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Water is one of the primary vectors for African swine fever virus (ASFV)

transmission among swine herds. However, the low concentrations of ASFV

in water represent a challenge for the detection of the virus by conventional

PCR methods, and enrichment of the virus would increase the test sensitivity.

In this study, aiming to enrich ASFV in water quickly and e�ciently, a rapid and

e�cient water-borne virus enrichment system (MDEF, modified diatomaceous

earth by ferric hydroxide colloid) was used to enrich ASFV in water. After

enrichment by MDEF, conventional real-time PCR (qPCR) was used for ASFV

detection. ASFV were inactivated and diluted in 10 L of water, of which

4mL were collected after 60min treatment using the MDEF system. Two

thousand five hundred times reduction of the sample volume was achieved

after enrichment. A high adsorption rate of about 99.99 (±0.01)% and a high

recovery rate of 64.01 (±10.20)% to 179.65 (±25.53)% was achieved by using

1g modified diatomaceous earth for 10 L ASFV contaminated water. The limit

of qPCR detection of ASFV decreased to 1 × 10−1.11 GU ml−1 (genomic

units per milliliter) from 1 × 102.71 GU ml−1 after concentrating the spiked

water from 10L to 4ml. Preliminary application of MDEF allowed successful

detection of African swine fever virus (ASFV), porcine circovirus type 2 (PCV2),

and pseudorabies virus (PRV) in sewage. Thus, the combination of modified

diatomaceous earth and real-time PCR is a promising strategy for the detection

of viruses in water.

KEYWORDS

modified diatomaceous earth, Fe(OH)3 colloid, virus enrichment, African swine fever

virus, waterborne viruses

1. Introduction

Pathogens in drinking water cause significant hazards to both human and animal

health. The causative agents of waterborne disease fall into three major categories,

namely, bacteria, viruses, and parasites (1). In 1993, Charles N. Haas estimated that
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human have a 5% lifetime risk of death from exposure to

waterborne viruses (2) and these risks have not changed

significantly over time (3). Most pathogens spread through

media contaminated by infected animals’ body fluids, exhaled

aerosols, and fecal or urinary excretions. Many viruses are

detected in water, including environmental waters, bath water,

river, and seawater (4). The use of sedimentation, filtration,

and other sanitization methods have decreased the risk of

infection by pathogens in human drinking water (5). However,

relatively little research has focused on the risk assessment of

pathogens present in water used for animal production. Most

livestock farms use untreated or inadequately treated river-

or groundwater, posing a high risk of diseases to livestock

and threatening food safety. P.F.M. Teunis reported that

traditional water treatment methods, such as long-term storage,

flocculation/precipitation, filtration, and ozone disinfection,

cannot fully disinfect water, and the low concentration of

pathogens in post-treatment samples frequently result in zero

counts during measurement (6).

Most current assessment procedures for water quality and

disease risk focus of the water’s bacterial CFU index. However,

there is no association between bacterial indicators and the

type and number of waterborne viruses, and consequently,

waterborne viruses are often ignored (7). Hence, efficient and

cost-effective enrichment methods are urgently needed for the

detection of waterborne viruses. Such procedures would allow

the assessment of the biosafety risk of water.

Pork is a leading source of high-quality protein in many

people’s diets and, thus, its supply and safety have significant

implications for human health. The emergence of several swine

viral diseases can potentially cause pork supply shortages and

international trade restrictions. In particular, an acute and highly

contagious viral disease (mortality rate exceeding 90%), African

swine fever (ASF), is currently causing severe economic losses

to the swine industry. It is especially serious since ASF was

reported to spread in China in 2018, which has half of the world’s

swine population. ASF has been listed as one of the notable

diseases by theWorld Organization for Animal Health (WOAH)

because of its significant economic, trade, and food-security

implications (8).

ASF, belonging to the genus Asfivirus of the family

Asfarviridae is a large, enveloped, double-stranded DNA

virus. It can be transmitted through different routes, such

as direct or indirect contact with infected pigs and their

secretions, excretions, blood, tissues, pork, and pork products,

as well as being transported in contaminated water, vehicles,

feed, personnel, and other approaches (9). Strong biosecurity

measurements have been applied on swine farms in ASF-

affected areas to prevent the spread of the disease. Even though

personnel, vehicles, and goods can be managed, it is difficult

to avoid the spread of ASFV to a pig farm if flooding with

ASFV-contaminated water occurs. Within a farm, ASFV is

spread primarily through virus-infected saliva or feces. Sewage

from washing pens, water trough residues (10), and other

manufacturing activity could easily lead to ASFV pollution

in affected pig farms. ASFV can infect pigs at a dose as

low as 1 TCID50; therefore, pigs can be easily infected by

ASFV-contaminated water (11). As the detection of ASFV at

low concentrations is challenging, an extra enrichment step is

required to increase the template concentration before virus

detection. Pei and colleagues reported that the number of

pathogens in river water, well water, and other water sources are

extremely low and often more than 10 L of water is required for

enrichment for pathogen detection (12).

