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Antibiotics are widely used as growth promoters (AGPs) in livestock production

to improve animal performance and health. However, pig producers today face

the prohibition of in-feed antimicrobials and have to find safe and e�ective

alternatives. Lactobacillus species are active microorganisms that convey

multiple beneficial e�ects to the host and are one of the most promising

AGPs replacements. Here, we aim to comprehensively assess the e�ects of

Lactobacillus spp. supplementation on growth performance and intestinal

morphology (villus height [VH], crypt depth [CD], and the V/C ratio) of piglets.

Among the 196 identified studies, 20 met the criteria and were included in the

meta-analysis. The e�ects of Lactobacillus-based probiotics supplementation

on growth performance and intestinal morphology were analyzed using a

random-e�ects model. And the publication bias was evaluated by funnel

plots. Our results revealed that Lactobacillus spp. supplementation significantly

improved the growth performance, including average daily feed intake

(ADFI), average daily gain (ADG), and the gain-to-feed ratio (G/F) in piglets

(P < 0.05). Meanwhile, Lactobacillus spp. remarkably increased VH and the

V/C ratio (P < 0.05) in the small intestine, including the duodenum, jejunum,

and ileum, which might contribute to an improved digestive capacity of

these animals. In conclusion, our findings provide concrete evidence of the

growth-promoting e�ects of Lactobacillus spp. supplementation in piglets and

a better understanding of the potential of Lactobacillus-based probiotics as

AGPs alternatives in pig production.

KEYWORDS

Lactobacillus, probiotics, piglets, antibiotic alternatives, intestinal morphology,

growth performance

Introduction

Antibiotics used as growth promoters at sub-therapeutic doses to animals are an

integral part of livestock production. Large-scale addition of antibiotic growth promoters

(AGPs) to animal feed can help to improve production efficiency by improving animal

performance represented by average daily feed intake (ADFI), average daily gain (ADG),
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and gain-to-feed ratio (G/F) (1–3). Moreover, AGPs may alter

intestinal morphology and promote digestion and absorption

of nutrients in the intestine, which also contribute to animal

growth and development (4). In pigs, the improved performance

attributed to AGPs addition was between 4 to 8% (3,

5). However, the overuse of antibiotics has induced the

development of multi-drug-resistant microorganisms in farm

animals. It could seriously endanger animal production and

public health (6, 7). Due to this concern, antibiotics used

as growth promoters in livestock have been banned in the

European Union since 2006 (8). As of 2017, the US has banned

the use of medically-important antimicrobials for preventative

and growth-promotion purposes the in the livestock sector (9).

In addition, China prohibited in-feed antimicrobials in animal

production in 2020 (10). Several antibiotic alternatives have been

developed, studied, and tested in livestock to face the increasing

global restrictions on antibiotic usage while maintaining animal

health and performance.

Probiotics are live microbial supplements in adequacy or

components of bacteria that confer beneficial effects on the

intestinal health of the host (11) through occupying binding

sites of the intestinal mucosa or competing for nutrients and

niches with pathogenic bacteria (12, 13). Numerous studies

have revealed that Lactobacillus species improve the growth

performance and decrease the diarrhea ratio of piglets by

enhancing nutrition digestibility and intestinal barrier function

(14–19). Among the tested probiotics, Lactobacillus species

are considered one of the most promising replacements and

therefore represent a safe opportunity to substitute AGPs

in pigs (18, 20). However, the wide variety of Lactobacillus

species and different experimental designs make it difficult to

comprehensively understand and further evaluate the effects of

Lactobacillus species on swine and finally use them to replace

AGPs at large in production. In this regard, meta-analysis

constitutes a method integrating and analyzing numerous

independent studies on the same subjects and makes the most

representative conclusions (21). More importantly, in a meta-

analysis, as the amount of data used increases, the precision of

estimates can be improved on separate studies with different

results (22). It justifies our attempt to employ this approach to

determine the effects of Lactobacillus-based probiotics in pigs in

the background of the emerging antibiotics alternative research.

To provide a mechanism for estimating the effect degree, a

strict design and clear selection criteria of studies, and the

measurement index are necessary (22).

It is worth mentioning that the gut development of piglets

is sensitive to alterations of feed components, reflected by their

morphological changes (23). Histologically, the porcine intestine

follows the general structure throughout its length and is similar

to other monogastric animals and humans: the mucosa surface

is covered by a monolayer of epithelium including absorptive

enterocytes, goblet, and endocrine cells, etc. (23). The surface

lining of epithelium quickly renews themselves and contributes

to the absorptive surface and capacity of the intestine. It is

commonly accepted to determine villus height, crypt depth, and

the V/C ratio as “gold standards” of intestinal morphology, while

these histological parameters could be used as a tool to evaluate

gut function and responses toward feed ingredients (24). In the

current study, we therefore performed a set of meta-analyses

to delineate the effects of Lactobacillus species on pig growth

performance and intestinal morphology.

