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A protein of Eimeria tenella (encoded by the locus ETH_00028350)

homologous to Toxoplasma gondii dense granule protein 9, designated

as EtHGRA9 hereafter, was reported to be expressed in all life cycle

stages of E. tenella. However, no data are currently available regarding its

functional properties. In the present study, a recombinant vector harboring

a 741 bp gene segment encoding the mature form of EtHGRA9 was

constructed and transfected into leghorn male hepatoma (LMH) cells. Then,

transcriptomic analysis of the transfected LMH cells was carried out by

using a high-throughput RNA-seq technology. The LMH cells overexpressing

EtHGRA9 was validated by means of Western blotting as well as indirect

immunofluorescence staining. The results demonstrated that the expression of

547 genes (275 upregulated genes and 272 downregulated genes) was altered

by EtHGRA9. The quantitative real-time polymerase chain reaction (qRT-PCR)

validation of the ten genes with di�erential expression between the two

groups was consistent with the transcriptome analysis. According to pathway

enrichment analysis for the obtained di�erentially expressed genes, seven

pathways were significantly a�ected by EtHGRA9, such as cytokine-cytokine

receptor interaction, MAPK signaling pathway, and protein processing in

endoplasmic reticulum. Our data reveal several possible roles of EtHGRA9

in immune or inflammatory responses, which paves the way for a better

understanding of the molecular interplay between E. tenella and its host.
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Introduction

Eimeria species are obligate intracellular apicomplexan

protists that have been found in poultry, rabbits and other

animals (1, 2). Coccidiosis is considered as an economically

important disease of the poultry industry, and the total cost

of coccidiosis in chickens was approximately £10.36 billion

worldwide in 2016 (3). Seven Eimeria species have been reported

to be associated with chicken coccidiosis (4). Eimeria tenella, one

of the most virulent pathogens of coccidiosis, has been widely

studied (5, 6).

Apicomplexan parasites such as Toxoplasma gondii

harbor three sets of specialized secretory organelles, namely

dense granules, micronemes and rhoptries (7, 8). A large

number of proteins derived from these secretory organelles

of T. gondii contribute to parasite invasion and survival,

such as microneme protein 1 and dense granule protein

15 (9–11). Several proteins identified in E. tenella share

homology with T. gondii dense granule proteins (12). To

date, however, there is limited information regarding the

functional properties of those proteins. Of interest is a

protein (encoded by the locus ETH_00028350) homologous

to T. gondii dense granule protein 9, hereafter designated as

EtHGRA9, which was reported to be expressed in all E. tenella

stages (13).

The leghorn male hepatoma (LMH) cell line with an

epithelial phenotype is often used for studying host-

pathogen interactions in the gastrointestinal tract of

poultry (14). Furthermore, E. tenella resides inside the

chicken intestinal epithelial cells (15). Hence, this study

utilized the LMH chicken epithelial cell line as an in vitro

model to investigate the biological roles of EtHGRA9 in

the interplay between E. tenella and its host. To achieve

this goal, the segment of EtHGRA9 gene was amplified

by PCR from complementary DNA (cDNA) of E. tenella

sporulated oocysts, and then a recombinant vector

harboring this gene fragment was constructed. Thereafter,

transcriptional changes in the LMH cells transfected

with EtHGRA9 overexpression plasmid or empty vector

were examined.

Materials and methods

Parasites and cell line

Total RNA was extracted from E. tenella SD-01 strain,

followed by cDNA generation. The LMH cells were grown

under the normal culture condition (5% CO2, 37◦C) in

Dulbecco’s modified eagle medium (DMEM) containing 10%

fetal bovine serum (FBS), 100µg/mL streptomycin, and

100U/mL penicillin (16).

Construction of the recombinant plasmid

The gene fragment (Figure 1A) was amplified

from the produced cDNA by using two gene-specific

primers designed based on the mRNA sequence of

EtHGRA9 published in GenBank (XM_013377103).

The primer sequences are as follows: EtHGRA9-F (5
′

-

GGATCCGATTCAAGCGAACGAAGGAG-3
′

) and EtHGRA9-

R (5
′

-CCGGAATTCTTAGTTCAGCACATCCAGTT-3
′

). The

PCR products were purified and subjected to digestion with

restriction enzymes EcoRI and BamHI, followed by DNA

ligation to construct the pCMV-N-HA-EtHGRA9 expression

vector. After transformation into Trans5α chemically competent

cells (TransGen Biotech, Beijing, China), the PhasePrep

EndoFree Maxi Kit (Aidlab, Beijing, China) was used for

isolation of plasmid DNA according to the manufacturer’s

specifications. Validation of the recombinant plasmid was

performed by means of restriction digest analysis and sanger

sequencing (Sangon Biotech, Shanghai, China).

