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The present study looks for components in seminal plasma (SP) and/or serum

that are closely related to in vivo fertility of bu�alo bulls. Fourteen healthy

mature bu�alo bulls were classified according to their in vivo fertility into

fertile (n = 10) and subfertile (n = 4) groups. Semen and serum samples were

collected from all animals for 12 replicates. The collected ejaculates were

examined for sperm characteristics before being centrifuged to collect SP for

hormonal (FSH, LH, testosterone, and IGF-1), biochemical [total antioxidant

capacity (TAC), catalase (CAT), glutathione peroxidase (GPx), nitric oxide

(NO), malondialdehyde (MDA), fructose, total protein, albumin, triglycerides,

cholesterol, and high-density lipoprotein (HDL)] and proteomic (SDS-PAGE)

analyses. Likewise, serum levels of FSH, LH, testosterone, IGF-1, glucose, total

protein, albumin, triglycerides, cholesterol, and HDL were determined. All

sperm characteristics and the majority of sperm kinematics were (P < 0.01)

di�erent between fertile and subfertile groups. Seminal and serum levels of

FSH, LH, testosterone, and IGF-1 were higher (P < 0.01) in the fertile group,

but only seminal fructose, total protein, albumin, triglycerides, cholesterol, and

HDL were higher (P < 0.01) in the fertile group. Moreover, the fertile group

had greater TAC, CAT, GPx, and NO, but the subfertile group had greater

MDA. Protein bands of 14, 15, 26, 30, and 55 kDa were larger and denser

in the SP of the fertile group but were smaller and faint to absent in that

of the subfertile group. Also, the protein fractions of detected protein bands

demonstrated a substantial influence of fertility on those of 16, 26, 30, and 55

kDa. In conclusion, sperm characteristics and kinematics with serum, and/or

seminal hormonal and biochemical components, should be evaluated for

reliable prediction of bu�alo bull fertility. Furthermore, protein bands of 26,

30, and 55 kDa may represent fertility-associated proteins in bu�alo bull SP.

KEYWORDS

antioxidants, bu�alo bulls, fertility biomarkers, hormones, proteomic, sperm

kinematics

Frontiers in Veterinary Science 01 frontiersin.org

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.1043379
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.1043379&domain=pdf&date_stamp=2023-01-17
mailto:dr_essam_2005@yahoo.com
mailto:essam.mostafa@vet.kfs.edu.eg
https://doi.org/10.3389/fvets.2022.1043379
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2022.1043379/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Almadaly et al. 10.3389/fvets.2022.1043379

1. Introduction

Seminal plasma (SP) is an extremely complicated biological

fluid containing electrolytes, hormones, proteins, enzymes,

carbohydrates, and lipids that have an important impact on

sperm cell function and its cryosurvival (1). Thus, SP is a reliable

indicator of male fertility. Increased reactive oxygen species

(ROS) in semen samples adversely affect sperm quality and

fertility. Moreover, the high content of polyunsaturated fatty

acids in buffalo bull sperm as compared to bull sperm renders

them more vulnerable to oxidative stress (2, 3).

In humans, seminal fructose (4) is the main source of energy

production alongside glucose in the majority of mammalian

species. Glucose and fructose were found to have beneficial

effects on mammalian gametes in terms of metabolizable energy

and fertility potential (5). Additionally, fructose was higher

in highly fertile bulls, suggesting that it could be used as a

seminal biomarker for bull fertility (6). Both serum and seminal

testosterone levels were positively related to sperm quality and

fertility in rams (7, 8), and it promotes sperm production in bulls

(9). Both LH and FSH regulate testosterone synthesis in Leydig

cells and are also responsible for male fertility (9). Reproductive

biologists believe that metabolic hormones play a role in

spermatogenesis/steroidogenesis, and seminal concentrations of

IGF-1 are positively related to stallion fertility (10). Also, the

post-thaw spermmotility and viability were greatly improved by

adding IGF-1 (11) to the freezing extender in buffalo bulls.