Materials and methods

Study search and inclusion criteria

The protocols used were following the MOOSE guidelines

(25). This study aimed to analyze the effects of Lactobacillus

species supplementation in piglets with or without E. coli/LPS

challenges on growth performance and intestinal morphological

parameters. We have identified studies using Lactobacillus

spp. including Lactobacillus delbrueckii, Lactobacillus reuteri,

Lactobacillus plantarum and Lactobacillus acidophilus etc.

published in English from June 2010 to June 2022. The search

strategy consisted of a search of English databases, including

PubMed, Google scholar, Cochrane library, semantic scholar

Embased and Clinical Trials, and a search of Chinese databases,

including VIP, CNKI, and WANFANG Data. The search terms

included: (LactobacillusOR LactobacilliOR Lactic acid bacteria)

AND (piglets OR piggy OR pigling) AND (growth performance

OR average daily gain OR average daily feed intake OR feed

efficiency) AND (duodenal villus height, crypt depth, and villus

height to crypt depth OR jejunal villus height, crypt depth and

villus height to crypt depth OR Ileal villus height, crypt depth

and villus height to crypt depth) in titles or abstracts.

The eligibility for inclusion of all studies identified from

the searches was independently assessed and compared by

the authors where the inclusion/exclusion criteria described

previously were also considered (26). Manual selections

were conducted on all returned publications based on the

relevance of the titles and/or abstracts of the publications to

Lactobacillus. Prerequisites of the selected publications were a

downloadable full text and available data in English regarding

Lactobacillus-based probiotics for growth performance and

intestinal morphology in piglets.

Exclusion criteria

Studies excluded from this systematic review and meta-

analysis were those that met the following criteria. Firstly, non-

experimental articles (review articles); Secondly, articles with

incorrect or incomplete data; Thirdly, articles without a control

group; Finally, non-probiotics added or combined with other

drugs and preparations in the experimental groups. A flow
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FIGURE 1

A flow diagram of studies included in the meta-analysis Lactobacillus-based probiotics for growth performance and intestinal physiology

in piglets.

diagram was used to summarize the process of the article

selection and study inclusion/exclusion for our meta-analysis

(Figure 1).

Data extraction

Data relating to the effects of Lactobacillus spp.

supplementation with or without E. coli/LPS challenges

on the growth performance and intestinal physiology in piglets

were collected from each selected article using a custom-tailored

excel form that included detailed information as follows: animals

(breed, sex distribution, and age), sample size, experimental

design including the control group set up, target Lactobacillus

strains, the amount (dose) of probiotic supplementation,

administration methods and duration, authors, When results

were available only in graphical format, data were extracted

using Review Manager (Version 5.4 provided by Cochrane

Training). Graph digitization has been previously shown to be

a valid method for extracting study data (27). If the data were

unclear or some key data were missing, we attempted to contact

the corresponding authors through email to obtain further

information. The outcomes were as follows: ADG (average daily

gain); ADFI (average daily feed intake); G/F (gain-to-feed ratio);

diarrhea rate; Duodenum VH (villus height), CD (crypt depth)

and V/C (villus height: crypt depth); Jejunum VH, CD and V/C;

and Ileum VH, CD and V/C.

In our initial search, 2123 English language records were hit

which, after screening, revealed 196 unique articles. A total of

20 papers that fulfilled the selection criteria were included in

the quantitative meta-analysis, including Suo et al. (28); Sayan

et al. (14); Chen et al. (29); Liu et al. (30); Yi et al. (15); Yang

et al. (31); Wang et al. (32); Qiao et al. (33); Lan et al. (34);

Lee et al. (35); Li et al. (36); Tang et al. (37); Tian et al. (38);

Sonia et al. (39); Eliette et al. (40); Liu et al. (41); Moturi et al.

(42); Lee et al. (43); Cao et al. (44); and Jeong et al. (45). The

characteristics of each study are shown in Table 1. The median

initial body weight (BW) of the piglet was 6.50 kg (from 1.50 kg

to 15.6 kg). In total, 6 studies included used antibiotics as the

control group, and 8 studies included had piglets challenged with

E. coli or LPS.

Statistical analyses

Considering that there are contrary data within the range

of the research purpose and the heterogeneity between different

studies may interfere with the analyzed results, we used

a random-effects model to compute the 95% confidence

interval (95% CI) of the standardized mean difference

(SMD). Heterogeneity was assessed using chi-square test

and the I2 parameter (30–60% indicating moderate, 50–90%

indicating substantial, and 75–100% indicating considerable

heterogeneity). For the identification and assessment of

reporting bias, we tested funnel plot symmetry by the Begg and

Eggermethod (47). All the above analyses were performed by the

Review Manager (Version 5.4 provided by Cochrane Training).

