been documented in sheep (2, 3), water buffalo (4) and

humans (5). PIV-3 of unknown genotype has also been isolated

from nasal swabs of one healthy fallow deer and one mule deer

(6). A live attenuated BPIV-3 vaccine, which was developed to

prevent human PIV-3 disease, was shown to be infectious and

immunogenic in 6- to 36-month-old infants and children (7).

This further emphasizes cross-species potential of BPIV-3. PIV-

3 can be transmitted either by aerosol or by contact with fomites

contaminated with nasal discharge.

BPIV-3 is an enveloped, negative strand RNA virus in the

species Bovine respirovirus 3, of the genus Respirovirus, within

the family Paramyxoviridae, order Mononegavirales (8, 9), with

three genotypes: BPIV-3A, BPIV-3B and BPIV-3C (10, 11).

The BPIV-3A genotype has a worldwide prevalence (12), whilst

BPIV-3B is restricted to Australia, Argentina, and the USA (4,

10, 13). BPIV-3C was first identified in China, but has also been

isolated in Korea, the USA, Argentina, and Turkiye (4, 11, 13–

15). A Japanese BPIV-3C isolate (HS9) was found to be distinct

from other reported BPIV-3 strains (sequence accession number

LC000638.1) (16).

Similar to PIV-3, coronaviruses (CoVs) also infect diverse

mammalian and avian species causing respiratory, enteric,

neurologic, and hepatic disorders (17). Since identification of

SARS-CoV-1 in 2003, a significant increase in the number of

emerging CoVs have been recorded (18, 19). Discovery of these

new viruses has highlighted the ability of CoVs to jump host-

species barriers e.g., SARS-CoV-1 in palm civet and humans

(20) and Middle East Respiratory Syndrome CoV in camels

and humans (21–23). Naturally acquired infections of SARS-

CoV-2 have also been confirmed in pet dogs, cats, ferrets, wild

tigers, lions, puma, snow leopard, Western lowland gorillas,

farmed American mink and white-tailed deer, Odocoileus

virginianus [reviewed by (24, 25)]. Human-to-deer transmission

events followed by subsequent deer-to-deer spread (26, 27).

Bovine CoV (BCoV) represent excellent examples of CoVs that

extensively cross species barriers (28, 29). The viruses have

been identified in various domestic and wild ruminant species

(water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer,

wild cattle, antelopes, giraffes, and wild goats) as well as dogs

and humans [reviewed by Vlasova and Saif (29)]. Due to the

phylogenetic closeness of BCoV and SARS-CoV-2, the use of

cow’s milk immune to BCoV has even been proposed for control

of the virus in humans (30).

BCoVs are enveloped, positive strand RNA viruses in

the genus Betacoronavirus within the family Coronaviridae,

order Nidovirales (https://talk.ictvonline.org/). Coronaviruses

are recently divided into two subfamilies - Letovirinae and

Orthocoronavirinae, each comprising of one, Alphaletovirus and

four, Alphacoronavirus, Betacoronavirus, Gammacoronavirus

and Deltacoronavirus genera respectively. The first two genera

of Orthocoronavirinae include only mammalian CoVs, while all

avian CoVs are members of the other two genera.

Here, we present diagnostic investigation of loss of body

condition, diarrhea, malaise, dyspnoea, and sudden death in a

herd of 170 fallow deer which occurred in December 2019. Five

calves, aged around 5 months old, and three adult hinds died

over a two-week period. The hinds and calves were together

at pasture when the first affected deer, an older hind, was

found dead. The hinds were deemed to be in poorer body

condition than in previous years. At this time the calves (n =

50) were weaned, brought indoors and fed silage, whilst the

hinds remained at pasture. Over the following 2 weeks, some of

the calves began to appear lethargic and stood apart from the

group, and one calf developed diarrhea. The calves were treated

with injectable ivermectin, and the weaker calves were given a

trace element bolus. The calves were housed in a shed sharing

a common airspace with a group of heifers but had no direct

contact. Coughing was noted in the heifer group, but they were

otherwise healthy. None of the animals were vaccinated against

respiratory pathogens. No further issues with the deer calves

or the heifers were observed. The carcass of one deer calf that

died was submitted to APHA-Thirsk Veterinary Investigation

Center (VIC) for examination.We carried out gross pathological

and histopathological examinations, immunohistochemistry

(IHC) and next generation sequencing (NGS) to investigate

this disease, characterize the pathogens detected, and provide

evidence for their association with the disease.