Viruses and other bio-colloids have a pH-dependent surface

charge in polar media such as water. This electrostatic charge

determines the mobility of the soft particle in an electric

field, governing its colloidal behavior, which in turn plays

a key role in viral adsorption processes. The isoelectric

points (IEPs) of viruses range from 1.9 to 8.4, with most

in the region of 3.5 to 7.0 (13). Viruses can be adsorbed

on a solid matrix by electrostatic attraction or hydrophobic

interaction at a defined pH value. Because of this electrochemical

property, charged filter material can be used for adsorption

of viruses in water. The adsorbed virus can then be eluted

from the membrane for detection. Two types of filters are

used to concentrate viruses, namely, electro-positively charged

filters to concentrate viruses at around pH 7.0 (14–16) and

electronegatively charged filters to concentrate viruses at lower

pH (17). The adsorption efficiency can be further enhanced

by modifying the surface charge of the filter with divalent and

trivalent cations such as aluminum (Al3+), magnesium (Mg2+),

ferric iron (Fe3+), and other ions (18). A combination of

charged membrane filters and microfluidic filtration techniques

have also been used to process large volumes of water. These

methods are particularly useful when processing large sample

volumes and can be used on a scale of liters. However,

the miniaturization of filtration techniques into microfluidic

devices may result in clogging, limiting their applications to

clinical samples (1). Since water in natural environments,

such as rivers and wells, is usually weakly alkaline (pH >

7), and viruses carry a negative charge on their surfaces

(IEP < pH), positively charged filter media are extremely

efficient for capturing viruses (15, 16, 19, 20). Seeley and

Primrose coated microporous filters with aluminum hydroxide.

The filters tended to be clogged, reducing their filtration of

water, and thus reduced their application efficacy. Michen

et al. reported that modified diatomaceous earth allowed better

water flow due to its larger pore size and the fact that

viruses may be retained by adsorption mechanisms resulting

from intermolecular and surface forces (21). Emerging water

treatment technologies using ferrous and zero-valent iron

have shown the potential of reducing viral contamination

using both inactivation and adsorption. Iron electrocoagulation

was investigated for virus mitigation in drinking water using

laboratory experiments (22).
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Methods such as ultracentrifugation, immuno-filtration

(23), immunomagnetic separation (24), precipitation, and

organic flocculation (25) have also been used for virus

enrichment. According to the recommendations by the manual

of Diagnostic Tests and Vaccines for Terrestrial Animals (World

Organization for Animal Health, WOAH), real-time PCR is

widely used for ASFV detection. A promising method for

detecting ASFV in farms could be the combination of an

enrichment system and real-time PCR.

2. Materials and methods

2.1. Preparation of MDEF filter and EGM
filter

The MDEF system’s filter material was diatomaceous

earth (Qingdao Ocean Chemical Co., Ltd., Qingdao,

China) with Fe(OH)3 colloids attached to the surface

(Supplementary Figure S1). A saturated solution of FeCl3

was prepared by dissolving 1.6 g of ferric chloride hexahydrate

(Sinopharm Chemical Reagent Company Limited, Shanghai,

China) in 1ml of distilled water at room temperature (25◦C).

Next, 0.5ml of saturated FeCl3 solution was added dropwise

to 100ml boiling distilled water. The heating equipment was

turned off when the solution turned a burgundy color. After

standing for 1 h, the Tyndall effect was applied to assess the

development of Fe(OH)3 colloids (there is a distinct light

channel when the colloid is illuminated by a laser pointer).

The pellets should not be visible in this solution (Figure 1A).

One hundred grams of diatomaceous earth with a size range

of 0.12–0.16mm were then mixed with 100ml of the Fe(OH)3

colloids, and the mixture was dried at 50◦C for more than 24 h.

One gram of the dried modified diatomaceous earth was then

applied to a polypropylene column (JinYang Filter Equipment,

Hebei, China) with an inside diameter of 1.5 cm and a height of

7.5 cm pre-packed with a filter pad (JinYang Filter Equipment,

Hebei, China).

The polypropylene filter cartridges andAl(OH)3 precipitates

were prepared for filter cartridge systems with electropositive

granule media (EGM) as previously described (26). First, 1.26 g

AlCl3 and 8.55ml of 2mol L−1 Na2CO3 were used to create

an Al(OH)3 precipitate. This was mixed well with 80 g silica

gel (Marine Chemical Co., Qingdao, China) and dried at 50◦C

for over 24 h, resulting in the EGM. Lastly, 1 g of the EGM was

gently added to a polypropylene filter cartridge containing sterile

water (26, 27).