P < 0.05 is considered significant.
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TABLE 1 Information of included studies on the e�ects of Lactobacillus-based probiotics in pigsa.

Studies Period Treatment Added amount Control Sample size and sex BW ranges Outcomes Challenge

Suo et al. (28) post–weaning L. plantarum 1×109 CFU/d Basal diet and antibiotics 150 NA 7.69–11.59 kg ADG, ADFI, G/F, duodenum V/C,

ileum V/C, jejunum V/C

NA

Sayan et al. (14) pre–weaning L. salivarius 1×109 CFU/mL Basal diet 201 NA 1.59–6.18 kg ADG, ADFI, G/F, ileum V/C E. coli

Chen et al. (29) post–weaning L. delbrueckii 2.01×1010 CFU/g Basal diet 36 average 7.79–16.15 kg ADG, ADFI, G/F, duodenum V/C,

ileum V/C, jejunum V/C

LPS

Liu et al. (30) pre–weaning L. fermentum 6×109 CFU/mL Basal diet 36 NA 2.31–4.73 kg ADG, jejunum V/C NA

Yi et al. (15) post–weaning L. reuteri 5×1010 CFU/kg Basal diet and antibiotics 144 average 6.49–9.89 kg ADG, ADFI, G/F, duodenum V/C,

ileum V/C, jejunum V/C

NA

Yang et al. (31) pre–weaning L. plantarum 5×1010 CFU/kg Basal diet 72 males 2.41–7.06 kg ADG, ADFI, G/F, duodenum V/C,

ileum V/C, jejunum V/C

E. coli

Wang et al. (32) pre–weaning L. plantarum 1×1010 CFU/d Basal diet 60 NA 1.50–3.56 kg duodenum V/C, ileum V/C,

jejunum V/C

NA

Qiao et al. (33) post–weaning L. acidophilus 0.05%, 0.1%, 0.2% Basal diet and antibiotics 150 females 7.53–16.31 kg ADG, ADFI, G/F LPS

Lan et al. (34) post–weaning L. acidophilus 1, 2, 3 g/kg Basal diet and antibiotics 175 NA 7.15 kg–NA ADG, ADFI, G/F NA

Lee et al. (35) post–weaning L. plantarum 108 , 109 , 1010 CFU/kg Basal diet and antibiotics 108 NA 8.74–21.84 kg ADG, ADFI, G/F E. coli

Li et al. (36) post–weaning L. mucosae 1×109 CFU/mL Basal diet 104 average 5.90–18.82 kg ADG, ADFI, G/F, duodenum V/C,

ileum V/C, jejunum V/C

E. coli, LPS

Tang et al. (37) post–weaning L. reuteri 5×1010 CFU/kg Basal diet 90 NA 6.1–14.9 kg ADG, ADFI, G/F, ileum V/C,

jejunum V/C, duodenum V/C

NA

Tian et al. (38) post–weaning L. reuteri 5×1010 CPU/kg Basal diet 144 males 6.49 kg–NA ADG, ADFI, F/G, ileum V/C,

jejunum V/C, duodenum V/C

NA

Tabasum et al. (39) post–weaning L. reuteri 0.5%, 0.04% Basal diet and antibiotics 96 NA 8.00 kg–NA ADG, ADFI, G/F E. coli

Riboulet-Bisson et al. (40) pre–weaning L. salivarius 1×108 CFU/mL Basal diet 30 NA 12.7–34.4 kg ADG, ADFI, G/F NA

Liu et al. (41) post–weaning L. brevis 0.4, 0.8 g/kg Basal diet 144 NA 15.6–24.9 kg ADG, ADFI, G/F NA

Moturi et al. (42) nursery L. salivarus 1×108 CFU/mL Basal diet 30 NA 1.54–6.22 kg ADG, ileum V/C, jejunum V/C,

duodenum V/C

NA

Lee et al. (43) post–weaning L. acidophilus 0.10% Basal diet 40 NA 7.10–11.60 kg ADG, ADFI, G/F LPS

Cao et al. (44) post–weaning L. acidophilus 1×108 CFU/mL Basal diet 180 NA 6.2 kg–NA ADG, ADFI, G/F, jejunum V/C NA

Jeong et al. (45) post–weaning L. casei 1×1011 CFU/mL Basal diet 240 NA 7.05 kg–NA ADG, ADFI, G/F, ileum V/C,

jejunum V/C, duodenum V/C

NA

aBW, body weight; ADG, average daily gain; ADFI, average daily feed intake; G/F, gain: feed ratio; NA, not applicable; LPS, lipopolysaccharide; V/C, villus height, crypt depth ratio.
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TABLE 2 E�ects of Lactobacillus–based probiotics on the average daily gain (ADG) of pigs from included studies.