Transfection of LMH cells

Transfection of LMH cells was conducted by using

the XfectTM Transfection Reagent (Takara, Dalian, China)

following the manufacturer’s specifications. For indirect

immunofluorescence assay, 0.75 µg empty control vector

and overexpression plasmid were diluted separately in 25

µL transfection buffer, followed by mixing with 0.225 µL

Xfect polymer to allow Xfect-DNA nanoparticles to form.

The nanoparticle complex solution dropwise was added to

the supernatant of the cultured cells with gentle shaking.

The culture medium containing nanoparticle complexes was

removed after 4 h, and 500 µL DMEM supplemented with 10%

FBS was added.

With regards to Western blotting and transcriptome

sequencing analysis, the cells were seeded into T25 flasks. For

plasmid transfection, 12.5 µg plasmid DNA was diluted to a

final volume of 100 µL. Additionally, 3.75 µL Xfect polymer

was used.

Indirect immunofluorescence assay

On day 2 post-transfection, the transfected LMH cells

were fixed with 2% paraformaldehyde for 10min, followed by

treatment with 0.1% Triton X-100. Then, the cells were blocked

with 5% bovine serum albumin. Following washing, the cells

were incubated with mouse anti-HA tag antibody (Invitrogen,

Carlsbad, CA, USA) for 1 h. Then, the cells were washed three

times with PBS, followed by incubation with FITC-conjugated

goat anti-mouse IgG (Abcam, Cambridge, UK) at 37◦C for
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FIGURE 1

Construction of the pCMV-N-HA-EtHGRA9 expression vector. (A) The full-length EtHGRA9 protein and the region used for construction of the

recombinant plasmid. (B) The EtHGRA9 gene segment amplified by PCR. (C) The constructed pCMV-N-HA-EtHGRA9 plasmid was confirmed by

restriction enzyme digestion.

30min. An inverted fluorescence microscope (Nikon, Tokyo,

Japan) was used to examine the fluorescent signal.

Western blotting

For Western blotting analysis, the transfected LMH cells

were lysed by using RIPA lysis buffer (Beyotime, Nantong,

China) on day 2 post-transfection. The protein samples

were separated by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis. Then, the separated proteins were transblotted

onto a polyvinylidene difluoride membrane (Millipore, Bedford,

MA, USA). Subsequently, the membrane was blocked with

5% skim milk in Tris-buffered saline with Tween-20 (TBST,

50mM Tris, 150mM NaCl, 0.05% Tween 20, pH 7.4) for 1 h

at room temperature, and then incubated with the primary

antibody (mouse monoclonal antibody to HA tag). Afterwards,

the membrane was rinsed with TBST, followed by incubation

with the secondary antibody (goat anti-mouse IgG-HRP)

for 1 h. The immunosignal was examined using the ECL

reagent (Thermo Scientific, Waltham, MA, USA).

Transcriptome sequencing and
bioinformatics analysis

The transfected cells were collected and submitted for

RNA-seq, and each sample included three biological replicates.

Total RNA was extracted from the transfected cells by using

TRIzol Reagent, and RNA quality was evaluated using Agilent

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

Messenger RNA (mRNA) was purified from the extracted

total RNA using poly-T oligo-attached magnetic beads. Then,

the mRNA was split into fragments using divalent cations

under elevated temperature and used for cDNA generation.

Following construction of transcriptomic libraries, the paired-

end sequencing was carried out by Novogene Corporation

(Beijing, China). After removing low-quality reads from raw

data and reads containing adapter or ploy-N, high-quality clean

reads were mapped against the chicken (Gallus gallus) reference

genome (16).

The “DEseq2” package in R (v1.20.0) was used for

identification of differentially expressed genes (DEGs) between

the two groups (17). A P-value less than 0.05 and a |log2 fold

change|>1.0 were defined as the threshold of significance for

differential expression. The clusterProfiler software package of

R software (v3.8.1) was used to perform Gene Ontology (GO)

functional annotation and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis (18). GO terms or pathways were

considered to be significantly enriched if P-value < 0.05.

Validation of RNA-seq data by qRT-PCR

Quantitative real-time polymerase chain reaction (qRT-

PCR) was carried out to verify the results of transcriptome

analysis. Briefly, GAPDH was selected as an internal standard

for normalizing gene expression, and three reactions were

performed per biological replicate. Ten DEGs were randomly

selected for validation, and the control group genes were

used as the reference. Details of the primers used to verify

the sequencing data are shown in Table 1. The amplification

protocol of qRT-PCR was conducted as follows: 95◦C for

30 s, 40 cycles of 95◦C for 15 s, 60◦C for 30 s. Relative

expression of mRNA was calculated using the 2−11CT

method (19).
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TABLE 1 Primer sequences used in the present study.