Both albumin and globulin constitute the major fraction

of SP proteins, whereas non-protein nitrogen, amino acids,

and peptides represent limited quantities. Proteins of SP

have amphoteric properties and thus, low protein content in

SP reduced its buffering capacity, and ultimately decreased

sperm quality and fertility (12). Seminal plasma lipids play an

important role in sperm membrane structure and function.

Furthermore, there is evidence that semen volume, sperm

motility, and concentration are influenced by lipid species in

SP (13). SP proteins are species-specific and some of them are

closely related to male fertility (14, 15). Previous research has

focused on identifying and isolating specific seminal proteins

that may affect buffalo sperm capacitation and/or fertilization

(14, 16, 17). Previous proteomic studies on SP proteins,

to the best of our knowledge, did not combine hormonal

and biochemical components with proteomic analyses. As a

result, the present study looks for hormonal, biochemical, and

proteomic components in SP and/or serum collected from

buffalo bulls of different in vivo fertility which could be used as

markers of fertility.

2. Materials and methods

Except otherwise specified, the chemicals used were of high

purity and procured fromMerck KGaA (Darmstadt, Germany).

2.1. Experimental animals

A total of 14 healthy and mature Egyptian buffalo bulls

(Bubalus bubalis, 4–5 years old) with good body condition

scores were classified depending upon their conception rate

(CR) obtained following insemination of 330 estrus pluriparous

buffalo cows (4–8 years old) during the last two previous

breeding seasons using their frozen-thawed straws into fertile

(n = 10, CR ≥ 55%) and subfertile (n = 4, CR ≤ 35%)

groups in line with Kumar et al. (18). All buffalo bulls were

kept at Mahallet-Mousa Research Farm located in Mahallet-

Mousa, Kafrelsheikh (latitude 31◦ 06′ N and longitude 30◦

56′ E), Egypt. Animals were maintained in open yards, fed

a concentrated diet combination and roughages according to

the National Research Council (19) standards, with free access

to clean water and mineral blocks. All animal experiments

were conducted according to the ARRIVE guidelines (https://

arriveguidelines.org) and approved by the Committee for Ethics

in Research, Faculty of Veterinary Medicine, Kafrelsheikh

University, Egypt.

2.2. Semen collection and evaluation

From September to November, semen samples were

collected twice a week at 07:00–08:00 a.m. using an artificial

vagina (with an inner sleeve temperature of 40◦C) for 6

weeks (12 ejaculates/animal). Immediately after collection,

the collected ejaculates were visually examined for color,

consistency, and hygienic quality, and also ejaculate volume

was noticed. From each ejaculate, an aliquot (200 µL)

was used to determine the following sperm characteristics

and kinematics:

2.2.1. Sperm kinematics and viability

Sperm kinematics were determined using a computer-

aided sperm motion analyzer (CASA; Hamilton Thorne,

Inc., Beverly, MA, USA) system. The sperm motility was

calculated with speed standards set as fast; >80 µm/s,

medium; >60 µm/s, slow; >20 µm/s, and static. From

each ejaculate, an aliquot was diluted (1:10) with prewarmed

Tris buffer before being (5 µL) loaded into a prewarmed

(37◦C) Makler counting chamber to determine total motility

(%), progressive motility (%), average path velocity (VAP,

µm/s), straight linear velocity (VSL, µm/s), curvilinear velocity

(VCL, µm/s), straightness (STR, %), linearity (LIN, %), and

wobble coefficient (WOB, %) according to Kumar et al. (3).

For each evaluation, eight microscopic fields were randomly

selected and analyzed by the CASA system. An eosin-

nigrosin-stained semen smear was examined to estimate

the proportion of viable spermatozoa (20). At least 200

spermatozoa were examined under an oil immersion lens
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(1,000×) where sperm cells with unstained heads expressed

percent sperm viability.

2.2.2. Functional plasma membrane integrity

To assess the functional integrity of the sperm plasma

membrane, sperm cells were subjected to a hypo-osmotic

swelling test [HOST; (21)]. In brief, a prewarmed hypo-osmotic

solution (1,000 µL) of 150 mOsm/kg osmolarity (fructose =

1.351 g, sodium citrate = 0.735 g dissolved in 100mL Milli-Q

water) was mixed with 100 µL semen. This sperm suspension

was incubated at 37◦C for at least 30min. After incubation,

an aliquot (2 µL) of this suspension was spotted onto a

prewarmed clean glass slide, covered by a prewarmed coverslip

(18 × 18mm), and visualized under 400× magnification.