2.2. Description of the MDEF system

The MDEF system comprised two water containers, two

PVC (polyvinylchloride) pipes with inner diameters of 4.8mm,

an MDEF filter, and one peristaltic pump (Figures 1B, C). Water

samples flowed into the collection barrel after passing through

the filter column and peristaltic pump (maximum pumping

speed of 250ml min−1). After filtration, the ASFV on theMDEF

were eluted using elution buffer. Three types of elution buffer

(the details are listed in Table 1), including 10× nutrient broth

medium (10×NB), 1M NaCl, and 1.5% beef extract with 0.05M

glycine (1.5% GBE), were tested to compare their efficiency

for virus elution. Four milliliters of elution buffer were added

to the filtration column with the virus for MDEF suspension

in the added buffer. The suspension was transferred to 10ml

Eppendorf (EP) tubes, placed on a horizontal shaker, and shaken

for 1 h to ensure that the MDEF could release the ASFV into

the elution buffer. After 1 h of shaking, the suspension was

allowed to precipitate, and 1ml of the supernatant was used for

qPCR analysis.

2.3. Preparation of spiked water sample

ASFV was inactivated at 60◦C for 60min in a Class II

biosafety cabinet in an ABSL-3 laboratory (8). Inactivation was

confirmed by inoculation into porcine alveolar macrophages

(PAM) cells resulting in no virus growth. Samples were then

transferred to a BSL-2 laboratory for follow-up testing. Briefly,

inactive anticoagulated blood was subjected to three freeze-thaw

cycles and centrifuged at 12,000 rpm to remove cell debris.

Varying dilutions of the supernatant were then added to water,

resulting in spiked water samples.

2.4. Nucleic acid extraction

ASFV DNA was extracted using the TIANamp Genomic

DNAKit (DP304) (TianGen Biotech (Beijing) CO., TD., Beijing,

China) according to the manufacturer’s instructions. DNA and

RNA in clinically samples were extracted simultaneously using

the TIANamp Virus DNA/RNA Kit (DP315) (TianGen Biotech

(Beijing) CO., TD., Beijing, China). Two hundred microliter

samples were used for one extraction. Nucleic acid negative

controls were prepared at this stage for each treated and negative

control sample by running parallel extractions of nuclease-free

water with the kit. The extracted DNA and controls were stored

at−20◦C until TaqMan R© PCR amplification.

2.5. TaqMan® PCR amplification

The detection and quantification of 250 bp of the ASFV

B646L genes were performed as previously described by

King and colleagues (28). This method is recommended

by the WOAH. Nuclease-free qPCR Reaction Master

Mix (2×) (Takara Bio (China) Co., Ltd.) was prepared in

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.1045190
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wu et al. 10.3389/fvets.2022.1045190

FIGURE 1

A laser pen was used to irradiate three types of liquid from the side of the beaker, with the appearance of an obvious optical path in the Fe(OH)3
colloid which was not apparent in neither the ferric chloride solution nor the distilled water (A), schematic diagram showing the MDEF

enrichment and elution procedures (B), and the actual MDEF system (C).

TABLE 1 Recovery e�ciency of three elution bu�ers at di�erent pH values.

Elution bu�er Ingredients
(m/v)

ASFV in
spiked water
(log GU/µL)

% Recovered ± SD

pH 3.0 pH 5.0 pH 7.0 pH 9.5

1M NaCl 1 mol/L NaCl 5.97 0.18± 0.00 0.18± 0.00 0.18± 0.00 0.18± 0.00

1.5% GBE 1.5% beef extract

with 0.05m glycine

0.18± 0.00 1.42± 0.97 2.40± 3.14 3.93± 5.30

10×NB 10% Peptone 3%

Beef Extract and

5% NaCl

2.31± 1.61 40.01± 2.45 71.64± 5.23 82.76± 3.55

advance. Primers (Sangon Biotech, China) were prepared

at a concentration of 10 pmol/µl. Primer F sequence 5′-

CTGCTCATGGTATCAATCTTATCGA-3′; Primer R sequence

5′-GATACCACAAGATC(AG)GCCGT-3′. Fluorescent-labeled

hydrolysis probe (5′-FAM-CCACGGGAGGAATACCAACCC

AGTG-3′-TAMRA, Sangon Biotech, China) was used at a
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concentration of 10 pmol/µl. The PCR reaction mixture was

prepared in sterile 1.5-ml microcentrifuge tubes, as described.

The reaction mixture contained: nuclease-free water (5 µl); (2

conc.) 2× PCR reaction master mix (10 µl); primer F (10 pmol,

0.4 µl), primer R (10 pmol, 0.4 µl), fluorescent-labeled probe

(10 pmol, 0.4 µl). A further 16.2 µl of PCR reaction mixture

was added to each well of an optical reaction plate for the assay

and 3.8 µl of the extracted DNA template or blank extraction

control was added to each well and covered with a cap. The plate

was centrifuged for 1min in a suitable centrifuge to mix the

contents, and PCR amplification was performed on CFX Touch

96-well Real-Time PCR Detection Systems (Bio-Rad, Hercules,

CA, USA) with the following parameters: one cycle at 50◦C for

2min; one cycle at 95◦C for 10min; 40 cycles at 95◦C for 15 s;

58◦C for 1 min (28).