Gene ID Gene name Forward primer (5
′

-3
′

) Reverse primer (5
′

-3
′

)

770592 MT3 ACTCCCAGGACTGCCCTTGT CAGCAGGAGCAGCAGCCTTT

421589 FNDC1 GGTTTCTTTGCCATCACGGAGT GCTTGTAATCCCACCTTGCTGA

423931 BAG3 CGATACAAAGCAGAAGCCGTG AGATTGAGGCTCAGGTCCGTGT

396491 LGALS1A ATAATCGCACCGAATGCCAAA CCACTCTTCCATTTTCTTTGAGTTG

428310 HSPB9 ACGCAGAACACGGACGAGAA TTTGCTGACAGCTCCATCCTT

772158 LOC772158 TCCTACAAGTACGAGGTGCTGAAG CATCACGCCTTGGCTCTCTC

374211 CRABP1 GCAAACAAACTCTTATTGAGGGAG ACAACATCATCAGCACCAAAGG

396159 ST6GALNAC2 GTTTCTGCTTCTTGCTCCTCG CTCCTGTTGGTGGCTGTTGTCT

100857679 CORO6 ACATCCGCGTCTCCAAGGTG CGATGACGTTGTCGTTGTGG

100857703 CORF2 AGGGAAGGTGACGAAGGGT ATCTCATGGGAGAGGCGGTGT

Results

Confirmation of the overexpression
plasmid

As shown in Figure 1B, the gene segment coding for the

mature peptide of EtHGRA9 was successfully amplified by PCR.

The EtHGRA9 overexpression plasmid was firstly validated by

restriction digestion analysis (Figure 1C), and then confirmed by

DNA sequence analysis (data not shown).

Confirmation of LMH cells
overexpressing EtHGRA9

Expression of EtHGRA9 in the LMH cells transfected

with pCMV-N-HA-EtHGRA9 was examined by using the

indirect immunofluorescence test. The results showed that

LMH cells transfected with this plasmid were fluorescently

labeled with the monoclonal antibody to HA tag, whereas

LMH cells transfected with the empty plasmid showed

no staining (Figure 2A). Also, expression analysis of

EtHGRA9 in the transfected LMH cells was conducted

by using Western blotting. The results showed that

LMH cells transfected with EtHGRA9 overexpression

plasmid expressed a 31-KDa EtHGRA9-HA fusion protein

(Figure 2B, lane 1), which was not observed in the control

group (Figure 2B, lane 2).

Comparison of gene expression changes

RNA samples showed high RNA integrity number

(RIN) values (9.5 or greater), indicating the high quality

of samples and no signs of degradation. Compared with

the LMH cells transfected with the empty vector, 547

transcripts showed differential expression in the LMH

FIGURE 2

Expression analysis of EtHGRA9 in the transfected LMH cells. (A)

Fluorescence microscopic photographs of the transfected LMH

cells labeled by HA-tag mouse monoclonal antibody. (B)

Western blot analysis of the transfected LMH cells using HA-tag

mouse monoclonal antibody as the primary antibody. Lane 1:

protein extracts from the LMH cells transfected with the

EtHGRA9 overexpression plasmid; lane 2: protein extracts from

the LMH cells transfected with the empty plasmid.

cells overexpressing EtHGRA9. Of which, 275 transcripts

were found to be upregulated, whereas 272 genes were

significantly downregulated at the transcriptional level

(Figure 3A, Supplementary Table 1). Several DEGs of

interest are shown in Figure 3B. The mRNA expression

levels of ten DEGs were measured to validate the

RNA-seq results by the qRT-PCR method. As shown

in Figure 3C, an agreement of the expression trend

was observed.

GO and KEGG analysis

GO functional enrichment was carried out on the obtained

differential genes. The results showed that a total of 54 GO
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FIGURE 3

Di�erential expression analysis and qRT-PCR validation. (A) Volcano plot analysis of the DEGs between the LMH cells overexpressing EtHGRA9

and control cells. Green: downregulated genes; red: upregulated genes. (B) Heatmap of several DEGs. (C) Ten di�erently expressed transcripts

were analyzed by qRT-PCR.

terms were found to be significantly enriched, including 3, 26,

and 25 GO terms for cell component, molecular function, and

biological process, respectively (Supplementary Table 2). Of the

top ten GO terms (Figure 4A), seven were neurotransmitter

transporter activity, neurotransmitter: sodium symporter

activity, solute:sodium symporter activity, transporter

activity, neurotransmitter transport, symporter activity,

and solute:cation symporter activity. The common DEGs

classified into these GO terms included SLC6A4, SLC6A1 and

SLC6A12. The rest of the ten GO terms were Wnt signaling

pathway, cell surface receptor signaling pathway involved in

cell-cell signaling, and cell-cell signaling by Wnt. The common

DEGs classified into these GO terms included Wnt10A

and Wnt6.