At least 200 spermatozoa were carefully examined for the

proportion of spermatozoa showing curling or swelling of

their tails (% HOST-positive). The proportion of spermatozoa

with abnormal tail morphology was already determined before

HOST and was subtracted from the proportion of HOST-

positive spermatozoa to obtain the true percentage of HOST-

positive spermatozoa.

2.2.3. Acrosomal membrane integrity

Fluorescein isothiocyanate-conjugated peanut agglutinin

(FITC-PNA) staining technique was used to determine

acrosomal membrane integrity as described in our previous

research (22). Briefly, an aliquot (10 µL) of semen was fixed

with 4% paraformaldehyde (Sigma Chemical Company,

USA) at room temperature for 30min and then diluted

(1:10) with phosphate-buffered saline (PBS) containing 0.1%

polyvinyl alcohol (Sigma Chemical Company, USA) and 0.1%

polyethylene glycol (Sigma Chemical Company, USA) before

being (5 µL) smeared onto a glass slide and dried on a warmed

plate at 38.5◦C. Spermatozoa were permeabilized by using 200

µL of 1% (v/v) Triton X-100 for 5min at room temperature and

then allowed to dry and stained with FITC-PNA (20µg/mL;

Sigma Chemical Company, USA) for 30min in a humidified

chamber in a dark place.

After incubation, stained smears were rinsed with PBS

to remove unbound probes, allowed to dry, and covered

with 0.22M 1,4-diazabicyclo [2,2,2] octane (Sigma–Aldrich,

Germany) dissolved in glycerol-PBS mixture (9:1) (DABCO).

Stained smears were covered with a coverslip (24mm

× 50mm) before examination with a phase-contrast

microscope with fluorescence illumination (mirror unit

U-MWB2: excitation filter, BP460–490, dichroic mirror

DM500, and emission filter BA520IF; Olympus, Tokyo,

Japan). Sperm cells with uniform, intense, and well-

demarcated green fluorescent acrosomes were graded as

intact-acrosomes while those exhibiting fluorescence in

the anterior region only, no fluorescence in the head,

or fluorescence only along the outline or acrosomal

fringe were graded as damaged-acrosomes. At least 200

spermatozoa were examined in each smear to calculate the

intact-acrosomes percentage.

2.3. Recovery of seminal plasma and
blood collection

The remaining volume of ejaculate was centrifuged at 12,000

× g in a cooling centrifuge at 4◦C for 30min to collect SP.

The supernatant (SP) was re-centrifuged at 12,000 × g for

10min in a microfuge (Mittelsachsen, Saxony, Germany) to

obtain clear SP. Total protein concentration (g/dL) in SP was

determined with a hand-held refractometer [ATAGO, Brix 0–

32%, Japan, (23)], and then SP was frozen stored at−80◦C until

hormonal, biochemical, and proteomic analyses. In parallel,

throughout the experiment, blood samples have been drawn

from the jugular vein of all buffalo bulls before ejaculation.

The collected blood samples were centrifuged at 2,500 ×

g for 20min at 4◦C to separate serum, and the collected

serum was also frozen stored at −80◦C until hormonal and

biochemical analyses.

2.4. Hormonal analyses

Serum and seminal assays of LH and FSHwere performed by

chemiluminescence through the immune-enzymatic technique

using the commercial kits Beckman Coulter R© (Beckman

Coulter, USA) and the Access R© equipment (Beckman Coulter,

USA) according to the manufacturer’s instructions. Serum

and seminal total testosterone levels were measured using

commercial ELISA kits (Bio Check, Foster City, CA, USA) in

duplicate with a sensitivity of 0.5 ng/mL, while the intra- and

inter-assay coefficients of variation (CV) were 7.7 and 9.0%,

respectively. The immuno-radiometric assay kit (Immunotech

SAS, Marseille Cedex, France) was used to measure serum and

seminal IGF-1 levels (24), with a 2 ng/mL sensitivity and an

intra-assay CV of 3.26%.