2.6. Adsorption experiments

In these experiments, 40ml of distilled water (n = 12, m

= 3) was spiked with inactivated ASFV to final concentrations

of 1 × 103.61±0.06 GU ml−1 (genomic units per milliliter), 1

× 104.78±0.05 GU ml−1, 1 × 106.10±0.07 GU ml−1, and 1 ×

107.73±0.05 GU ml−1. The spiked water samples were mixed in

50-ml centrifuge tubes with the three types of filter materials

[aluminum hydroxide (Al(OH)3) colloid modified-diatomite,

Fe(OH)3 colloid modified-diatomite and unmodified diatomite]

and placed on a shaker for 1 h. After shaking for 1 h, the filtered

material was allowed to settle to the bottom of the flask for

5min before 2ml of the supernatant were transferred to a

new centrifuge tube for subsequent experiments. Triplication

of 0.2ml aliquots were removed from the supernatants for

detection of the remaining ASFV.

2.7. Elution experiment

Previous studies have reported electrostatic interactions

between proteins and filter surfaces (29). Three strategies were

investigated in this study. The first involved the use of an organic

buffer containing a high protein concentration, i.e., 10 times

the concentration of the nutrient broth medium (10×NB) for

detaching the bound virus on the filter. The second option

was the use of chloride ions (1M NaCl solution) to neutralize

the charge on the surface of modified diatomite, disrupting

the electrostatic attraction between the virus and the filter

(18). Beef extract (1.5%) with 0.05m glycine (1.5% GBE, pH

= 9.5) has been frequently used for elution, for instance, for

the 1MDS cartridge filters recommended by United States EPA

(17). The recovery efficiencies of the three different elutes, i.e.,

10×NB buffer, 1M NaCl solution, and 1.5% GBE buffer, were

compared. The elution buffers were adjusted to specific pH

values (3.0, 5.0, 7.0, or 9.5).

2.8. Determination of the detection limit
of the MDEF/qPCR combination

The MDEF system enriched the inactivated ASFV in the

water. Serial dilutions of ASFV standard plasmid DNA were

prepared and used to develop a standard curve for quantification

of ASFV by qPCR (Supplementary Figure S2). It was observed

that when a low amount virus was added into a large volume

of water, the detection limit was lower than the theoretical

concentration due to Brownian motion. For example, addition

of 1ml of inactivated ASFV (1 × 108.39±0.03 GU ml−1) to

10 L water would result in a detectable ASFV genome of 1 ×

103.87±0.29 GU ml−1, indicating that if the volume increased

by 1 × 104.00 times, the concentration could be reduced by

1 × 104.52 times. Hence, the amount of ASFV genome added

into the water was used to calculate the recovery rate instead

of the amount detected in the spiked water. In practice, this

phenomenon hardly ever occurs in spiked water with high

viral concentrations.

After calculating the amount of virus input, different

amounts of virus were added to 10 L of water to model

the different virus concentrations in spiked water. Six final

concentrations in spiked water (1× 10−0.33±0.06 GUml−1, 1×

100.93±0.06 GUml−1, 1× 102.14±0.01 GUml−1, 1× 103.24±0.04

GUml−1, 1× 104.41±0.04 GUml−1, 1× 105.35±0.07 GUml−1)

were prepared in 18 barrels. All the spiked water was filtered and

eluted. The viral concentration in the eluents was determined,

and the limitations of detection (LOD) of the combined MDEF

system and qPCR method were calculated.

2.9. PEG precipitation

Polyethylene glycol (PEG) is frequently used to enrich

viruses. The capacity of PEG-6000 to precipitate viruses was

also evaluated in this study. Different concentrations of PEG-

6000 were mixed with 10 × NB elution buffer to prepare

10ml mixtures with 104.17±0.01GU of inactivated ASFV. The

solutions were placed in 15-ml centrifuge tubes, mixed well, and

incubated at 4◦C for 12 h. After centrifugation for 1 h, 9.6ml

of the supernatant was removed, and the precipitate was rinsed

with the the remaining 0.4ml of the supernatant and analyzed

by qPCR.

2.10. Statistical analysis

Each experiment was performed at least three times. The

results were statistically analyzed, and the significance of the

differences was determined with a one-way analysis of variance

(ANOVA) and Tukey’s multiple comparison tests. In all cases,

a value of p < 0.05 was deemed a significant difference. The

adsorption rate was determined by dividing the total number
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of ASFV genomes in the filtered water by that in the spiked

water. The recovery rate was calculated by dividing the total

number of ASFV genomes in the eluates by that in the spiked

water. The quantitative detection of ASFV nucleotide acid in

water samples and eluted solutions was done by qPCR (the

standard curve for ASFV B646L gene plasmids was shown in

Supplementary Figure S2). The following formulas were used to

calculate the adsorption and recovery rates:

Adsorption rate (%)1∗ = (1 −
C1

C0
) × 100

Adsorption rate (%)2∗ =

(1 − 2CT
∗before absorbed−CT after absorbed)× 100

Where, C1 represents the concentration of the ASFV

genome left in the water after being absorbed, and C0 represents

the concentration of the ASFV genome in water before being

absorbed. CT represents the cycle threshold value determined by

qPCR. The adsorption rate was calculated using two formulae.