Also, KEGG pathway analysis of transcriptional

data was conducted to investigate the cellular functions

altered by EtHGRA9. The DEGs were significantly

enriched in seven pathways, including MAPK signaling

pathway, adrenergic signaling in cardiomyocytes,

taurine and hypotaurine metabolism, protein processing

in endoplasmic reticulum, progesterone-mediated

oocyte maturation, melanogenesis, and cytokine-

cytokine receptor interaction (Figure 4B). Details of

the DEGs enriched in these pathways are shown in

Supplementary Table 3.

Discussion

T. gondii secretes dense granule proteins, which play a

critical role in host-parasite interactions (20, 21). However,

the functional properties of E. tenella dense granule proteins

are still poorly understood. Herein, transcriptomic changes in

LMH cells overexpressing EtHGRA9 were investigated by using

RNA-seq approach. The LMH cells overexpressing EtHGRA9

were confirmed by western blotting and immunofluorescence

analysis. All RNA samples exhibited high quality, with RIN

values ranging from 9.5 to 10.0. Meanwhile, the reliability of the

RNA-seq data was validated by qRT-PCR.

The top two significantly enriched terms were

neurotransmitter transporter activity, and neurotransmitter:

sodium symporter activity. Meanwhile, pathway analysis

revealed that the DEGs were significantly enriched in protein

processing in endoplasmic reticulum. The results were similar

to that revealed by differential gene expression analysis in

glioblastoma cells and normal human brain cells (22). A

previous study suggested that the affected signaling pathway in

cells infected with E. tenella included Wnt signaling pathway

(23). Our results showed that the mRNA expression levels of

Wnt10A and Wnt6 were altered in LMH cells overexpressing

EtHGRA9, indicating that EtHGRA9 may be involved in

regulating Wnt signaling pathway.
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FIGURE 4

GO and KEGG analysis of DEGs. (A) The top ten GO terms with the most significant P-values. (B) The seven significantly enriched signaling

pathway.

Protein processing in the endoplasmic reticulum pathway

was reported to be involved in influencing protein folding in the

endoplasmic reticulum (ER) (24), and excessive accumulation

of unfolded proteins in the ER leads to ER stress (25). Previous

studies showed that T. gondii infection could modulate host cell

apoptosis through ER stress (26–28). Notably, ER stress is also

associated with E. tenella infection (29). The DEGs enriched

in protein processing in the endoplasmic reticulum pathway

included HSPA2, HSPA8, HSP90AA1 andHSPH1, which are the

immune-related genes (30). This indicated that EtHGRA9 may

be involved in immune responses during E. tenella infection.

The DEGs enriched in MAPK signaling pathway included

p38γ (MAPK12), p38δ (MAPK13) and MAP3K8. p38 MAPK

family proteins can be divided into two subsets (p38α/p38β

and p38γ/p38δ) (31). p38γ and p38δ was reported to be

key components in innate immune responses (32). This

indicated that E. tenella may impair innate immune responses

by using EtHGRA9. MAP3K8 is an important regulator of

pro-inflammatory cytokines (33, 34). Our results showed

that compared with LMH chicken cells transfected with the

empty plasmid, the expression of MAP3K8 in pCMV-N-HA-

EtHGRA9-transfected cells was downregulated. This indicated

that EtHGRA9 may possess anti-inflammatory properties.

Intriguingly, T. gondii GRA9 was reported to be associated with

inhibition of NLRP3 inflammasome activation and macrophage

polarization (35).

Previous studies showed that cytokine-cytokine

receptor interaction pathway was associated with

Eimeria infection (29, 36). Of the DEGs enriched in this

pathway, IL22RA1, IL1R2 and IL20RA are implicated

in immune or inflammatory responses (37–39). This

indicated that, besides affecting MAPK signaling pathway

and protein processing in endoplasmic reticulum,

EtHGRA9 may contribute to regulating immune or

inflammatory responses through cytokine-cytokine receptor

interaction pathway.

Conclusion

In the present study, the roles of EtHGRA9 in the host-

parasite interplay were investigated through transcriptomic

analysis of the LMH cells overexpressing EtHGRA9.

The results showed that the mRNA expression level

of 547 genes in LMH cells was significantly altered by

EtHGRA9, including 275 upregulated transcripts and

272 downregulated transcripts. Our transcriptomic data

uncovered several potential roles of EtHGRA9 in immune or

inflammatory responses.
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