Materials and methods

Post-mortem examination

The post-mortem examination followed the standard

protocol used in the APHAVIC, ensuring a systematic approach

and comprehensive assessment of all body systems. Charcoal-

medium swabs were taken for bacteriology, and a range of fresh

and formalin-fixed tissue samples; lung, liver, spleen, kidney,

brainstem, urine, aqueous humor, feces and abomasal and small

intestinal content were collected and stored for further analysis.

Pathology and immunohistochemistry
(IHC)

Sections (3–5µm) of paraffin embedded formalin-fixed

tissues were either stained with haematoxylin and eosin (H&E)

or subjected to IHC for microscopic examination. IHC was

performed using rabbit polyclonal antibody against formalin-

killed whole BPIV-3 (Prairie Diagnostic Services Incorporated)

and monoclonal antibodies (mAb) against BRSV (Vector
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Laboratories) and BCoV (RTI, LLC). The BCoV mAb is

produced as mouse ascites fluid and reacts with North American

strains of BCoV, recognizing an epitope on the nucleocapsid

protein of the virus. The staining was continued with

DAKO REAL EnVision Detection System, Peroxidase/DAB+,

Rabbit/Mouse (Agilent Technologies) for visualization.

Next generation sequencing

Nucleic acid extraction from frozen lung tissue was

performed as described by Dastjerdi et al. (31). NGS was

carried out at the Central Sequencing Unit, APHA-Weybridge

using Small Whole-Genome - Nextera XT (Illumina) kit

for library preparation and Illumina NextSeq sequencing

platform. Sequence reads were analyzed using SeqMan NGen

17 (DNASTAR) through de novo and reference guided

assembly applications using GenBank virus reference sequences.

Phylogenetic analysis of the PIV-3 and CoV detected in this

study were carried out using amino acid sequences for complete

L and spike proteins, respectively. The sequences were aligned

using theMegAlign software (DNASTAR). Phylogenetic analysis

was conducted in MEGA X (32) and the evolutionary history

was inferred using theMaximumLikelihoodmethod, Le Gascuel

model (33) and 500 bootstrap estimation (34). Initial tree for

the heuristic search was obtained automatically by applying

Neighbor-Join and BioNJ algorithms to a matrix of pairwise

distances estimated using the JTT model, and then selecting the

topology with superior log likelihood value.

Other investigations

Aerobic bacteriology was performed by routine methods

using sheep blood agar and MacConkey’s agar plates incubated

at 37◦C for 24 h. Clostridium perfringens toxin testing on small

intestinal contents was carried out using Enterotoxaemia ELISA

kit (Bio-X Diagnostics) as per instructions. PCR for ovine

herpesvirus-2 on spleen sample was undertaken as described by

Baxter et al. (35).

Endoparasite burden was assessed through a combination

of the modified McMaster technique for fecal egg counting (36)

and an estimated total worm count undertaken on abomasal and

small intestinal content (37).

Results

Gross pathology

On gross examination, the submitted carcass was in

suboptimal body condition. The main gross findings

were limited to the respiratory tract and included diffuse

consolidation of the cranial lung lobes with multiple small

abscesses. Airway mucosa was reddened and contained stable

foam with flecks of pus and adult nematodes that were identified

as Dictyocaulus spp. Additionally, the abomasal mucosa was

reddened and the small intestinal contents were watery in

consistency, but the colon contained formed fecal pellets.