Formula 1∗ (which was used in this study) could be applied

regardless of the quantitative method used. Formula 2∗ (which

is more convenient) can be used when with qPCR quantification

and its amplification efficiency was 100% (±5%). The calculated

adsorption rates did not differ between the two formulae.

Recovery rate (%) =
Q1

Q0
× 100

Here, Q1 and Q0 represent the quantity of ASFV genome

measured in the final eluate after concentration and the quantity

of ASFV genome seeded into the spiked water samples before

concentration, respectively.

3. Results

3.1. Adsorption of metal hydroxide
colloid modified diatomaceous earth

Modification with different salts led to an increase in

the zeta potential of the diatomaceous earth (30). The

activity of Al(OH)3 colloid and Fe(OH)3 colloid modified-

diatomite were compared with unmodified diatomite to

examine their ASFV adsorption capabilities. Each combination

was set up with three duplicates to calculate the standard

deviation. Figure 2 demonstrates the filter media’s adsorption

efficiency at various viral concentrations. No genome was

detected in the samples with low ASFV concentration

(1 × 103.61±0.06 GU ml−1) treated by Al(OH)3 colloid

modified-diatomite and Fe(OH)3 colloid modified-diatomite.

The CT values of samples that could not be detected (no

CT value) were determined as 40 cycles (CT = 40) for

calculation. Due to the constraint in the calculation method,

the real adsorption rate was higher than the calculated value

of 91.93 (±0.003)%.

ASFV nucleic acids were detected at a concentration of 1 ×

103.28±0.04 GU ml−1, with only a 52.89 (±4.61)% adsorption

rate in the unmodified diatomite. The adsorption rates were

6.71 (±1.86) and 11.29 (±12.64)% in the ASFV genome-

concentrated spiked water. The Al(OH)3 colloid-modified

diatomite showed adsorption rates in the range of 91.93 (±0.00)

to 40.19 (±1.87)%. The adsorption efficiency of the Fe(OH)3

modified diatomite was almost 100%, and no ASFV genome

was detected in water after adsorption, even at the highest

concentration of ASFV in the spiked water. In general, 1 g of

Fe(OH)3 colloid-modified diatomite could completely absorb

the ASFV in 40ml water with a concentration <1× 107.73±0.05

GU ml−1. This result is consistent with the findings of Farrah

and colleagues (30).

The results indicated that the adsorption efficiency of

diatomite modified by Fe(OH)3 colloid was much higher than

that of the other filter media (p < 0.01). Thus, the Fe(OH)3

colloid was used as the filter material in the MDEF system.

3.2. The recovery e�ciency of eluents at
di�erent pH conditions

It was found that ASFV absorbed by modified diatomite

were effectively eluted using 10× NB (Table 1). The recovery

efficiency of the alkaline medium (82.76 ± 3.55% at pH 9.5,

71.64 ± 5.32% at pH 7.0) was much higher than that of the

acidic medium (40.01 ± 2.45% at pH 5, 2.31 ± 1.61% at pH

3). However, there was no significant difference in recovery

efficiency between pH 7.0 and 9.5. To avoid adjustment of the

pH, 10 × NB of pH 7.0 was used in subsequent experiments. A

non-significant elution of ASFV (0.00± 0.00% to 3.93± 5.30%)

was observed using 1M NaCl and 1.5% GBE as eluents.

3.3. Comparison of virus-enrichment
methods

Al(OH)3 is commonly used for virus enrichment fromwater

(31–33). Recovery of the MDEF was compared to that of the

Al(OH)3-modified EGMfilter cartridge system. The preparation

of Al(OH)3 colloid-modified diatomite and filtration procedure

were based a previously published protocol (26). The recovery

of the MDEF system (112.46± 16.10%) was significantly higher

than that of the EGM (14.71 ± 1.36%) in the recovery of

ASFV genomes from 10 L of spiked water (1 × 104.93 GU)

with 1 g of filter material. The recoveries of the MDEF and

EGM systems declined as the concentration of ASFV genome

increased. However, at all concentrations of spiked water, the

recovery of the MDEF system was significantly more efficient (p

< 0.01) than that of the EGM system (Figure 3).
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FIGURE 2

Adsorption of ASFV by Al(OH)3-modified, Fe(OH)3-modified, and unmodified diatomaceous earth from 40ml of spiked water containing

di�erent concentrations of virus. The adsorption e�ciency of the Fe(OH)3-modified diatomaceous earth was significantly higher than that of the

other two materials. ***Significant di�erence between groups (p < 0.01).