Studies Treatment Added amount Experimental Control Weight Std. mean difference

Mean SD Total Mean SD Total IV, Random, 95%CI

Suo et al. (28) L. plantarum 1×109 CFU/d 469 57.44 30 455 101.05 30 4.30% 0.17 [−0.34, 0.68]

Riboulet-Bisson et al. (40) L. salivarius 1×108 CFU/mL 748 55.03 8 798 78.00 8 2.00% −0.70 [−1.72, 0.32]

Liu et al. (46) L. brevis 0.4 g/kg 361 116.92 48 246 116.92 48 4.90% 0.98 [0.55, 1.40]

Liu et al. (46) L. brevis 0.8 g/kg 318 116.92 48 246 116.92 48 5.00% 0.61 [0.20, 1.02]

Sayan et al. (14) L. salivarius 1×109 CFU/mL 191 64.26 87 163 73.46 114 5.90% 0.40 [0.12, 0.68]

Yi et al. (15) L. reuteri 5×1010 CFU/kg 243 56.01 48 198 56.01 48 5.00% 0.80 [0.38, 1.21]

Liu et al. (17) L. fermentum 6×109 CFU/mL 184 26.19 18 148 56.75 18 3.30% 0.80 [0.11, 1.48]

Qiao et al. (33) L. acidophilus 0.05% 295 74.31 30 267 74.31 30 4.30% 0.37 [−0.14, 0.88]

Qiao et al. (33) L. acidophilus 0.10% 312 74.31 30 267 74.31 30 4.30% 0.60 [0.08, 1.12]

Qiao et al. (33) L. acidophilus 0.20% 314 74.31 30 267 74.31 30 4.30% 0.62 [0.11, 1.14]

Moturi et al. (42) L. salivarus 144 1×108 CFU/ mL 223 12.83 10 221 12.83 10 2.50% 0.15 [−0.73, 1.03]

Moturi et al. (42) L. salivarus 160 1×108 CFU/ mL 224 12.83 10 221 12.83 10 2.40% 0.22 [−0.66, 1.10]

Yang et al. (31) L. plantarum 5×1010 CFU/kg 270 65.48 18 253 65.48 18 3.40% 0.25 [−0.40, 0.91]

Tang et al. (37) L. plantarum 5×1010 CFU/kg 244 57.38 30 207 57.38 30 4.30% 0.64 [0.12, 1.16]

Tang et al. (37) L. reuteri 5×1010 CFU/kg 274 57.38 30 207 57.38 30 4.10% 1.15 [0.60, 1.70]

Lan et al. (34) L. acidophilus 1g/kg 488 60.02 35 445 60.02 35 4.50% 0.71 [0.22, 1.19]

Lan et al. (34) L. acidophilus 2g/kg 490 60.02 35 445 60.02 35 4.50% 0.74 [0.26, 1.23]

Lan et al. (34) L. acidophilus 3g/kg 492 60.02 35 445 60.02 35 4.50% 0.77 [0.29, 1.26]

Lee et al. (43) L. acidophilus 0.10% 328 12.11 20 316 12.11 20 3.40% 0.97 [0.31, 1.63]

Cao et al. (44) L. acidophilus 1×108 CFU/mL 275 40.71 36 269 40.71 36 4.60% 0.15 [−0.32, 0.61]

Tabasum et al. (39) Lactobacillus 0.50% 390 66.86 24 243 66.86 24 3.10% 2.16 [1.44, 2.89]

Jeong et al. (45) L. casei 0.10% 322 47.65 60 291 47.65 60 5.30% 0.65 [0.28, 1.01]

Jeong et al. (45) L. casei 0.20% 325 47.65 60 311 47.65 60 5.40% 0.29 [−0.07, 0.65]

Tian et al. (38) L. reuteri 5×1010 CFU/kg 675 15.87 48 650 18.39 48 4.70% 1.44 [0.99, 1.90]

Total (95% CI) 828 855 100.00% 0.65 [0.48, 0.82]

Heterogeneity, Tau²= 0.11; Chi²= 62.39, df= 23 (P < 0.0001); I²= 63%.

Test for overall effect, Z= 7.45 (P < 0.00001).
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TABLE 3 E�ects of Lactobacillus–based probiotics on the average daily feed intake (ADFI) pigs from included studies.