2.5. Biochemical analyses

Total antioxidant capacity (TAC) was estimated using

an antioxidant assay kit provided by Cayman chemical

company (Michigan, USA) as designated by Lone et al. (25).

Seminal levels of Catalase [CAT; (26)], Glutathione peroxidase

[GPx; (3)], Nitric oxide [NO; (27)], and Malondialdehyde

[MDA; (3)] were calculated. Seminal fructose was measured

with the colorimetric method (28), whereas the Cobas c
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311/501 Analyzer (Roche Diagnostics GmbH, Mannheim,

Germany) was utilized to determine the serum glucose level.

Colorimetric methods were used to assess the serum and

seminal amounts of total protein (29) and albumin (30).

Also, serum and seminal contents of triglycerides, cholesterol,

and high-density lipoproteins (HDL) were calorimetrically

determined using commercial kits (Bio-Diagnosis Co.,

Cairo, Egypt).

2.6. SDS-PAGE of SP proteins

This experiment was run in four repetitions, utilizing the

SP of both fertile and subfertile buffalo bulls in the same

separating gel in the presence of a known standard to evaluate

the relative content of different SP proteins and their molecular

weight. Frozen SP was thawed and adjusted to a total protein

concentration of 500 µg/25 µL before being subjected to SDS-

PAGE (31). Briefly, electrophoresis sample buffer [4% (w/v) SDS,

20% (v/v) glycerol, 10% (v/v) β-mercaptoethanol, and pH 6.8]

was used to dilute (1:1) SP samples then boiled for exactly 5min,

followed by centrifugation at 10,000 × g at 4◦C for 5min to

collect the supernatants containing SP proteins.

Extracted SP proteins were separated on a 15% (w/v)

polyacrylamide gel containing 0.1% (w/v) SDS at room

temperature and 20 mA/gel using a mini protean III vertical slab

gel electrophoresis apparatus (Bio-Rad Laboratories, Hercules,

CA, USA). The separating gels were immersed for 5min in

a freshly prepared pre-fixative solution containing 20% (v/v)

methanol and 7.5% (v/v) acetic acid in H2O before being

stained with 0.1% (w/v) Coomassie brilliant blue R-250 (Oxford,

Mumbai, India) at room temperature with gentle shaking for

1 h (32). Stained gels were destained in a solution of 30%

(v/v) methanol and 10% (v/v) acetic acid in H2O overnight

with gentle shaking. Finally, the gel was scanned with a

scanner (HP Scanjet G3110, Hong Kong, China) and the

apparent molecular weight was calculated with a broad-way dual

prestained proteinmarker (6.5–212 kDa, New England, BioLabs,

UK). The proportions of different protein fractions were also

determined using an analytical system (Gel-Doc. Model-Alpha

Imager TM1220; Alpha Innotech Corporation, Santa Clara,

CA, USA).

2.7. Statistical and image analyses

The results are tabulated asmean± SEM. AGraphPad Prism

computer program version 7.0 (GraphPad Software, San Diego,

CA, USA) was used to perform all statistical analyses, and a

Student’s t-test was employed to compare fertile and subfertile

groups. Differences with P < 0.05 were considered statistically

significant. Using the gel-doc system, gel images were processed

to quantify the molecular weights of protein bands as well as the

relative protein fractions (protein %).

3. Results

3.1. Sperm characteristics and kinematics
of fertile and subfertile bu�alo bulls

As shown in Table 1, the values of sperm characteristics

(total motility, progressive motility, viability, intact-plasma

membrane, and intact-acrosome) and sperm kinematics

variables except LIN and WOB were higher (P < 0.01) in the

fertile group than in the subfertile group.

3.2. Hormonal and biochemical analyses

Both seminal and serum levels of FSH, LH, testosterone, and

IGF-1 were greater (P < 0.01) in the fertile group than in the

subfertile group, as shown in Tables 2, 3. Also, seminal TAC,

CAT, GPx, and NO were higher (P < 0.05) in the fertile group.