3.4. Detection limit of the MDEF/qPCR
combination

The limitations of detection (LODs) of the individual ASFV

qPCR and the combined method were used to determine the

efficiency of the combined MDEF/qPCR system (Figure 4). The

lowest detectable concentrations were 1 × 103.67±0.27 GU

ml−1(spiked water) and 1 × 104.00±0.06 GU ml−1 (eluant).

179.65 (±25.53)% ASFV genome was recovered from the spiked

water (1 × 10−0.33±0.27 GU ml−1) by eluting (1 × 104.00±0.06

GU ml−1) after concentrating 2,500 times of the volume of

them. These performances demonstrated the efficiency of the

system’s recovery capacity. The ASFV genome could not be

detected in a series of spiked water samples <103.67±0.27 GU

ml−1. However, after enrichment, ASFV genome concentrations

were detected in eluants as 1 × 108.55±0.07 GU ml−1 (64.01

± 10.20%), 1 × 107.67±0.04 GU ml−1 (76.85 ± 6.60%), 1 ×

106.55±0.04 GU ml−1 (81.84 ± 6.60%), 1 × 105.50±0.01 GU

ml−1 (91.12 ± 2.31%), 1 × 104.41±0.06 GU ml−1 (112.46 ±

16.10%), and 1× 103.40±0.06 GUml−1 (179.65± 25.53%). Their

corresponding final concentrations in spiked water were 1 ×

105.35±0.07 GUml−1, 1× 104.41±0.04 GUml−1, 1× 103.24±0.04

GU ml−1, 1 × 102.14±0.01 GU ml−1,1 × 100.93±0.06 GU ml−1,

and 1× 10−0.33±0.06 GUml−1.

These results indicate that the LOD in 10 L of ASFV-

contaminated water increased by 1 × 104.0 times (from 1 ×

103.67±0.27 GU ml−1 to 1 × 10−0.33±0.27 GU ml−1) using the

combined MDEF and qPCR method.

3.5. Additional experiments

Over 50.42 (±4.53)% of the virus (1 × 103.93±3.93 GU) was

recovered using 20% PEG-6000 solution (Figure 5). Although

the concentration was 10 times higher than non-PEG-6000

precipitation protocol, this requiredmore than 13 h of treatment

and the use of a high-speed centrifuge. Hence, extra treatment

was only recommended in well-equipped laboratories.

3.6. Natural water experiments

TheMDEF system was used to measure a total of 59 samples

of natural water and sewage to determine its clinical applications
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FIGURE 3

The EGM and MDEF systems were used to recover viruses from spiked water (10 L) containing di�erent ASFV genome concentrations. The

recovery rates of the MDEF system were significantly higher than those of the EGM system for all four types of spiked water. ***Significant

di�erence between groups (p < 0.01).

(Table 2). The 59 samples consisted of 10 fecal sewage samples

(No. 1–4) from the ASFV animal infection experiments, eight

samples from washed pigsties in ASFV-infected farms (No. 5

to 10) where the pigsties had had an ASF outbreak but had

since been cleaned and dried and five liters of water were used

for sample collection on equipment surfaces through repeated

washing of the surfaces, nine samples from unwashed pigsties

(No. 11–19) on ASFV-positive farms where the pigsties were

undisinfected or disinfected with NaOH and contained lots of

sewage, two water samples from a slaughterhouse depilation

tank (No. 20 and 21), and 14 samples from well water obtained

from five pig farms well water samples from 5 pig farms (No.

31). ASFV was detected in several of these samples. It was

notable that some of these samples were diagnosed as ASFV-

positive after processing with the MDEF system, whereas they

were misdiagnosed as ASFV-negative when only using qPCR

for detection.

In addition, the MDEF system was used in the flood-affected

pig farms (No. 22–30, Henan province, July 2021), Yezi Lake

(No. 32), and Yangtze River (No. 33, Hubei Province, February

2022). Despite the use of small volumes of water, PCV2 and PRV

were successfully detected.