Studies Treatment Added amount Experimental Control Weight Std. mean difference

Mean SD Total Mean SD Total IV, Random, 95%CI

Riboulet-Bisson et al. (40) L. salivarius 1×108 CFU/mL 962 105.82 8 973 91.01 8 3.50% −0.11 [−1.09, 0.88]

Liu et al. (46) L. brevis 0.4 g/kg 679 163.13 48 591 163.13 48 5.80% 0.54 [0.13, 0.94]

Liu et al. (46) L. brevis 0.8 g/kg 678 163.13 48 591 163.13 48 5.80% 0.53 [0.12, 0.94]

Yi et al. (15) L. reuteri 5×1010 CFU/kg 358 77.02 48 310 77.02 48 5.80% 0.62 [0.21, 1.03]

Qiao et al. (33) L. acidophilus 0.05% 530 76.89 30 519 76.89 30 5.40% 0.14 [−0.37, 0.65]

Qiao et al. (33) L. acidophilus 0.10% 536 76.89 30 519 76.89 30 5.40% 0.22 [−0.29, 0.73]

Qiao et al. (33) L. acidophilus 0.20% 541 76.89 30 519 76.89 30 5.40% 0.28 [−0.23, 0.79]

Yang et al. (31) L. plantarum 5×1010 CFU/kg 234 21.83 18 226 21.83 18 4.80% 0.36 [−0.30, 1.02]

Tang et al. (37) L. plantarum 5×1010 CFU/kg 358 74.65 30 321 74.65 30 5.40% 0.49 [−0.02, 1.00]

Tang et al. (37) L. reuteri 5×1010 CFU/kg 384 74.65 30 321 74.65 30 5.30% 0.83 [0.30, 1.36]

Lan et al. (34) L. acidophilus 1g/kg 682 48.02 35 663 48.02 35 5.60% 0.39 [−0.08, 0.86]

Lan et al. (34) L. acidophilus 2g/kg 690 48.02 35 663 48.02 35 5.50% 0.56 [0.08, 1.03]

Lan et al. (34) L. acidophilus 3g/kg 691 48.02 35 663 48.02 35 5.50% 0.58 [0.10, 1.06]

Lee et al. (43) L. acidophilus 0.10% 405 14.82 20 390 14.82 20 4.80% 0.99 [0.33, 1.65]

Cao et al. (44) L. acidophilus 1×108 CFU/mL 369 51.66 36 368 51.66 36 5.60% 0.02 [−0.44, 0.48]

Tabasum et al. (39) Lactobacillus 0.50% 695 40.09 24 484 40.09 24 2.80% 5.18 [3.96, 6.40]

Jeong et al. (45) L. casei 0.10% 461 93.74 60 433 93.74 60 6.00% 0.30 [−0.06, 0.66]

Jeong et al. (45) L. casei 0.20% 453 93.74 60 439 93.74 60 6.00% 0.15 [−0.21, 0.51]

Tian et al. (38) L. reuteri 5×1010 CFU/kg 1770 50.25 48 1685 50.22 48 5.60% 1.68 [1.21, 2.15]

Total (95% CI) 673 673 100.00% 0.61 [0.35, 0.88]

Heterogeneity, Tau²= 0.28; Chi²= 99.69, df= 18 (P < 0.00001); I²= 82%.

Test for overall effect, Z= 4.49 (P < 0.00001).
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TABLE 4 E�ects of Lactobacillus–based probiotics on the gain to feed (G/F) ratio of pigs from included studies.

Studies Treatment Added amount Experimental Control Weight Std. mean difference

Mean SD Total Mean SD Total IV, Random, 95%CI

Riboulet-Bisson et al. (40) L.salivarius 1×108 CFU/mL 0.78 0.09 8 0.82 0.05 8 1.20% −0.52 [−1.52, 0.48]

Liu et al. (46) L. brevis 0.4 g/kg 0.53 0.29 48 0.417 0.29 48 7.30% 0.39 [−0.01, 0.80]

Liu et al. (46) L. brevis 0.8 g/kg 0.47 0.29 48 0.417 0.29 48 7.50% 0.18 [−0.22, 0.58]

Yi et al. (15) L. reuteri 5×1010 CFU/kg 0.68 0.07 48 0.64 0.07 48 7.20% 0.57 [0.16, 0.98]

Qiao et al. (33) L. acidophilus 0.05% 0.56 0.18 30 0.518 0.18 30 4.60% 0.22 [−0.29, 0.73]

Qiao et al. (33) L. acidophilus 0.10% 0.59 0.18 30 0.518 0.18 30 4.60% 0.36 [−0.15, 0.87]

Qiao et al. (33) L. acidophilus 0.20% 0.58 0.18 30 0.518 0.18 30 4.60% 0.34 [−0.17, 0.85]

Yang et al. (31) L. plantarum 5×1010 CFU/kg 1.16 0.09 18 1.12 0.09 18 2.70% 0.45 [−0.21, 1.11]

Tang et al. (37) L. plantarum 5×1010 CFU/kg 0.68 0.12 30 0.664 0.12 30 4.70% 0.14 [−0.37, 0.64]

Tang et al. (37) L. reuteri 5×1010 CFU/kg 0.71 0.12 30 0.664 0.12 30 4.60% 0.40 [−0.11, 0.92]