Likewise, seminal fructose, total protein, albumin, triglycerides,

cholesterol, and HDL were greater (P < 0.01) in the fertile

group compared with the subfertile group (Table 2). On the

contrary, seminal MDA was greater (P < 0.001) in the subfertile

(1.56 ± 0.08 µM/mL) group than in the fertile (0.96 ± 0.05

µM/mL) group as presented in Table 2. Serum levels of glucose,

total protein, albumin, triglycerides, cholesterol, and HDL were

comparable (P ≥ 0.05) between the two fertility groups as given

in Table 3.

3.3. Protein profiles and protein fractions
of SP collected from fertile and subfertile
bu�alo bulls

The SP protein profile (kDa) and their protein fractions

(%) of fertile and subfertile buffalo bulls are represented in

Table 4 and Figure 1. Gel analysis revealed 10 (70, 55, 42, 30,

26, 24, 19, 16, 15, and 14 kDa) protein bands with a molecular

weight ranging from 14 to 70 kDa were identified in both

fertile and subfertile buffalo bulls. Almost all the detected

bands were larger and denser in the fertile group compared

with the subfertile group as illustrated in Figure 1. It is worth

mentioning that protein bands of 14, 15, 26, 30, and 55 kDa

were more predominant in the fertile group compared to the

subfertile one. Additionally, the protein % of 55, 30, and 26

kDa protein bands was considerably greater (P < 0.001) in the

fertile group, whereas, the protein % of the 16 kDa protein band

was considerably greater (P < 0.001) in the subfertile group as

presented in Table 4.
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TABLE 1 Sperm characteristics and kinematics (mean ± SEM) of fertile and subfertile bu�alo bulls.

Parameter Fertile (n = 10) Subfertile (n = 4) P-values

Total motility (%) 77.60± 1.11a 68.64± 0.79b <0.001

Progressive motility (%) 73.73± 0.49a 63.87± 0.54b <0.001

Viability (%) 91.41± 1.25a 79.37± 1.19b <0.001

Intact-plasma membrane (%) 74.17± 1.11a 59.67± 1.73b <0.001

Intact-acrosome (%) 92.83± 0.79a 84.83± 0.79b <0.001

VAP (µm/s) 75.60± 0.85a 68.31± 0.95b <0.001

VSL (µm/s) 27.72± 0.62a 22.02± 0.84b <0.001

VCL (µm/s) 94.57± 0.93a 79.21± 1.24b <0.001

STR (%) 36.65± 0.47a 32.21± 1.06b <0.01

LIN (%) 29.35± 0.92a 27.88± 1.37a 0.3921

WOB (%) 80.03± 1.70a 86.38± 2.55a 0.0651

Means bearing different superscripts within the same row were different at P < 0.05.

VAP, Average path velocity; VSL, Straight linear velocity; VCL, Curvilinear velocity; STR, Straightness; LIN, Linearity; WOB, Wobble.

TABLE 2 Seminal fertility biomarkers (mean ± SEM) of fertile and subfertile bu�alo bulls.

Assay Parameter Fertile (n = 10) Subfertile (n = 4) P-values

Hormonal FSH (mUI/mL) 0.37± 0.03a 0.19± 0.01b <0.001

LH (mUI/mL) 0.28± 0.02a 0.11± 0.01b <0.001

T (ng/mL) 0.53± 0.02a 0.38± 0.02b <0.001

IGF-1 (ng/mL) 57.67± 1.71a 50.33± 1.48b <0.01

Biochemical TAC (Mm) 2.28± 0.07a 1.81± 0.05b <0.001

CAT (u/mL) 38.17± 1.04a 30.33± 1.19b <0.001

GPX (nmol/min/mL) 23.00± 0.89a 19.50± 0.76b <0.05

NO (mmol/L) 35.50± 1.23a 25.50± 0.85b <0.001

MDA (µM/mL) 0.96± 0.05b 1.56± 0.08a <0.001

Fructose (mg/dL) 322.00± 3.92a 277.30± 2.30b <0.001

Total protein (g/dL) 6.33± 0.09a 4.00± 0.37b <0.001

Albumin (g/dL) 2.36± 0.07a 1.36± 0.06b <0.001

Triglycerides (mg/ dL) 58.83± 1.47a 50.50± 1.29b <0.01

Cholesterol (mg/dL) 117.70± 2.38a 78.17± 1.89b <0.001

HDL (mg/dL) 30.83± 0.95a 22.67± 1.09b <0.001

Means bearing different superscripts within the same row were different at P < 0.05.