4. Discussion

Methods for the concentration and enrichment of

waterborne viruses have been studied for a while, and many

adsorbent materials have been developed. Negatively charged

filters require the addition of multivalent salts and acidification

of the water sample for efficient virus adsorption, making large-

volume sampling difficult; these filters include the Millipore

membrane filter (cellulose nitrate) (34) and the Filterite pleated

cartridge filter (epoxy-fiberglass) (35). In contrast, positively
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FIGURE 4

Eighteen barrels of spiked water with six final concentrations of ASFV (10 L per barrel) were enriched using the MDEF system, and the presence

of the ASFV genome in both spiked water (without enrichment) and eluates (with enrichment) was measured by qPCR. The LODs were

determined for both conditions with the LOD of the 10-L ASFV-contaminated increasing 1 × 104.0 times (from 1 × 103.67±0.27 GU ml−1 to 1 ×

10−0.33±0.27 GU ml−1) after enrichment.

charged filters require no preconditioning of samples and

can concentrate viruses from water over a wider pH range

than electronegative filters (18). These materials, however,

cannot be widely used in veterinary diagnosis due to the need

for expensive equipment, inefficient adsorption rates, and

differences in virus species. Metal-based adsorption materials

have been extensively investigated, especially positively charged

filters (15, 18, 24, 27, 36–39). In this study, Fe(OH)3-modified

diatomaceous earth was found to possess superior adsorption

and recovery efficiency than Al(OH)3-modified diatomite

in the ASFV enrichment experiments. This result can be

attributed to the chemical characteristics of these two metal

sorbents. According to Luo M, Al3+ hydrolysates differed at

different pH levels: [Al(OH)n]
(n−3)− (n = 6, 7, 8, 9, or 10)

at pH < 4; [Al6(OH)15]
3+, [Al7(OH)17]

4+, [Al8(OH)20]
4+

and [Al13(OH)34]
5+ at 4 < pH < 6; [Al(OH)3] at 6 <

pH < 8; [Al(OH)4]
−, [Al8(OH)26]

2− at 8 < pH (40, 41).

Different hydrolysates exhibit different electrical properties,

and Al(OH)3 is not positively charged in natural water as

a result of its hydrolysates at 7 < pH. Thus, water samples

require adjustment to pH ≤6.0 before concentration with

an aluminum-based method (31, 33). Previous studies have

shown that phosphate removal by aluminum-loaded shirasu-

zeolite was 80–40% at pH values from 2 to 11 (42). These

studies confirmed that poor adsorption effects of aluminum-

based methods in neutral or alkaline media. Similar to Al3+

hydrolysates, Fe3+ hydrolysates also differed at different pH

values: Fe3+ at pH < 2; FeOH2+, Fe(OH)+, Fe2(OH)4+2 ,

Fe3(OH)5+4 and other polymers at 2 < pH < 8.1; Fe(OH)3

at 8.1 < pH < 12; and Fe(OH)−4 at 12 < pH. Thus, ferric-

based materials are positively charged in solutions with pH <

8.1 (40).
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FIGURE 5

Di�erent final concentrations of PEG-6000 was added to the ASFV-containing eluate for determination viral recovery. After precipitation and

centrifugation, the volume of liquid was reduced from 10ml to 0.4ml. More than 50.42 (±4.53)% of the virus was recovered using the 20%

PEG-6000 solution.

The findings of this study indicated that the use of ferric-

based materials for the adsorption of negatively charged groups

in natural water have stronger electrostatic attraction than

aluminum-based materials. Our findings are consistent with

previous studies reporting that ferric hydroxide outperforms

aluminum hydroxide in the removal of negatively charged

groups such as arsenate (43, 44).

We found that the recoveries using the MDEF and

EGM systems declined as the ASFV genome concentration

increased. A previous study by Armanious et al. investigated

the mechanism by which viruses bind to adsorbents (29).

These authors found that virus-sorbent interactions were

governed by long-ranged electrostatic forces together with

contributions from the hydrophobic effect, while the shorter-

range van der Waals interactions were of secondary importance.

The topographic irregularities on both the virus and sorbent

surfaces influenced steric effects. In our study, the long-range

electrostatic interactions on MDEF gradually decreased as the

amount of adsorbed virus increased, leading to reduced virus

adsorption. At the same time, the adsorption of more virus

to the MDEF surface leads to steric effects, further weakening

the interaction between the MDEF and virus. Thus, the MDEF

recovery rate gradually decreased as the virus load increased.

Increasing the weight of the filter media could be a solution,

but it can only be considered when the volume of water

exceeds 10 L.

CD2v (encoded by pE402R) and p12 (encoded by ORF

061R) are the primary adhesion proteins present on the ASFV

external envelope membrane (45), and their isoelectric points

have been predicted to be 6.21 and 7.63, respectively (https://

web.expasy.org/compute_pi). Based on these values, the surface

of ASFV was predicted to be negatively charged at pH > 6.21.

A critical characteristic of the adsorbents is surface charge,

which is expressed as the zeta potential of the adsorbent
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TABLE 2 The MDEF system was applied to 59 samples of natural water or sewage.