Lan et al. (34) L. acidophilus 1g/kg 0.72 0.12 35 0.671 0.12 35 5.40% 0.37 [−0.10, 0.84]

Lan et al. (34) L. acidophilus 2g/kg 0.71 0.12 35 0.671 0.12 35 5.40% 0.34 [−0.13, 0.81]

Lan et al. (34) L. acidophilus 3g/kg 0.71 0.12 35 0.671 0.12 35 5.40% 0.33 [−0.14, 0.80]

Lee et al. (43) L. acidophilus 0.10% 0.81 0.05 20 0.81 0.05 20 3.10% 0.00 [−0.62, 0.62]

Cao et al. (44) L. acidophilus 1×108 CFU/mL 0.75 0.30 36 0.73 0.30 36 5.60% 0.07 [−0.40, 0.53]

Jeong et al. (45) L. casei 0.10% 0.7 0.31 60 0.67 0.31 60 9.30% 0.10 [−0.26, 0.45]

Jeong et al. (45) L. casei 0.20% 0.72 0.31 60 0.71 0.31 60 9.40% 0.03 [−0.33, 0.39]

Tian et al. (38) L. reuteri 5×1010 CFU/kg 0.38 0.14 48 0.386 0.28 48 7.50% −0.02 [−0.42, 0.38]

Total (95% CI) 649 649 100.00% 0.23 [0.12, 0.34]

Heterogeneity: Tau²= 0.00; Chi²= 11.79, df= 17 (P= 0.81); I²= 0%.

Test for overall effect: Z= 4.05 (P < 0.0001).
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FIGURE 2

Summary forest plot of included outcomes on pigs. ADG, average daily gain; ADFI, average daily feed intake; CI, confidence interval; G/F, gain:

feed ratio; V/C, villus height: crypt depth ratio.

Results

Forest plots and sensitivity analysis of
Lactobacillus species to growth
performance in piglets

A meta-analysis was performed to examine the effect

of probiotic Lactobacillus spp. on ADG (24 trials, n =

1683 subjects). The summarized results of standardized mean

difference (SMD) and 95% confidence interval (CI) for

each study are shown in Table 2. There was a significant

positive correlation between ADG and the Lactobacillus spp.

addition (SMD = 0.65; 95% CI: 0.48∼0.82; I2 = 63%; P

< 0.001), and Lactobacillus spp. supplementation improved

the ADG of piglets. Next, the effects of Lactobacillus spp.

supplementation on ADFI in piglets were determined by forest

plots and sensitivity analysis (19 trials, n = 1346 subjects).

The summarized results of SMD and 95% CI are shown in

Table 3. Lactobacillus spp. remarkably increased the ADFI of

piglets compared to the control group (SMD = 0.61; 95% CI:

0.35∼0.88; P < 0.001), but showed a high heterogeneity (I2

= 82%), indicating a high degree of inter-study variability.

Furthermore, we analyzed the effects of probiotic Lactobacillus

spp. on the G/F ratio (18 trials, n = 1298 subjects) including

forest plots and sensitivity analysis. The summarized results are

shown in Table 4, the resulting forest map is shown in Figure 2

and the publication bias analysis of all parameters is shown in

Figures 3A–L. We found that G/F was significantly increased

after Lactobacillus spp. supplementation (SMD = 0.23; 95% CI:

0.12∼0.34; I2 = 0%; P < 0.001).

Forest plots and sensitivity analysis of
Lactobacillus species to the duodenal
morphology in piglets

The Lactobacillus-promoted growth performance of piglets

identified by our analysis prompted us to further study the effects

of Lactobacillus spp. on parameters like villus height (VH), crypt

depth (CD), and the V/C ratio, representing changes in the small

intestinal morphology of piglets (Table 5, Figure 2). First, we

found that porcine duodenal VH (12 trials, n= 877 subjects) was

significantly increased by Lactobacillus spp. supplementation

compared to the control (SMD = 0.64; 95% CI: 0.32∼0.92;

I2 = 79%; P < 0.001). In contrast, no significant correlation

between the addition of Lactobacillus spp. and the duodenal CD

was observed (12 trials, n = 877 subjects; SMD = −0.03; 95%

CI:−0.24∼0.19; I2= 54%; P= 0.81). In the duodenumof piglets,

the analysis showed a positive correlation between the V/C ratio

and Lactobacillus spp. supplementation (SMD = 0.41; 95% CI:

0.17∼0.65; I2 = 65%; P = 0.002).