Parasitological examination revealed 1050 trichostrongyle-

type eggs per gram of feces, with a combined infestation of

the abomasum by Ostertagia spp and Trichostrongylus axei.

Escherichia coli (E. coli) was isolated in pure growth from

the lung and brain. Tests for C perfringens toxin and ovine

herpesvirus-2 were negative.

Histopathology

Microscopic examination of the lung tissue revealed

widespread collapse and leukocyte infiltration of airspaces

following a lobular pattern (Figure 1A). There were also nodular

foci of lytic necrosis and suppurative inflammation (abscesses)

and cross-sections of adult and larval nematodes, consistent

with the gross findings. Significantly, bronchioles showed

changes characteristic of acute viral infection including epithelial

necrosis, attenuation and hyperplasia, with epithelial syncytia

and eosinophilic intra-cytoplasmic inclusions (Figure 1B).

Immunohistochemistry

IHC for BPIV-3 demonstrated viral antigen within the

cytoplasm of epithelium in affected bronchioles and alveoli

(Figure 1C). In other words, the IHC revealed co-localization of

viral antigen with pathology in airways. There was no positive

staining for BRSV.

Sequence analysis

Following the findings of histopathology and IHC for PIV-

3, NGS was performed to characterize the suspected viral

pathogen further. NGS resulted in 8,821,420 sequence reads

from which 34,779 (0.39%) reads were assembled to generate

near complete PIV-3 (15,583 nucleotides) genome. In addition,

5,420 (0.061%) of the reads have composed a near complete

CoV genome (30,976 nucleotides). Average length of sequence

reads was 123 and 137 bases, with a median coverage of

495.22 and 26.77 for PIV-3 and CoV, respectively. These

genome sequences were deposited in GenBank under accession

numbers ON014594 (PIV-3) and ON014593 (CoV). The PIV-

3 showed the highest sequence identity for the L protein gene

to those of BPIV-3 (83.1–98.4%) in the Respirovirus genus.

Phylogenetically, the virus clustered with PIV-3 reported from

cattle in China, USA, south Korea and Turkiye in the genotype
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FIGURE 1

Histopathological changes in the lung of a fallow deer (Dama dama). (A) Low magnification view of lung showing leukocyte infiltration and

collapse of airways and alveoli following a lobular pattern (H&E, bar = 500µm). (B) High magnification of an airway showing hyperplastic

bronchiolar epithelium forming multinucleate syncytia (open arrow) with eosinophilic cytoplasmic inclusions (arrow heads) (H&E, bar = 50µm).

(C) Immunohistochemistry for parainfluenza virus type 3 showing viral antigen within airway epithelium (arrow heads) (IHC, bar = 100µm).

C (Figure 2A). No L protein gene sequence was available for the

PIV-3 from Argentina to be included in the phylogenetic tree.

The CoV spike protein gene shared 96.7% to 97.9% sequence

identity with those of bovine CoVs in the Betacoronavirus

genus, which is in line with phylogenetic analysis (Figure 2B).

This identity with NCBI SARS-CoV-2 reference virus sequence

(accession number NC_045512.2) was only at 53.1%. Following

the detection of CoV RNA by NGS, albeit at much lower

viral load compared to PIV-3, IHC for BCoV also revealed

limited labeling of a low number of individual cells in the

tracheal mucosa.

Discussion

Here we investigated the cause of death in a fallow deer

calf suffering from loss of body condition, diarrhea, malaise and

dyspnoea. Pathological and virological investigations revealed

PIV-3 to be the primary agent causing acute respiratory disease,

with characteristic pneumonic pathology. The pneumonia was

complicated further by bacterial and parasitic infections. A CoV

was also detected in the lung tissue at a much lower load (∼one

sixth of PIV-3, based on the proportion of sequence reads), but

it could not be directly linked to the pathology of the lung.