T, Testosterone; TAC, Total antioxidant capacity; CAT, Catalase enzyme; GPx, Glutathione peroxidase, NO, Nitric oxide; MDA, Malondialdehyde; HDL, High-density lipoproteins.

4. Discussion

Male fertility is a multifactorial trait depending upon

several factors, including animal behavior and physical fitness,

as well as semen quality and biochemical and/or hormonal

components of SP (33). As we expected, in the present study,

the proportion of sperm motility and viability, and almost all

sperm kinematics were significantly higher in fertile buffalo bulls

compared with subfertile animals. This is likely attributed to

normal testicular anatomy, histology, and function in fertile

animals, which backed the findings of Singh et al. (34), who

found that the proportion of motile spermatozoa in highly

fertile bulls was higher (P < 0.001) than that of low fertile

bulls. Further, our findings indicated that the proportions of

intact-acrosome and intact-plasma membrane were greater in

the fertile animals compared to the subfertile ones, which

increased oocyte penetration and enhanced the fertilization

process (35).
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TABLE 3 Serum fertility biomarkers (mean ± SEM) of fertile and subfertile bu�alo bulls.

Assay Parameter Fertile (n = 10) Subfertile (n = 4) P-values

Hormonal FSH (mUI/mL) 0.70± 0.02a 0.32± 0.02b <0.001

LH (mUI/mL) 0.52± 0.01a 0.22± 0.01b <0.001

T (ng/mL) 1.39± 0.04a 0.85± 0.01b <0.001

IGF-1 (ng/mL) 1678± 28.85a 1356± 14.19b <0.001

Biochemical Glucose (mg/dL) 69.83± 1.79a 67.67± 1.02a 0.319

Total protein (g/dL) 9.56± 0.09a 9.48± 0.09a 0.542

Albumin (g/dL) 3.70± 0.07a 3.59± 0.02a 0.194

Triglycerides (mg/dL) 62.33± 1.71a 61.33± 1.09a 0.631

Cholesterol (mg/dL) 176.80± 2.26a 177.70± 1.63a 0.770

HDL (mg/dL) 56.50± 0.76a 56.50± 0.96a 0.999

Means bearing different superscripts within the same row were different at P < 0.05.

T, Testosterone; HDL, High-density lipoproteins.

TABLE 4 Seminal plasma proteins profiles (kDa) and protein fractions (%) of fertile and subfertile bu�alo bulls.

Estimated molecular
weight (kDa)

Candidate protein
(molecular weight, kDa)

% Fraction P-values

Fertile Subfertile

70 Albumin (71), Clusterin precursor

(70)

1.74± 0.14a 1.75± 0.05a 0.9960

55 Osteopontin (55) 5.00± 0.13a 1.93± 0.16b <0.001

42 Clusterin (40) or

Ecto-ADP-ribosyltransferase 5 (43)

3.67± 0.09a 3.44± 0.25a 0.4059

30 BSP-30 kDa (28–30) 5.13± 0.23a 2.84± 0.10b <0.001

26 Prostaglandin D synthase 5.30± 0.19a 1.87± 0.25b <0.001

24 TIMP-2 (25,26) 4.15± 0.09a 3.83± 0.18a 0.1573

19 Novel protein 2.72± 0.09a 2.78± 0.12a 0.7194

16 BSP-A3 (16.5) 1.61± 0.05b 3.96± 0.18a <0.001

15 BSP-A2 (15,16) 13.00± 0.26a 12.89± 0.14a 0.7200

14 BSP-A1 (15) or Spermadhesin (14) 11.38± 0.26a 10.97± 0.22a 0.2758

Means bearing different superscripts within the same row were different at P < 0.05.

kDa, Kilo Dalton.