Forest plots, sensitivity analysis, and
funnel plots of Lactobacillus species to
jejunal morphology in piglets

In the porcine jejunum, the effects of probiotics on VH,

CD, and the V/C ratio were evaluated (Table 5, Figure 2). In

the jejunum of piglets (14 trials, n = 880 subjects), the analysis

showed a positive effect with the addition of Lactobacillus spp.
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FIGURE 3

Funnel plots of the publication bias analysis of included outcomes on pigs. (A) Average daily gain, (B) Average daily feed intake. (C) Gain: feed

ratio. (D) Duodenal VH. (E) Duodenal CD. (F) duodenal V/C. (G) Jejunal VH. (H) Jejunal CD. (I) Jejunal. (J) Ileal VH. (K) Ileal CD. (L) Ileal V/C. n =

12; CD, crypt depth; SE, standard error; SMD, standard mean di�erence; V/C, villus height: crypt depth; VH, villus height; V/C, villus height: crypt

depth.

on the VH values (SMD= 0.45; 95% CI: 0.21∼0.70; I2 = 65%; P

= 0.005). In addition, the effect of Lactobacillus spp. addition on

the jejunal CD was also examined (14 trials, n = 880 subjects),

and Lactobacillus supplementation significantly decreased CD,

compared to the control (SMD = −0.15; 95% CI: −0.44∼0.13;

I2 = 75%; P < 0.001). The changes of the V/C ratio between

the control and the addition of Lactobacillus spp. were analyzed

(13 trials, n = 844 subjects), and found that it was significantly
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TABLE 5 E�ects of Lactobacillus–based probiotics on small intestinal morphology of pigs from included studies.

Outcomes Effect size P–value Heterogeneity P–value

No. of trials SMD 95%Cl I2 Tau² Chi²

Duodenum

Villus height (VH) 12 0.64 [0.32, 0.96] <0.001 79% 0.23 52.18 <0.001

Crypt depth (CD) 12 −0.03 [−0.24, 0.19] 0.810 54% 0.07 23.83 0.010

VH/CD 12 0.41 [0.17, 0.65] <0.001 63% 0.10 30.04 0.002

Jejunum

Villus height (VH) 14 0.45 [0.21, 0.70] <0.001 66% 0.13 38.07 <0.001

Crypt depth (CD) 14 −0.15 [−0.44, 0.13] 0.300 75% 0.21 53.03 <0.001

VH/CD 13 0.58 [0.28, 0.88] <0.001 76% 0.22 50.84 <0.001

Ileum

Villus height (VH) 13 0.42 [0.19, 0.64] <0.001 62% 0.10 31.95 0.001

Crypt depth (CD) 13 −0.27 [−0.46,−0.09] 0.004 47% 0.05 22.77 0.030

VH/CD 13 0.60 [0.33, 0.87] <0.001 73% 0.16 44.85 <0.001

increased by the addition of Lactobacillus spp. (SMD = 0.58;

95% CI: 0.28∼0.88; I2 = 76%; P < 0.001).

Forest plots and sensitivity analysis of
Lactobacillus species to ileum
morphology in piglets

Finally, we analyzed the effects of probiotic Lactobacillus

spp. supplementation on the ileal morphology of piglets (13

trials, n = 973 subjects; Table 5, Figure 2). The ileal VH was

strongly positively correlated with Lactobacillus spp. addition

(SMD = 0.42; 95% CI: 0.19∼0.64; I2 = 62%; P = 0.001). Next,

the effects of Lactobacillus spp. addition on the ileal CD were

determined (13 trials, n = 973 subjects), Lactobacillus spp. was

associated with a significant reduction of the ileal CD (SMD

= −0.27; 95% CI: −0.46∼-0.09; I2 = 47%; P =0.03). For the

ileal V/C ratio (13 trials, n = 973 subjects), the addition of

probiotic Lactobacillus spp. significantly increased this value

when compared to the control (SMD= 0.60; 95% CI: 0.33∼0.87;

I2 = 73%; P < 0.001).

Discussion

Antibiotics are widely used as growth promoters in livestock

to improve animal growth performance and health. Several

hypotheses on the AGPs’ mode of action have been proposed,

including reducing pathogenic load and toxin production and

inhibiting gut disorders while improving intestinal physiology

(48, 49). However, due to the side effects (e.g., antibiotic

resistance and environmental pollutants of its residues), the use

of antibiotics has been restricted worldwide, which results in

the urgent need to find alternative routes to manage animal

health and maintain production efficiency (50, 51). Lactobacillus

species are one of the most commonly used probiotic agents in

swine and are considered one such potent AGPs replacement

(18, 52, 53). Therefore, this study systematically reviewed and

performed a set of meta-analyses to determine the effects of

probiotic Lactobacillus spp. on porcine growth performance

and intestinal morphology. The main findings were as follows:

(1) Lactobacillus spp. supplementation can improve piglets’

performance including ADFI, ADG and the G/F ratio, and is

superior to antibiotics in growth promotion; (2) Lactobacillus

spp. supplementation substantially modified the small intestinal

morphology, increased VH and the V/C ratio of piglets in all

segments, whereas decreased the jejunal and ileal CD.