The calf had a moderately heavy gastrointestinal worm

burden which possibly contributed to the poor condition of

this calf and ill-thrift in the herd more widely. The enteric

and pulmonary parasite infestations were likely acquired whilst

at pasture, whereas the viral respiratory infections were acute

and acquired most likely after housing, a well-recognized risk

factor for respiratory disease in livestock. Stress and nutritional

changes associated with weaning and housing were other

potential contributory factors to the clinical picture. E coli was

isolated in systemic distribution. This may have been a terminal

infection in an animal otherwise debilitated by pneumonia

and endoparasitism.

The two viruses detected were genetically closely related

to those of known bovine PIV-3 and CoV. Housing the deer

calves in the same airspace as heifers may have facilitated

transmission of the viruses from the heifers. However, lack

of PIV-3 and CoV RNA sequences from the heifers or UK

cattle for comparison precludes verification of this transmission.

Furthermore, PIV-3 antigens and antibodies have been detected

in clinically normal deer, whichmay indicate deer-borne viruses.

A study in Wisconsin detected antibodies to PIV-3 in 24.7% of

the deer tested (38). Other research articles have also described

presence of antibodies to PIV-3 in several deer species (39–

45).

The Veterinary Deer Society (https://bds.org.uk/) had not

received, at the time of this submission, reports of evidence of

disease associated with PIV-3 infection in British deer but was of

the opinion that any increase in intensification of deer farming,

or increased mixing with other domestic ruminants may

change the situation (Aiden Foster, personal communication).

Therefore, this report linking PIV-3 with typical pathology and

disease in British deer is evidence to support that notion.

Spillover of SARS-CoV-2 to deer populations has been of

particular concern in North America. From 283 retropharyngeal

lymph node (RPLN) samples collected from free-living and

captive white-tailed deer in Iowa from April 2020 through

January of 2021, 33.2% were positive for SARS-CoV-2 RNA

(26). The November 2020 peak of human cases in Iowa, which

was also coinciding with the onset of winter and the peak deer

hunting season, has contributed to an even higher prevalence

of infection; 80 of 97 RPLN samples (82.5%) collected over

a 7-week period were positive for SARS-CoV-2 RNA. The

potential for deer species as reservoirs and a source of SARS-

CoV-2 evolution and subsequent spill back to humans may have

unpredictable health and welfare consequences for both humans

and deer species. Therefore, respiratory and enteric disease cases

in deer species merit thorough investigation.

Overall, this case highlights the challenges potentially

arising from intensification of farming, co-housing of species

and other management practices that increase the risk of

pathogen spill-over and disease expression. It also highlights

the value of an integrated investigative approach, combining
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FIGURE 2

Maximum-likelihood phylogenetic analysis of PIV-3 L protein (A) and CoVs spike protein (B) from the fallow deer applying Neighbor-Join

algorithm. The tree with the highest log likelihood (−75,708.09) is shown. Representative viruses in the Respirovirus genus are included in the

(Continued)
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FIGURE 2 (Continued)

PIV-3 phylogenetic tree. Atlantic salmon paramyxovirus in the Aquaparamyxovirus genus was used an outgroup. Animal CoVs in the

Betacoronavirus genus and representatives of other CoVs genera are included in the CoVs’ phylogenetic tree. A discrete Gamma distribution

was used to model evolutionary rate di�erences among sites [5 categories (+G, parameter = 0.7913)]. The tree is drawn to scale, with branch

lengths measured in the number of substitutions per site. The percentage of trees in which the associated taxa clustered together in the

bootstrap analysis is shown next to the branches. Bootstrap values <50% were omitted.

traditional and advanced pathological and virological techniques

in investigation of animal diseases. Further research could be

aimed at both exploring wider knowledge of viral pathogens

of deer, and their potential links to viral infections of other

ruminants. These studies may also shed further light on cross-

species transmission of the viruses between deer and other

species if co-farmed.
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