Oxidative stress is among the most implicated causes of

low semen quality and has a prolonged history of being linked

to male subfertility (36). This oxidative stress increases sperm

cell abnormalities, loss of membrane integrity, DNA damage,

and enzyme inactivation, leading to subfertility and/or infertility

(37). Antioxidants in the SP or on spermatozoa are the major

defense mechanisms against oxidative stress by minimizing the

liberation of free radicals. As a result, they enhance sperm

motility and might be beneficial in the treatment of male

subfertility and/or infertility (38). Herein, fertile buffalo bulls

had greater seminal TAC, CAT, GPx, and NO and lower MDA

content than subfertile buffalo bulls, emphasizing the notion

that MDA is a cytotoxic aldehyde and its elevation in SP has

negative impacts on the quality and fertility of sperm cells due

to its action on lipid membrane structures (39). In line with our

results, Barranco et al. (40) reported that antioxidants have a

favorable correlation with the fertility index, which may prevent

oxidative damage to the sperm plasma membrane and might be

used as a strong fertility estimate in boars. This could explain

the higher seminal values of TAC, CAT, GPx, and NO of fertile

buffalo bulls obtained in the current trial.

IGF-1 plays an important role in energy metabolism and

improves the metabolic activity of buffalo bull spermatozoa

through increasing intracellular calcium ion concentration,

which results in increased progressive sperm motility (41). Our

results indicated that fertile buffalo bulls had higher seminal and

serum IGF-1 concentrations, which is partially consistent with

Kumar et al. (42), who found that serum IGF-1 concentrations in
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FIGURE 1

SDS-PAGE of SP proteins in fertile and subfertile bu�alo bulls. Bulls were classified into fertile and subfertile groups based on their conception

rates. SP was collected by centrifugation (12,000 × g for 30min) of the collected semen samples. Reduction, denaturation, and separation of SP

proteins on 15% polyacrylamide gel were performed in the presence of a broad-way (6.5–212 kDa) prestained protein marker. Separated protein

bands were detected by Coomassie brilliant blue staining. Std, Standards; kDa, Kilo Dalton; Mr. Wt, Molecular Weight.
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fertile buffalo bulls were higher than those of subfertile animals

and were positively correlated with sperm concentration, mass

motility, and fertility. Our findings, On the other hand, are

inconsistent with Kumar et al. (42) who found no difference

in seminal IGF-1 levels between fertile and subfertile buffalo

bulls. This might be due to our study having a higher number of

fertile (10 vs. 5) and subfertile (4 vs. 2) buffalo bulls than Kumar

et al. (42). Thus, quantification of seminal and/or serum IGF-1

concentration is recommended to predict sperm cell functions

(43, 44).

In our trial, fertile buffalo bulls had greater levels of serum

and seminal testosterone compared to subfertile animals. This

is likely due to testosterone regulating testicular function,

particularly Sertoli cell function, and also has a crucial role

in the process of spermatogenesis (45). Recently, it has been

proven that seminal testosterone level is positively associated

with sperm cell concentration and the proportion of motile

spermatozoa in fertile bulls (46). Both FSH and LH regulate

testosterone synthesis and sustain proper spermatogenesis,

sperm vitality, and density (47). This might explain why the

fertile group had greater seminal and serum FSH and LH levels

than the subfertile group. The low LH concentration in the

subfertile group may not activate the Leydig cells, resulting in

low serum and seminal testosterone levels. Moreover, low FSH

levels impair Sertoli cell activity, leading to subfertility or even

infertility (48). Based on these findings, it is plausible to obtain

greater levels of FSH and LH in either the serum or SP of fertile

buffalo bulls.

Seminal fructose is produced via the conversion of

glucose with aldose reductase into sorbitol in the vesicular

glands, which is testosterone-dependent, and eventually, sorbitol

dehydrogenase reduces sorbitol into fructose (49). Our results

indicated that seminal fructose was greater in the fertile group

than in the subfertile one; this supports the fact that seminal

fructose plays an important role in the metabolic activity of

sperm cells, where sperm cells consume fructose to produce ATP

to maintain their motility (50).