The growth performance is an essential indicator of

pig health and the economic benchmark of the production

system. Comparable to the AGPs, there are also theories

on the mechanism of growth improvement of probiotics in

animals, which include improving the gut barrier function,

nutrient utilization, gut microbiome, intestinal morphology, and

immunity (18). In particular, important indexes like average

daily gain, average daily feed intake, and the gain-to-feed ratio

reflect nutrient uptake and absorptive capacity, where higher

values in the Lactobacillus-treated piglets implied improved

nutrient utilization (45). Our meta-analysis revealed that ADG

and ADFI were increased by 13.8% and 7.02% on average by

Lactobacillus addition. It is suggested that Lactobacillus-based

feeding could enhance feed palatability (54), which may explain

the increased feed intake. A probiotic-improved G/F ratio was

reported by us, suggesting that Lactobacillus supplementation

brings about a more cost-effective feeding program than the

control piglets. Another mechanism by which Lactobacillus spp.

enhance animal performance may be via the promotion of

beneficial bacteria and inhibition of harmful microorganisms in

the intestinal microenvironment (55).
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Growing evidence indicates that gut microbiota plays a

crucial role in host metabolic health and fitness. A healthy small

intestine has a dominance of Lactobacillus spp., which may be

disrupted by perturbations like weaning and changes of feed in

piglets (56). By adding a Lactobacilli compound (including L.

gasseri, L. reuteri, L. acidophilus and L. fermentum), Huang et

al. showed that significantly decreased the E. coli and aerobe

counts, and increased Lactobacilli and anaerobe counts in the

digesta and mucosa, thereby promoting growth performance

of pigs (57). Furthermore, Lactobacillus spp. can increase the

levels of microbial metabolites such as butyrate to alleviate

piglet diarrhea, which directly and indirectly affects growth

performance (58). Although the gut microbiome is not analyzed

here, we choose to study the effects of Lactobacillus spp. in piglets

at the age of weaning. When antibiotics are often used due to

sudden changes in diets and gut microbiota dysbiosis, which

further impair pig performance and health. It is noteworthy that

at weaning, a reduction of intestinal VH or villus atrophy may

occur (56).

In this regard, we found that Lactobacillus spp.

supplementation significantly increased VH and the V/C

ratio in the small intestine of piglets. It may be partly due to

the Lactobacillus-increased daily feed intake, resulting in a

trophic action on the development of intestinal epithelium

(18). As the main digestive and absorptive site, increases in

small intestinal VH and the V/C ratio are directly related to

the larger surface area and enhanced epithelium turnover and

cell mitosis activation (24, 59). It allows for enhanced uptake

of dietary substances while excluding noxious agents in the gut

lumen (60). Finally, the improved gut morphology can facilitate

digestion, and absorption of nutrients, fluid, and electrolytes for

piglets (18, 24, 59, 60), promoting growth performance (61).

This was supported by studies we have summarized in our

meta-analysis and numerous other studies (14, 18). In addition,

in piglets challenged with LPS or E. coli, carbohydrate and fatty

acid utilization can be compromised due to inflammation, while

the probiotic can alter the villus-crypt architecture and influence

the associated enzyme activity and nutrient transport receptor

expression (62, 63). Similarly, Zhang et al. demonstrated

that Lactobacilli supplementation increases digestive enzyme

activities and promotes growth performance (12). Furthermore,

the addition of Lactobacillus resulted in the enhancement of

genes for the metabolism, transport, and catabolism of vitamins,

amino acids, lipids, and polyketides, thus the improvement

of growth performance (64). In addition, we also reported

a location-specific response of intestinal histology driven by

Lactobacillus spp. i.e., Lactobacillus supplementation improved

all jejunal and ileal histological parameters, likely related to the

gradient distribution of microbiota along the pig small intestine

(65, 66). It is also suggested that the probiotics, live bacteria,

their signaling or metabolites, must have reached the distal part

of the intestine in piglets and become effective. However, care

must be taken as the meta-analysis approach has limitations.

For instance, when the number of included studies is small, the

number of trial characteristics is large, and the heterogeneity

of data becomes large, which was also seen in our studies. And

even if the number of studies is increased, Meta-analysis might

not fully explain all but kept a residual heterogeneity (21, 22, 25).

Conclusion

In conclusion, our findings indicate that Lactobacillus spp.

supplementation plays a crucial role in improving growth

performance of piglets by increasing ADF, ADFI and the G/F

ratio, in parallel modifying the intestinal morphology, especially

in the jejunum and ileum. It suggests that Lactobacillus spp. can

be regarded as a promising alternative to replace AGPs usage in

pig production. Based on our analysis, we suggest that future

studies focus on documenting the effects of Lactobacillus spp.

supplementation on the porcine gut microbiome; evaluating

probiotics viability in farm conditions and generating protocols

and regulations for the application in the industry.
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