Sources No. Numbers Volume Virus species CT value

Without MDEF With MDEF

Fecal sewage from animal infection assay 1 1 500ml ASFV NT∗1 36.56

2 1 200ml ASFV 38.62 35.75

3 1 1 L ASFV 33.78 30.4

4 7 500 ml−1 L - NT NT

Water from the clean-washed pigsties 5 1 5 L ASFV NT 36.90

6 1 5 L ASFV NT 37.49

7 1 5 L ASFV NT 35.98

8 1 5 L ASFV NT 34.24

9 1 5 L ASFV NT 36.60

10 3 5 L – NT NT

Water from the unwashed pigsties 11 1 450ml ASFV 36.90 36.94

12 1 400ml ASFV 37.22 34.84

13 1 500ml ASFV 39.84 35.45

14 1 400ml ASFV 37.04 36.85

15 1 1 L – NT 32.67

16 1 450ml – NT 35.38

17 1 900ml ASFV 37.99 31.71

18 1 900ml ASFV 37.06 30.92

19 1 350ml – NT NT

Water from slaughterhouse depilation tanks 20 1 5 L ASFV NT 35.28

21 1 600ml – NT NT

Drinking water from pig farms 22 1 400ml PCV2 NT 37.39

Fecal sewage from pig farms 23 1 400ml PCV2e∗2 33.78 29.54

24 1 400ml PRV NT 38.29

PCV2d∗3 30.75 27.78

25 1 400ml – NT NT

Sewer ditch from pig farms 26 1 500ml PCV2 NT 38.42

27 1 500ml PCV2 NT 35.05

28 1 500ml PCV2 NT 35.51

29 1 250ml PCV2 NT 38.07

30 2 500ml – NT NT

Well water from 5 pig farms 31 14 500 ml−5 L – NT NT

Lake water 32 3 10 L – NT NT

Yangtze water 33 3 10 L – NT NT

∗1 No positive result.
∗2,∗3 Sequencing confirmed that these porcine circoviruses were gene types 2e and 2d.
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surface (46). Although the electrostatic force constitutes one

of the mechanisms involved in metal-based adsorption, the

mechanism of MS2 virus removal by iron coagulation involves

the adsorption of negatively charged virus particles onto the

positively charged iron oxyhydroxide, FeOOH(s), floc particles,

similar to the mechanism proposed for virus removal by

the precipitation of aluminum hydroxide in the Standard

Methods virus concentration procedure (47–49). The results

of a study by Sobsey and Jones (50) supported the idea that

electrostatic forces were instrumental in virus–filter interactions

due to the correlation between zeta potential (i.e., electrokinetic

potential) measured for the electronegative and positively

charged adsorptive materials, and the retention efficiencies

were measured for each filter. These reports explained the

mechanism by which the MDEF system was superior to

the EGM system in the process of concentrating ASFV in

natural water.

The low recovery of 1.5% GBE in this study can be

explained by the strong electrostatic force of the iron hydroxide

colloid compared to other filter media, such as nitrocellulose

membranes, 1MDS Cartridge filters, and Al(OH)3 colloids. The

elution buffer (10× NB) had a high protein concentration to

dislodge the bound virus from the modified diatomite through

competitive binding. While previous studies have demonstrated

the use of ferric-based materials in adsorption, these were rarely

used in enrichment and recovery, probably due to the use of

ineffective eluents (51). Here, the 10×NB buffer was shown to

elute viruses from the materials more efficiently compared to

other eluents.

Electronegative filters require acidification or the addition

of polyvalent salts to water samples before use, which makes

large-volume sample processing difficult. Thus, positively

charged filter media present an alternative to electronegative

adsorbents. Although Virosorb 1MDS demonstrated efficient

virus adsorption from various water quality types for both small

and large volumes, its high cost reduced the affordability of

large-scale applications. Thus, the MDEF system is promising

as an inexpensive and effective methodology for monitoring the

presence of viruses in water. Also, compared with the commonly

used ultracentrifugation-based methods, the MDEF system can

be used in smaller and less well-equipped laboratories due

to its capacity for large-volume processing without the need

for ultracentrifugation.

5. Conclusion

Although there are a number of viral enrichment methods,

many show poor reproducibility and low recovery and are thus

limited in their clinical use. Others are limited by complex

procedures and high cost. The MDEF system is the first

method used to enrich ASFV in water by modify diatomaceous

earth with Fe(OH)3 colloid, resulting in an efficient and stable

enrichment capacity. Viruses were found to be efficiently eluted

from the modified diatomaceous earth using a nutritious broth.

This system efficiently enriched ASFV in water. It also showed

the following advantages for efficient ASFV detection in water:

(1) rapid enrichment of ASFV in more than 10 liters of

water from various sources; (2) increased viral concentrations

at least 1 × 104 times after enrichment; (3) easy operation;

(4) portable and outdoor-friendly; (5) low cost and widely

use.
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SUPPLEMENTARY FIGURE 1

Scanning electron micrographs of the surface structure of the

diatomaceous earth: (A–C) modified diatomaceous earth

without Fe(OH)3, showing a flat clean surface; (D–F) modified

diatomaceous earth with Fe(OH)3, showing coarsening of the

diatomaceous earth surface resulting from attachment of the

Fe(OH)3 colloids.

SUPPLEMENTARY FIGURE 2

Standard curve for B646L gene plasmids.
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