Our findings reveal that the fertile group has higher seminal

total protein and albumin content in comparison with the

subfertile group. It is well-known that the seminal protein

fraction constitutes the amphoteric characteristic of SP and

represents the main component of its buffering activity (51).

Also, seminal albumin plays a crucial role in sperm motility,

capacitation, and acrosome reaction by acting as a cholesterol

acceptor, leading to cholesterol efflux from the sperm plasma

membrane (52), which is an initial and essential step in the

fertilization cascade. These aforementioned findings might be

the reason for the low semen quality and/or low fertility of

subfertile buffalo bulls.

Cholesterol has a pivotal role in spermmotility, capacitation,

acrosome reaction, and fertility (53). In the current study, the

fertile group had a higher seminal cholesterol level (117.70 ±

2.38 mg/dL) than the subfertile (78.17 ± 1.89 mg/dL) group,

which is consistent with the findings of El-Sayed et al. (54),

who reported that seminal cholesterol level was positively

correlated with ejaculate volume, total sperm cell count per

ejaculate, sperm motility, viability, as well as the integrity of

plasma and acrosomal membranes in buffalo bulls. Similarly,

seminal triglyceride content was greater in the fertile (58.83 ±

1.47 mg/dL) buffalo bulls because they are one of the main

energy substrates available for sperm cell metabolism; thus, low

triglyceride levels might lead to insufficient energy, low sperm

motility, and subfertility (55). Moreover, seminal triglycerides

and HDL levels in buffalo bulls were also positively associated

with sperm concentration, the total number of sperm cells per

ejaculate, and acrosomal integrity (54).

In our study, 10 protein bands were detected in SP collected

from either fertile or subfertile buffalo bulls but those of 14, 15,

26, 30, 42, and 55 kDa were predominant in the fertile animals.

Protein bands of 70, 55, 42, 26, and 24 kDa may correspond

to albumin or clusterin precursor, osteopontin, clusterin,

or ecto-ADP-ribosyltransferase 5, prostaglandin D synthase,

tissue inhibitor metalloproteinase-2 (TIMP-2), respectively as

summarized in Table 4 (56, 57). Protein bands of 30, 16,

15, and 14 kDa may correspond to bovine seminal plasma

protein-30 kDa (BSP-30 kDa), BSP-A3, BSP-A2, and BSP-A1 or

spermadhesin, respectively (58).

Notably, the protein % of 55, 30, and 26 kDa protein bands

was higher in the fertile group (Table 4), indicating that these

protein bands are related to in vivo fertility at least in Egyptian

buffalo bulls. In accord with Killian et al. (59), we found that the

protein % of the 16 KDa protein band was higher in subfertile

animals, indicating that this protein band might be used as

a diagnostic for male subfertility. Based on the findings of

Gwathmey et al. (60) who reported that all BSPA1/A2, BSP-A3,

and BSP-30 kDa are the major proteins in bovine SP which play

substantial roles in animal fertility, and also results of the current

study revealed that protein bands of 14, 15, 26 and 30 kDa were

denser and larger in fertile buffalo bulls, suggesting that these

proteins are fertility-associated at least in buffalo bulls.

It is well-known that osteopontin is a 55 kDa acidic SP

protein that has a critical role in sperm oocyte encounter and

the early stages of embryo development (61) which might be one

of the possible reasons for the difference in the in vivo fertility

of the two animal groups (fertile vs. subfertile). Furthermore, a

protein band of 26 kDa might be prostaglandin D synthase that

is localized in the apical ridge of the sperm acrosome (62) and

indirectly helps the male genital organs in uptaking retinoids,

essential for growth, differentiation, and spermatogenesis (63).

5. Conclusions

Seminal TAC, CAT, GPx, NO, and fructose, as well as

seminal and/or serum FSH, LH, testosterone, and IGF-1, are all

fertility-associated biomarkers. Seminal levels of total protein,
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albumin, triglycerides, cholesterol, and HDL can also be used

to distinguish fertile buffalo bulls from subfertile buffalo bulls.

Furthermore, protein bands of 26, 30, and 55 kDa in buffalo

bull SP may represent fertility-associated proteins that require

further investigation in the future.
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